math 127 midterm 1

65
MATH 127 MIDTERM 1

Upload: eitan

Post on 24-Feb-2016

42 views

Category:

Documents


0 download

DESCRIPTION

MATH 127 MIDTERM 1. Tutor: Maysum Panju. 3B Computational Mathematics Lots of tutoring experience Interests: Reading Pokémon Calculus. 2010 Outreach Trip. Summary Date Aug 20 – Sept 4 Location Cusco, Peru # Students 22 Project Cost $16,000. Building Projects - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: MATH 127 MIDTERM 1

MATH 127 MIDTERM 1

Page 2: MATH 127 MIDTERM 1

Tutor: Maysum Panju

• 3B Computational Mathematics

• Lots of tutoring experience

• Interests: – Reading– Pokémon– Calculus

Page 3: MATH 127 MIDTERM 1

2010 Outreach TripSummaryDate Aug 20 – Sept 4Location Cusco, Peru# Students 22Project Cost $16,000

Building ProjectsKindergarten Classroom provides free

educationSewing Workshopenables better job prospectsELT Classroom enables better job prospectsMore info @

studentsofferingsupport.ca/blog

Page 4: MATH 127 MIDTERM 1

Outline

• Introduction• Sets, inequalities, absolute values• Basic function concepts• Exponentials and Logarithms• Trigonometry• Limits• Second Degree Equations• Questions

Page 5: MATH 127 MIDTERM 1

Writing Solutions

• An introductory statement: what you are given and what you have to show/find;

• A concluding statement: summarize the conclusion briefly;

• Justifications of the main steps: refer to definitions, rules, and known properties;

• Some sentences of guidance for the reader, e.g. how you are going to solve the problem.

A good solution includes…

Page 6: MATH 127 MIDTERM 1

Sets of Numbers

• Set builder notation:S = { x | x satisfies some property }

• Sets you should know: • Intervals:

Page 7: MATH 127 MIDTERM 1

Absolute Values

• Absolute value: the “size” of a number

Page 8: MATH 127 MIDTERM 1

Absolute Value Inequality

Page 9: MATH 127 MIDTERM 1

Absolute Value EquationSolve for x:

Page 10: MATH 127 MIDTERM 1

Introduction to Functions

Page 11: MATH 127 MIDTERM 1

What is a Function?

• Function: Turns objects from one set into objects in another set.

• For each x in X, assign some value y in Y.• You can only assign one y per x.

– This implies the “Vertical Line Test”!

fX Y

Page 12: MATH 127 MIDTERM 1

Domain and Range

• Domain: What is the input (x) allowed to be?• Range: What values (y) does the function hit?

Page 13: MATH 127 MIDTERM 1

Even and Odd Functions

• Even functions:– Reflect along y-axis– e.g. Polynomials with only even degree terms

• Odd functions:– Reflect around the origin– e.g. Polynomials with only odd degree terms

Page 14: MATH 127 MIDTERM 1

Even and Odd Polynomials

Page 15: MATH 127 MIDTERM 1

Increasing /Decreasing Functions

• Increasing functions: implies– As x increases, so does f(x).

• Odd functions: implies– As y increases, so does f(y).

• Note: these inequalities are “strict”.

Page 16: MATH 127 MIDTERM 1

Transformation of Functions

• Given a function We can transform it:

• Here,1. Compress f horizontally by k (reflect in y-axis if k < 0) 2. Translate f to the right p units3. Stretch f vertically by a (reflect in x-axis if a < 0) 4. Translate f upwards by q

• Horizontal transformations are “backwards” and appear inside the function f. These affect the domain.

• Vertical transformations are “normal” and appear outside the function f. These affect the range.

Page 17: MATH 127 MIDTERM 1

Example

Page 18: MATH 127 MIDTERM 1

Function Compositions

• Given two functions f and g, sometimes we can “compose” them to make a new function.

• Given and The composition is given as

where

A CB gf

Page 19: MATH 127 MIDTERM 1

Composition of Functions

• You can only compose functions when the range of the inner function is within the domain of the outer function– If the inner function hits a value that the outer

function isn’t defined on, there’s a problem!

Page 20: MATH 127 MIDTERM 1

Example

Domain of

Domain of

Page 21: MATH 127 MIDTERM 1

Graphing Reciprocals

• Given a function , graphing the reciprocal is easy:1. Find all points where

These points remain fixed.2. Find all points where

These become vertical asymptotes. 3. Increasing sections become decreasing sections, and vice

versa.Positive sections remain positive sections, and vice versa.Maxima become minima, and vice versa.

4. Check any special points on a point-wise basis.

Page 22: MATH 127 MIDTERM 1

Example

Given , graph .

Page 23: MATH 127 MIDTERM 1

Inverse Functions

• An inverse function: Given a function f, define a new function f -1 that “undoes” f.

• The inverse must be a function:– Must pass the vertical line test!

• A function has a inverse if and only if – It is “one-to-one” (passes the horizontal line test)– It is strictly increasing or decreasing (if continuous)

• Do NOT confuse f -1 with 1/f !!

Page 24: MATH 127 MIDTERM 1

Inverse Functions

• If we have a function

Then the inverse function satisfies

• Sometimes we must restrict the domain of f to ensure that the inverse is a function.

• In this case, the range of the inverse f -1 is restricted.

Page 25: MATH 127 MIDTERM 1

Finding inverse functions

• If you have an equation , swap x with y and rearrange for y.– If you have to choose between +/-, take the +. This

corresponds to restricting the domain.• If you have a graph, reflect the graph in the

line y = x. – Remember to restrict the domain to a 1-to-1

interval first (so it passes the horizontal line test)!• Example: find the inverse of

on a suitable interval.

Page 26: MATH 127 MIDTERM 1

Exponents and Logarithms

Page 27: MATH 127 MIDTERM 1

Exponent Laws• Some common exponent laws:

In general, the exponential operation is really powerful.

Weak operations in exponents become stronger once you pull them out.

Examples:• Addition in the exponent becomes

multiplication outside.• Multiplication in the exponent

becomes exponentiation outside.

Page 28: MATH 127 MIDTERM 1

Exponential Graphs

• Given , the shape of the graph depends entirely on the choice of a.

If a > 1 If 0 < a < 1

Page 29: MATH 127 MIDTERM 1

Logarithm Laws

Think of logs as the inverse of exponentiations. In general, the logarithm operation is really weak.

Strong operations in logarithms become weaker once you pull them out.

Examples:• Multiplication in the log

becomes addition outside.• Exponents in the log

become multiplication outside.

Page 30: MATH 127 MIDTERM 1

Logarithm Graphs

• Given , the shape of the graph depends entirely on the choice of a.

If a > 1 If 0 < a < 1

Page 31: MATH 127 MIDTERM 1

Example problem

• Graph the function

• What is the domain?• What is the range?• Find the equation of the inverse on a suitable

interval.

Page 32: MATH 127 MIDTERM 1

Example - Solution

• Graph:

• Domain:• Range:• Inverse on :

(0, 2)

Page 33: MATH 127 MIDTERM 1
Page 34: MATH 127 MIDTERM 1

Trigonometry

Page 35: MATH 127 MIDTERM 1

Review of Trigonometry

• Main ratios: sin, cos, tan (SOHCAHTOA)• Reciprocals: csc, sec, cot

Unit Circle: r = 1

Page 36: MATH 127 MIDTERM 1

Trig Graphs

http

://w

ww

.alg

ebra

-hel

p.or

g/gr

aphs

-of-

trigo

nom

etric

-func

tions

.htm

l

Page 37: MATH 127 MIDTERM 1

Trig Graphs

http

://w

ww

.eig

hty-

twen

ty.o

rg/

Page 38: MATH 127 MIDTERM 1

Trig Equations: Formulas to Know

• Compound Angles:

Page 39: MATH 127 MIDTERM 1

Example Problem

• Compute .• Solution:

Page 40: MATH 127 MIDTERM 1

Inverse Trig FUNCTIONS

arcsin

arccos

arctan

Page 41: MATH 127 MIDTERM 1

Examples

Prove that .

Picture proof…

Page 42: MATH 127 MIDTERM 1

Limits and Tangents

Page 43: MATH 127 MIDTERM 1

Limits• In calculus, the main ideas involve working with very

small numbers and very big numbers.• Limits help us…

– Use extremely small values– Reach really large values– Predict the value of a function at a place it isn’t defined– Relax the rules of domain restrictions

• Heuristically: the limit of a function at a point is the value the function “should” take at that point if it were nice and smooth.

Page 44: MATH 127 MIDTERM 1

Left and Right Limits

• The left limit of f(x) at the point x = a is the value the function approaches as x gets close to a from the left.

• The right limit of f(x) at the point x = a is the value the function approaches as x gets close to a from the right.

Page 45: MATH 127 MIDTERM 1

Limits

• If the left limit of f(x) AND the right limit of f(x) BOTH exist at the point x = a, and are EQUAL, then we say the limit of f(x) at a exists as well.– In this case, the limit is equal to the limits from the

left and right.

so

Page 46: MATH 127 MIDTERM 1

How to think about Limits

• When considering the limit of f(x) as x approaches a …

Think of the curve here and here But NOT here

Page 47: MATH 127 MIDTERM 1

Computing a Limit

• Computing limits is an art.• Adapt the technique for the problem!• Given a graph, guess the limit by inspection.

No Limit Limit = L

Page 48: MATH 127 MIDTERM 1

Computing a Limit

• Given – First thing to try: Substitute x = a in the equation.

If it works, and the function is “continuous”, you’re done!

– Usually (in “interesting” problems), you get an indeterminate form:

Page 49: MATH 127 MIDTERM 1

Computing a Limit

• Some tricks to try:– Factor and cancel out the problems.– Multiply by A/A for some clever A to eliminate

square roots (set up a difference of squares)– Use trig identities to help you cancel things– If absolute values are involved, use cases (show

the limit does NOT exist by showing left limit is not the same as right limit)

– Change the variables– Squeeze Law

Page 50: MATH 127 MIDTERM 1

Change of Variables

• To turn a limit to a more recognizable form, try a variable change.

• Example:– If x approaches infinity, let h = 1/x. Then h

approaches 0.– Try to get to familiar limits you can apply.– Practice:

Page 51: MATH 127 MIDTERM 1

Squeeze Law

• If the function f(x) is always between g(x) and h(x), and these two boundary functions approach a common limit L at x = a, then f(x) must also approach L at x = a.

• Common for limits involving [something that goes to 0] * sin( something )

• Example:

Page 52: MATH 127 MIDTERM 1

Continuity• A function f(x) is continuous at x = a if it has a limit at

that point, and the value of the limit is the same as the value of the function.

• The function is “smooth”; no need to “lift your pencil” when drawing

• A very nice property!• Examples:

– Polynomials, trig functions, logarithms, exponentials, compositions of continuous functions… ON THEIR DOMAIN

Page 53: MATH 127 MIDTERM 1

Intermediate Value Theorem• Continuous functions can’t skip values.

• “If I started down there, and ended up there, and moved continuously the whole way…”

• Usually use for proving existence of a root: Can’t go from negative to positive without passing 0.

Page 54: MATH 127 MIDTERM 1

Horizontal Asymptotes• Does the curve flatten out as x gets very large

(approaches infinity)?• A curve MAY cross the horizontal asymptote,

possibly MANY times.• Usually to check this, divide out by the

“strongest thing” in the limit.• Example:

Page 55: MATH 127 MIDTERM 1

Vertical Asymptotes

• Places where the curve flies upwards or plummets downwards without bound

• Like a barrier the curve cannot pass• Use limits to determine behaviour around

asymptote: up or down? – Check the sign of one-sided limits.

• Example:

Page 56: MATH 127 MIDTERM 1

Limits to Remember

Page 57: MATH 127 MIDTERM 1

Tangent Line SlopesWhat’s the point of limits?

Finding the slope of a tangent!

Page 58: MATH 127 MIDTERM 1

Finding Slopes of TangentsTo find the slope of the tangent to f(x) at x = a:

Compute the limit

If this limit exists, this is the slope of the tangent to f(x) at x = a.

- Then f(x) is “differentiable” at a!

Page 59: MATH 127 MIDTERM 1

Second Degree Curves

Page 60: MATH 127 MIDTERM 1

Second Degree Curves..

• Second degree curve: An equation of the form

Case ShapeA = B Circle

AB > 0 EllipseAB < 0 Hyperbola

A = B = 0 LineAB = 0 Parabola

Page 61: MATH 127 MIDTERM 1

Conic Sections

• Each second degree equation corresponds to slicing a double cone using a plane (or knife).

Page 62: MATH 127 MIDTERM 1

Graphing Ellipses

• Complete the squares to get something of the form

http

://w

ww

.intm

ath.

com

/Pla

ne-a

naly

tic-g

eom

etry

/5_E

llips

e.ph

p

Page 63: MATH 127 MIDTERM 1

Graphing Hyperbolas

• Complete the squares to get something of the form

http://people.richland.edu/james/lecture/m116/conics/translate.html

Page 64: MATH 127 MIDTERM 1

Graphing Parabolas

• Complete the square to get something of the form

http://people.richland.edu/james/lecture/m116/conics/translate.html

Page 65: MATH 127 MIDTERM 1

Questions and Practice Problems