matgeneral semana5

19
MATEMATICA GENERAL (FGTMM01) Coordinación de Matemática para el Área inicial Estudio detallado de la función polinómica de segundo grado y modelos cuadráticos

Upload: isabel-alves-maeda

Post on 04-Aug-2015

285 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Matgeneral semana5

MATEMATICA GENERAL(FGTMM01)

Coordinación de Matemática para el Área inicial

Estudio detallado de la función polinómica de segundo grado y

modelos cuadráticos

Page 2: Matgeneral semana5

Función cuadrática

La función que se construye a partir de la regla de correspondencia:

f(x)=ax2+bx+c,

donde a, b y c son constante reales tales que a 0, se llama función polinómica de segundo grado o función cuadrática.

El dominio de esta función es el conjunto de los números reales, pues con cualquier número real x se pueden realizar todas las operaciones necesarias para calcular la imagen f(x), obteniendo un único número real.

El rango o recorrido de esta función, depende de la relación entre los coeficientes a, b y c.

Page 3: Matgeneral semana5

• Df=R, conjunto de los números reales• Como el cuadrado de todo número real es no negativo,

entonces el rango de f es [0,∞)• La curva recibe el nombre de parábola (“abierta hacia arriba”).• El “punto más bajo” de la curva es el origen del sistema (0,0) y

se llama vértice de la parábola.

Ejemplo: f(x)=x2

x f(x)-4 16-3 9-2 4-1 10 01 12 43 94 165 25

Función cuadrática

Page 4: Matgeneral semana5

• Df=R, conjunto de los números reales• Como el cuadrado de todo número real es no negativo, entonces

el opuesto de él es no positivo, luego el el rango de f es (-∞,o]• El vértice es el punto “más alto”

x g(x)-4 -16-3 -9-2 -4-1 -10 01 -12 -43 -94 -165 -25

Ejemplo: g(x)= - x2

Función cuadrática

Page 5: Matgeneral semana5

Dibuje en un mismo sistema de coordenadas las gráficas de: (i) f(x)=x2

(ii) g(x)=4x2

(iii) h(x)=(1/4)x2

“familia de parábolas” de ecuación f(x)= ax2

Función cuadrática-Consideraciones

Page 6: Matgeneral semana5

Dada f(x)=ax2+bx+c, se completan cuadrados para determinar su vértice:

Completación de cuadrados y vértice de una parábola

El vértice de la parábola es el punto el valor mínimo o máximo de la función es

la ordenada de dicho punto; es decir en consecuencia, el rango es el intervalo

si f tiene un mínimo y si f tiene un máximo.

Page 7: Matgeneral semana5

Determina el vértice de la parábola y = 4x2 -16x+21,

SoluciónA través de la “completación de cuadrados”

y = 4x2 -16x+21 =4(x2-4x)+21 =4(x2-4x+4)+21-16 =4(x-2)2+5

Ejercicio

El vértice es: V=(2, 5)

Page 8: Matgeneral semana5

Hacer un estudio completo debe entenderse como la realización de un trabajo detallado, tanto algebraico como geométrico, con cálculos y argumentaciones basadas en la teoría, que aporte como resultado: (1)Dominio de la función, (2)Rango o recorrido de ella, (3)Gráfico de la función, incluyendo:

(a) cortes con los ejes coordenados, (b) eje de simetría, (c) hacia adónde “abre” la gráfica, (d) vértice, (e) valor máximo o mínimo de la función, (f) intervalos donde la función es creciente y donde es

decreciente.

¿Cómo estudiar una función cuadrática?

Page 9: Matgeneral semana5

Paso 1se decide la

orientación de la parábola : hacia

arriba si a>0 y hacia abajo si a<0

Paso 2se calcula f(0),

determinando el punto (0,f(0)), intersección de la parábola con el

eje y

Paso 3se determinan, si es

que existen, las intersecciones con el x

(y=0)

Paso 3se determinan, si es

que existen, las intersecciones con el x

(y=0)

Paso 4se obtiene el

vértice V(xv , yv)

Paso 5se traza la gráfica.

De ser necesario, se localizan puntos adicionales con el

aprovechamiento de la simetría con respecto al eje.

¿cómo estudiar una función cuadrática?

Page 10: Matgeneral semana5

Realiza un estudio completo de la función: f(x)=-x2+x+6

Ejercicio

El dominio de f es R el conjunto de los números reales.

Completando cuadrados se tiene:

Resolviendo la ecuación cuadrática se tiene:

de donde las raíces de la ecuación cuadrática son dos: x1=-2 y x2=3

Puntos de corte con los ejes: A(0, 6) , B(-2,0) , C(3,0), La parábola “abre” hacia abajo

el valor máximo de f es

el rango es el intervalo

Page 11: Matgeneral semana5

Gráfico de la parábola

Gráfica de f(x)=-x2+x+6

Page 12: Matgeneral semana5

Realiza un estudio completo de la función:

f(x)=x2+6x+5

Ejercicio

Page 13: Matgeneral semana5

La ecuación de segundo grado o cuadrática

De ella se deduce que la ecuación de segundo grado ax2+bx+c=0

tiene dos soluciones reales y diferentes si la cantidad subradical, llamada discriminante de la ecuación b2- 4ac es mayor que cero. Geométricamente la parábola corta en dos puntos al eje Ox.

Sea: con a diferente de cero, entonces la solución a esta ecuación se puede hallar a través de :

tiene una sola solución si b2- 4ac=0 . Geométricamente la parábola corta al eje Ox en un solo punto.

no tiene soluciones reales si b2-4ac es menor que cero. Geométricamente, la parábola no corta al eje Ox.

Page 14: Matgeneral semana5

La función cuadrática como modelo matemático

Ejemplo Una persona desea construir un corral rectangular para animales con una cerca de 4 hileras de alambre y usando como uno de los costados un muro que ya está construido. Si la persona dispone de 1.200 m. de alambre, ¿cuál es el área máxima que puede encerrar?

Solución Si como se indica en la figura adjunta, la región rectangular formada deberá tener cerca de alambre por tres de sus costados.

Muro disponibleComo son 4 hileras de alambre y se dispone de 1200 m, cada hilera debe medir 300 m. De modo que si se emplean x metros para cada lado de una hilera perpendicular al muro, quedan 300-2x m disponibles para la hilera paralela al muro, como se ilustra en la segunda figura.

El área encerrada por el rectángulo es, en consecuencia el modelo matemático dado por la función con regla de correspondencia A(x)=(300-2x)x

Completando cuadrados se tiene:A(x)=(300-2x)x=-2x2+300x=-2(x2-150x)=-2(x2-150x+752)+2752

Es decir: A(x)=-2(x-75)2+11250

Como “a”=-2<0 la gráfica es una parábola abierta hacia abajo, luego su vértice V(75,11250) es su punto más alto; o sea la función A alcanza el valor máximo 11250 que es el área máxima (en m2) del rectángulo cuyos lados miden 75 m y 150 m.

Page 15: Matgeneral semana5

La función cuadrática como modelo matemático

EjemploUn vuelo “charter” para viajar a Canaima cobra U$ 200 por cada pasajero, más U$ 4 adicionales a cada pasajero que tome el vuelo, por cada asiento que quede vacío por no venta del boleto correspondiente. Si el avión es para 100 pasajeros y x representa el número de boletos no vendidos, determine: (a) Una expresión para la función I(x) que describe los ingresos, (b) la gráfica de la función I(x), (c) el número de asientos no vendidos que produce el ingreso máximo, (d) el monto del ingreso máximo.

SoluciónCon el propósito de visualizar como se genera la función ingreso I(x) haremos una tabla con algunos “casos particulares”

Puestos vacíos N° pasajeros Precio unitario Ingresos0 100 200 100200=200001 99 200+4=204 99204=201962 98 200+24=208 98208=20384… … … …

Si se escribe x en la primera columna de la tabla y en la fila siguiente a los puntos suspensivos, ¿qué debe escribirse en la misma fila pero en las columnas siguientes?

x 100-x 200+x4 (100-x)·(200+4x)

(a) Así, la f unción ingresos es la dada por la regla de correspondencia I(x)=(100-x)(200+4x)

Desarrollando productos y completando cuadrados, se tiene:I(x)=(100-x)(200+4x)=-4x2+400x-200x+20000=-4x2+200x+20000=-4(x2-50x)+20000 =-4(x2-50x+252)+2000+6254=-4(x-25)2+22500

(c) y (d) El máximo se obtiene para x=25 (asientos no vendidos) y es 22500 U$. ¿Por qué?

Page 16: Matgeneral semana5

La función cuadrática como modelo matemático

Gráfica de la función ingresos I(x)=(100-x)(200+4x)=-4(x-25)2+22500 en donde la escala en ambos ejes coordenados no es la misma.

Page 17: Matgeneral semana5

Ejercicios

Trace la gráfica de la función cuadrática siguiendo las instrucciones que aparecen en la página 440 del libro texto (Octava Edición) o en la página 439 del libro texto (Décima Edición). Es necesario que para la determinación de las coordenadas del vértice (Paso 4) utilice el método de completación de cuadrados.

 Ingreso máximo por tarifas de autobús. Una compañía que fleta autobuses cobra $48 por persona, más $2 por persona por cada asiento no vendido en el vehículo, por el viaje a un centro turístico. Si el autobús tiene 42 asientos y x representa el número de asientos no vendidos, obtenga lo siguiente:a) Una expresión que defina el ingreso total, R(x), por el viaje.b) La gráfica de la función definida en la parte a).c) El número de asientos no vendidos que produce el ingreso máximo.d) El ingreso máximo.

1

2

Page 18: Matgeneral semana5

Pesca de ostras en Estados Unidos. La pesca nacional de ostras en Estados Unidos (en millones) para los años de 1990 a 1998 se aproxima con la función cuadrática definida por: F(x) = -0,566 x2 + 5,08 x + 29,2Donde x = 0 representa a 1990, x = 1 a 1991, y así sucesivamente.El valor de y del vértice de esta gráfica, ¿será un máximo o un mínimo?¿En qué año ocurrió la pesca máxima nacional de ostras? (Redondee al año más cercano). Emplee el valor real de la coordenada x del vértice, redondeada a la décima mas cercana, para encontrar cual fue dicha pesca.

Ejercicios del texto MILLER: páginas 442 a 444, del 1 al 58.

Ejercicios

3

4

Page 19: Matgeneral semana5

La fábrica de textiles “Ilasol” produce toallas de medio baño a un costo de $20 por unidad. Las toallas se venden a $50 cada una; por este precio, el gerente de ventas, Carlos Sotomayor, se dio cuenta que los consumidores han comprado 4000 toallas al mes. El gerente planea aumentar el precio de las toallas y estima que por cada $5 de incremento en el precio se venderán 400 toallas menos cada mes. Sotomayor necesita conocer el precio de las toallas que le generará mayor utilidad mensual.a) Identifique las variables: La variable es el precio de venta nuevo de las toallas = x.b) Exprese todas las cantidades en términos de la variable (diagrama o tabla).

Analizamos para aumentos de $5 el número de toallas que se vende.

Precio Número de toallas vendidas

50 4000 – 400(0) = 4000

55 4000 – 400(1) = 3600

60 4000 – 400(2) = 3200

65 4000 – 400(3) = 2800

Número de aumentos de $5 =(precio venta nuevo-precio antiguo)/5=(x-50)/5 Cantidad de toallas vendidas= 4000-4000 (x-50)/5Utilidad por toalla= precio de venta nuevo-precio de fabricación= x-20Utilidad por toalla= (cantidad de toallas vendidas).(utilidad por toalla)=U(x)=(4000-4000(x-50)/5)(x-20)

Ejercicios

5