material science_v. rajendran

Upload: netgalaxy2010

Post on 04-Jun-2018

250 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Material Science_V. Rajendran

    1/111

    Scilab Textbook Companion for

    Material Science

    by V. Rajendran1

    Created byLaxman Ghanasham Sole

    B.TechElectronics Engineering

    Vishwakarma Institute of Technology, PuneCollege Teacher

    Prof. Vijay ManeCross-Checked by

    Lavitha Pereira

    November 2, 2013

    1Funded by a grant from the National Mission on Education through ICT,http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilabcodes written in it can be downloaded from the Textbook Companion Projectsection at the website http://scilab.in

  • 8/13/2019 Material Science_V. Rajendran

    2/111

    Book Description

    Title: Material Science

    Author: V. Rajendran

    Publisher: Tata Mcgraw Hill, New Delhi

    Edition: 1

    Year: 2012

    ISBN: 0-07-132897-1

    1

  • 8/13/2019 Material Science_V. Rajendran

    3/111

    Scilab numbering policy used in this document and the relation to theabove book.

    Exa Example (Solved example)

    Eqn Equation (Particular equation of the above book)

    AP Appendix to Example(Scilab Code that is an Appednix to a particularExample of the above book)

    For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 meansa scilab code whose theory is explained in Section 2.3 of the book.

    2

  • 8/13/2019 Material Science_V. Rajendran

    4/111

    Contents

    List of Scilab Codes 5

    1 Materials Properties and Requirements 11

    2 Crystal Structure 13

    3 Characterisation of material 29

    4 Cohesion between atoms 33

    5 Crystal Imperfections 34

    6 Classification of solids 36

    7 Elecron theory of Solids 38

    8 Statics and Band theory of Solids 45

    10 Transport Properties of Semiconductors 56

    11 Mechanical Properties 74

    12 Thermal Properties 77

    14 Luminescence 83

    15 Display Devices 85

    16 Photoconductivity 87

    3

  • 8/13/2019 Material Science_V. Rajendran

    5/111

    18 Dielectric Materials 89

    19 Magnetic Materials 101

    20 Super Conducting Materials 107

    23 Polymer Materials 109

    4

  • 8/13/2019 Material Science_V. Rajendran

    6/111

    List of Scilab Codes

    Exa 1.1 Resistance of the wire. . . . . . . . . . . . . . . . . . 11Exa 1.2 Extension of a wire. . . . . . . . . . . . . . . . . . . . 11Exa 2.2 Lattice spacing from Miller indices . . . . . . . . . . . 13Exa 2.3 Lattice constant of Sodium . . . . . . . . . . . . . . . 13Exa 2.4 Avogadro Constant . . . . . . . . . . . . . . . . . . . 14Exa 2.5 Lattice spacing from Miller indices . . . . . . . . . . . 14Exa 2.6 Lattice spacing from Miller indices . . . . . . . . . . . 15Exa 2.7 Lattice spacing from Miller indices . . . . . . . . . . . 15Exa 2.8 Lattice spacing from Miller indices . . . . . . . . . . . 16Exa 2.13 Lattice spacing from Miller indices . . . . . . . . . . . 16Exa 2.15 Lattice spacing from Miller indices . . . . . . . . . . . 17Exa 2.16 Number of atoms in Al foil . . . . . . . . . . . . . . . 18Exa 2.17 no of unit cells in 1 kg metal . . . . . . . . . . . . . . 18

    Exa 2.18 percentage volume change during structural changes . 18Exa 2.19 Copper Density. . . . . . . . . . . . . . . . . . . . . . 19Exa 2.20 Atomic Radius . . . . . . . . . . . . . . . . . . . . . . 19Exa 20.21 Lattice constant . . . . . . . . . . . . . . . . . . . . . 20Exa 2.22 Glancing angle . . . . . . . . . . . . . . . . . . . . . . 20Exa 2.23 Lattice constant . . . . . . . . . . . . . . . . . . . . . 21Exa 2.24 Plane Drawing . . . . . . . . . . . . . . . . . . . . . . 21Exa 2.25 Interplanar spacing. . . . . . . . . . . . . . . . . . . . 22Exa 2.26 Lattice spacing and deBroglie wavelength . . . . . . . 24Exa 2.27 Lattice constant and atomic radius . . . . . . . . . . 24Exa 2.28 energy of the neutron . . . . . . . . . . . . . . . . . . 25

    Exa 2.29 InterPlanar Spacing . . . . . . . . . . . . . . . . . . . 25Exa 2.30 Lattice spacing from Miller indices . . . . . . . . . . . 26Exa 2.31 Number of atoms in Al foil . . . . . . . . . . . . . . . 26Exa 2.32 energy of the neutron . . . . . . . . . . . . . . . . . . 27

    5

  • 8/13/2019 Material Science_V. Rajendran

    7/111

    Exa 2.35 deBroglie wavelength of electrons . . . . . . . . . . . . 27

    Exa 2.36 Lattice spacing from Miller indices . . . . . . . . . . 28Exa 2.38 Plane Drawing . . . . . . . . . . . . . . . . . . . . . . 28Exa 3.1 wavelength and frequency of Xrays . . . . . . . . . . 29Exa 3.2 wavelength and velocity of electrons . . . . . . . . . . 29Exa 3.3 wavelength and angle for 2nd order bragg reflection. . 30Exa 3.4 Grating spacing and glancing angle. . . . . . . . . . . 31Exa 3.5 wavelength of radiation . . . . . . . . . . . . . . . . . 31Exa 3.6 Energy of thermal neutron . . . . . . . . . . . . . . . 32Exa 3.8 temperature of thermal neutron. . . . . . . . . . . . . 32Exa 4.1 Coulomb interatomic energy. . . . . . . . . . . . . . . 33Exa 5.1 Average distance between dislocations. . . . . . . . . 34

    Exa 5.2 Schottky defects per unit cell . . . . . . . . . . . . . . 34Exa 6.1 Wavelength of light emitted from LED . . . . . . . . . 36Exa 6.2 Band gap of given GaAsP . . . . . . . . . . . . . . . . 36Exa 7.1 mobility of electrons in copper . . . . . . . . . . . . . 38Exa 7.2 resistivity of copper . . . . . . . . . . . . . . . . . . . 38Exa 7.3 resistivity of sodium . . . . . . . . . . . . . . . . . . . 39Exa 7.4 mobility of electrons in meatls . . . . . . . . . . . . . 39Exa 7.5 drift velocity of electrons . . . . . . . . . . . . . . . . 40Exa 7.6 mobility of electrons. . . . . . . . . . . . . . . . . . . 40Exa 7.7 Lorentz Number . . . . . . . . . . . . . . . . . . . . . 41

    Exa 7.8 Lorentz Number . . . . . . . . . . . . . . . . . . . . . 41Exa 7.9 conductivity of copper . . . . . . . . . . . . . . . . . . 42Exa 7.10 drift velocity of electrons in silver piece . . . . . . . . 42Exa 7.11 resistivity of copper . . . . . . . . . . . . . . . . . . . 43Exa 7.12 mobility and drift velocity of electrons . . . . . . . . . 44Exa 8.1 Fermi energy . . . . . . . . . . . . . . . . . . . . . . . 45Exa 8.2 Density of States . . . . . . . . . . . . . . . . . . . . . 46Exa 8.3 Nordheims Coefficient . . . . . . . . . . . . . . . . . . 47Exa 8.4 Conductivity of Al . . . . . . . . . . . . . . . . . . . . 47Exa 8.5 Fermi distribution Function . . . . . . . . . . . . . . . 48Exa 8.6 Fermi temperature . . . . . . . . . . . . . . . . . . . . 48

    Exa 8.7 Density of States . . . . . . . . . . . . . . . . . . . . . 48Exa 8.8 Fermi Velocity . . . . . . . . . . . . . . . . . . . . . . 49Exa 8.9 Fermi Energy . . . . . . . . . . . . . . . . . . . . . . . 49Exa 8.10 Fermi Energy . . . . . . . . . . . . . . . . . . . . . . . 50Exa 8.11 Fermi distribution Function . . . . . . . . . . . . . . . 50

    6

  • 8/13/2019 Material Science_V. Rajendran

    8/111

    Exa 8.12 theorotical example . . . . . . . . . . . . . . . . . . . 51

    Exa 8.13 theorotical example . . . . . . . . . . . . . . . . . . . 51Exa 8.14 Energies for different probabilities . . . . . . . . . . . 51Exa 8.15 Fermi distribution Function . . . . . . . . . . . . . . . 52Exa 8.16 Fermi Energy . . . . . . . . . . . . . . . . . . . . . . . 53Exa 8.17 Fermi distribution Function . . . . . . . . . . . . . . . 53Exa 8.18 Electron density . . . . . . . . . . . . . . . . . . . . . 54Exa 8.19 concentration of free electrons. . . . . . . . . . . . . . 54Exa 8.20 carrier density and fermi velocity . . . . . . . . . . . . 55Exa 10.1 Intrinsic concentration conductivity and resistivity . . 56Exa 10.2 Fermi Energy . . . . . . . . . . . . . . . . . . . . . . 57Exa 10.3 Resistance of Germanium . . . . . . . . . . . . . . . . 57

    Exa 10.4 conductivity of Intrinsic semiconductor . . . . . . . . 58Exa 10.5 Intrinsic Resistivity . . . . . . . . . . . . . . . . . . . 58Exa 10.6 electrical conductivity of boron doped semiconductor . 59Exa 10.7 Hole concentration conductivity and Resistance . . . 59Exa 10.8 Band Gap of Ge . . . . . . . . . . . . . . . . . . . . . 60Exa 10.9 carrier concentration of intrinsic semiconductor . . . . 61Exa 10.10 Electrical conductivity of Si . . . . . . . . . . . . . . . 61Exa 10.11 Fermi energy of Silicon . . . . . . . . . . . . . . . . . 62Exa 10.12 effect of temperature on Fermi level . . . . . . . . . . 62Exa 10.13 Conductivity of Ge. . . . . . . . . . . . . . . . . . . . 63

    Exa 10.14 Fermi Energy level . . . . . . . . . . . . . . . . . . . . 63Exa 10.15 Conductivity of Ge. . . . . . . . . . . . . . . . . . . . 64Exa 10.16 Intrinsic concentration of Si . . . . . . . . . . . . . . . 64Exa 10.17 Drift Velocity . . . . . . . . . . . . . . . . . . . . . . . 65Exa 10.18 average no of electron per Cu atom. . . . . . . . . . . 65Exa 10.19 Mobility of Ge . . . . . . . . . . . . . . . . . . . . . . 66Exa 10.20 Hall Potential Difference. . . . . . . . . . . . . . . . . 66Exa 10.21 Mobility of Si . . . . . . . . . . . . . . . . . . . . . . . 67Exa 10.22 Electron concentration and Mobility . . . . . . . . . . 67Exa 10.23 Hall voltage. . . . . . . . . . . . . . . . . . . . . . . . 68Exa 10.24 Relaxation time . . . . . . . . . . . . . . . . . . . . . 68

    Exa 10.25 Electron mobility in Silver. . . . . . . . . . . . . . . . 69Exa 10.26 Electron mobility and electric field . . . . . . . . . . . 69Exa 10.27 Electron mobility. . . . . . . . . . . . . . . . . . . . . 69Exa 10.28 Electron mobility and electric field . . . . . . . . . . . 70Exa 10.29 Electron mobility and conductivity . . . . . . . . . . . 70

    7

  • 8/13/2019 Material Science_V. Rajendran

    9/111

    Exa 10.30 Drift Velocity . . . . . . . . . . . . . . . . . . . . . . . 71

    Exa 10.31 Relaxation time . . . . . . . . . . . . . . . . . . . . . 71Exa 10.32 Electron mobility in Al . . . . . . . . . . . . . . . . . 72Exa 10.33 drift and thermal velocity . . . . . . . . . . . . . . . . 72Exa 11.1 Stress produced in an Al. . . . . . . . . . . . . . . . . 74Exa 11.2 perentage elongation and reduction . . . . . . . . . . . 74Exa 11.3 Brinell Hardness Number . . . . . . . . . . . . . . . . 75Exa 11.4 Tensile strength and fatigue limit of Steel plate . . . . 75Exa 12.1 Change in length due to heating . . . . . . . . . . . . 77Exa 12.2 Change in length due to heating . . . . . . . . . . . . 77Exa 12.3 Steady state heat Transfer. . . . . . . . . . . . . . . . 78Exa 12.4 Compression Stress due to Heating . . . . . . . . . . . 78

    Exa 12.5 Heat flux transmitted . . . . . . . . . . . . . . . . . . 79Exa 12.6 Youngs Modulus . . . . . . . . . . . . . . . . . . . . . 79Exa 12.7 temperature Change . . . . . . . . . . . . . . . . . . 80Exa 12.8 compressive Sress. . . . . . . . . . . . . . . . . . . . . 80Exa 12.9 limit to compression stress . . . . . . . . . . . . . . . 81Exa 12.10 Heat energy Requirement . . . . . . . . . . . . . . . . 81Exa 14.1 Penetration depth of electron . . . . . . . . . . . . . . 83Exa 14.2 Luminescent lifetime . . . . . . . . . . . . . . . . . . . 83Exa 15.1 wavelength of light . . . . . . . . . . . . . . . . . . . 85Exa 15.2 Band Gap of GaAsP . . . . . . . . . . . . . . . . . . . 85

    Exa 16.1 Pairs generated per second . . . . . . . . . . . . . . . 87Exa 16.2 Wavelength of emitted radiation . . . . . . . . . . . . 87Exa 18.1 Dilectric constant of KCl . . . . . . . . . . . . . . . . 89Exa 18.2 Electronic polarisability of Se atom. . . . . . . . . . . 89Exa 18.3 ratio between electronic and ionic polarability . . . . 90Exa 18.4 Dielectric constant of Ne gas . . . . . . . . . . . . . . 90Exa 18.5 Charge on Capacitor . . . . . . . . . . . . . . . . . . . 91Exa 18.6 Dielectric constant of Ar gas . . . . . . . . . . . . . . 91Exa 18.7 Energy stored in capacitor and polarising the capacitor 91Exa 18.8 ratio of internal field to the applied field . . . . . . . . 92Exa 18.9 Relative permittivity of NaCl . . . . . . . . . . . . . 92

    Exa 18.10 Polarisability of Ar. . . . . . . . . . . . . . . . . . . . 93Exa 18.11 Polarisability of He atom . . . . . . . . . . . . . . . . 93Exa 18.12 Polarisability of Ar. . . . . . . . . . . . . . . . . . . . 94Exa 18.13 energy stored in dielectric . . . . . . . . . . . . . . . . 94Exa 18.14 Electronic polarisability of Sulphur . . . . . . . . . . . 94

    8

  • 8/13/2019 Material Science_V. Rajendran

    10/111

    Exa 18.15 energy stored in capacitor . . . . . . . . . . . . . . . . 95

    Exa 18.16 Polarisation produced in NaCl . . . . . . . . . . . . . 96Exa 18.17 Relative permitivity of NaCl . . . . . . . . . . . . . . 96Exa 18.18 Electric field strength . . . . . . . . . . . . . . . . . . 96Exa 18.19 Polarisability of He atom . . . . . . . . . . . . . . . . 97Exa 18.20 Electric field strength . . . . . . . . . . . . . . . . . . 97Exa 18.21 Dilectric Displacement . . . . . . . . . . . . . . . . . . 98Exa 18.22 Polarisation produced in NaCl . . . . . . . . . . . . . 98Exa 18.23 Polarisation produced in NaCl . . . . . . . . . . . . . 99Exa 18.24 Voltage across Capacitor. . . . . . . . . . . . . . . . . 99Exa 18.25 Charge on Capacitor . . . . . . . . . . . . . . . . . . . 99Exa 18.26 Dilectric Constant . . . . . . . . . . . . . . . . . . . . 100

    Exa 19.1 Relative permiability and magnetic force. . . . . . . . 101Exa 19.2 magnetisation and flux density . . . . . . . . . . . . . 101Exa 19.3 Flux density . . . . . . . . . . . . . . . . . . . . . . . 102Exa 19.4 Permiability . . . . . . . . . . . . . . . . . . . . . . . 102Exa 19.5 Magnetic Moment . . . . . . . . . . . . . . . . . . . . 103Exa 19.6 Avrage magnetisation . . . . . . . . . . . . . . . . . . 103Exa 19.7 System Temperature . . . . . . . . . . . . . . . . . . . 104Exa 19.8 Saturation Magnetic field of Gd. . . . . . . . . . . . . 104Exa 19.9 Saturation Magnetisation . . . . . . . . . . . . . . . . 105Exa 19.10 Saturation Magnetisation and saturation flux density . 105

    Exa 19.11 Saturation Magnetisationof Gadolinium . . . . . . . . 106Exa 19.12 Magnetic Flux density . . . . . . . . . . . . . . . . . . 106Exa 20.2 Critical Field . . . . . . . . . . . . . . . . . . . . . . . 107Exa 20.3 Critical field through a wire . . . . . . . . . . . . . . . 107Exa 20.4 Critical Temperature for metal . . . . . . . . . . . . . 108Exa 23.1 Sulphur required for final rubber product . . . . . . . 109Exa 23.2 Photon energy to break C C bond . . . . . . . . . . . 109

    9

  • 8/13/2019 Material Science_V. Rajendran

    11/111

    List of Figures

    2.1 Plane Drawing . . . . . . . . . . . . . . . . . . . . . . . . . 222.2 Plane Drawing . . . . . . . . . . . . . . . . . . . . . . . . . 23

    10

  • 8/13/2019 Material Science_V. Rajendran

    12/111

    Chapter 1

    Materials Properties and

    Requirements

    Scilab code Exa 1.1 Resistance of the wire

    1 / / Exa mpl e 1 . 1 , p ag e no82 clear

    3 clc

    4

    5 r = 0 . 4 5 * 1 0 ^ - 3 //m6 L = 0 . 3 //m7 r h o = 1 7 * 1 0 ^ - 9 //ohmm8 / / C a l c u l a t i o n s9 R = r h o * ( L / ( % p i * r ^ 2 ) )

    10 printf ( The R e s i s t a nc e o f t he w i re i s %. 3 f ohm ,R )

    Scilab code Exa 1.2 Extension of a wire

    1 / / Exa mpl e 1 . 2 , p ag e no82 clear

    3 clc

    11

  • 8/13/2019 Material Science_V. Rajendran

    13/111

    4

    5 r = 1 . 2 5 * 1 0 ^ - 3 //m6 L =3 //m7 F = 4 9 0 0 //Newton8 e = 2 . 0 5 * 1 0 ^ 1 1 //Pa9 s = F / ( % p i * r ^ 2 * e )

    10 printf ( s t r a i n = %. 3 f \ n T h e re f o r e , e x t e n s i o n = %. 3 f ,s , s * 3 )

    12

  • 8/13/2019 Material Science_V. Rajendran

    14/111

    Chapter 2

    Crystal Structure

    Scilab code Exa 2.2 Lattice spacing from Miller indices

    1 / / Exa mpl e 2 . 2 , p ag e no292 clear

    3 clc

    4 // I n t e r c e p t s a re i n t h e r a t i o 3 a : 4 b a lo ng X ,Y andp a r a l l e l t o Z a x i s

    5 / /x i n t e r c e p t 3 , y i n t e r c e p t 4 and z i n t e r c e p t

    i n f i n i t y6 a = 2 * 1 0 ^ - 1 0 / / 2 A ng st ro m7 h =4

    8 k =3

    9 l =0

    10 d = a / sqrt ( h ^ 2 + k ^ 2 + l ^ 2 )

    11 printf ( The l a t t i c e s p a c in g f o r t he p l an e 43 0 i s %. 1f1010 m , d * 1 0 ^ 1 0 )

    Scilab code Exa 2.3 Lattice constant of Sodium

    1 / / Exa mpl e 2 . 3 , p ag e no31

    13

  • 8/13/2019 Material Science_V. Rajendran

    15/111

    2 clear

    3 clc4

    5 d = 9 . 6 * 1 0 ^ 2 //kg/m36 a w t = 2 3

    7 n =2

    8 a v g = 6 . 0 2 3 * 1 0 ^ 2 6

    9 m = n * a w t / a v g

    10 a = ( m / d ) ^ ( 1 / 3 )

    11 printf ( The l a t t i c e c o n s t a n t od s od iu m i s %. 1 f A ,a * 1 0 ^ 1 0 )

    Scilab code Exa 2.4 Avogadro Constant

    1 / / Exa mpl e 2 . 4 , p ag e no312 clear

    3 clc

    4

    5 d = 4 * 1 0 ^ 3 //kg/m36 a w t c s = 1 3 2 . 9

    7 a w t c l = 3 5 . 58 a = 4 . 1 2 * 1 0 ^ - 1 0

    9 m = d * a ^ 3

    10 N = ( a w t c s + a w t c l ) / m

    11 printf ( The v a l u e o f A vo ga dr o C o ns t an t % . 4 f 1 0 2 6p e r kg m ol e , N * 1 0 ^ - 2 6 )

    Scilab code Exa 2.5 Lattice spacing from Miller indices

    1 / / Exa mpl e 2 . 5 , p ag e no312 clear

    3 clc

    4 l a m = 1 . 5 4 1 8 * 1 0 ^ - 1 0 //m

    14

  • 8/13/2019 Material Science_V. Rajendran

    16/111

    5 t h e t a = 3 0 / / i n d e g r e e s

    6 h =17 k =1

    8 l =1

    9 a = l a m * sqrt ( h ^ 2 + k ^ 2 + l ^ 2 ) / ( 2 * sin ( t h e t a * % p i / 1 8 0 ) )

    10 printf ( The l a t t i c e c o n s t a n t i s %. 4 f 1010 m ,a*10^10)

    Scilab code Exa 2.6 Lattice spacing from Miller indices

    1 / / Exa mpl e 2 . 6 , p ag e no332 clear

    3 clc

    4 h =1

    5 k =0

    6 l =0

    7 a = 2 . 8 1 4 * 1 0 ^ - 1 0

    8 d = a / sqrt ( h ^ 2 + k ^ 2 + l ^ 2 )

    9 printf ( The l a t t i c e s p a c in g f o r t he p l an e ( 1 0 0 ) i s %. 3 f1010 m , d * 1 0 ^ 1 0 )

    Scilab code Exa 2.7 Lattice spacing from Miller indices

    1 / / Exa mpl e 2 . 7 , p ag e no332 clear

    3 clc

    4 h =3

    5 k =2

    6 l =17 a = 4 . 1 2 * 1 0 ^ - 1 0

    8 d = a / sqrt ( h ^ 2 + k ^ 2 + l ^ 2 )

    9 printf ( The l a t t i c e s p a c in g f o r t he p l an e ( 3 2 1 ) i s %. 4 f1010 m , d * 1 0 ^ 1 0 )

    15

  • 8/13/2019 Material Science_V. Rajendran

    17/111

    Scilab code Exa 2.8 Lattice spacing from Miller indices

    1 / / Exa mpl e 2 . 8 , p ag e no342 clear

    3 clc

    4 // /( i )5 h =1

    6 k =0

    7 l =18 a = 4 . 2 * 1 0 ^ - 1 0

    9 d = a / sqrt ( h ^ 2 + k ^ 2 + l ^ 2 )

    10 printf ( \nThe l a t t i c e s p a c i n g f o r t h e p l a n e ( 1 0 1 ) i s%.3 f 1010 m , d * 1 0 ^ 1 0 )

    11 // /( i i )12 h =2

    13 k =2

    14 l =1

    15 a = 4 . 1 2 * 1 0 ^ - 1 0

    16 d = a / sqrt ( h ^ 2 + k ^ 2 + l ^ 2 )

    17 printf ( \nThe l a t t i c e s p a c i n g f o r t h e p l a n e ( 2 2 0 ) i s%.1 f 1010 m , d * 1 0 ^ 1 0 )

    Scilab code Exa 2.13 Lattice spacing from Miller indices

    1 / / Exa mpl e 2 . 1 3 , p ag e no372 clear

    3 clc

    4 // ( i )5 h =1

    6 k =1

    7 l =1

    16

  • 8/13/2019 Material Science_V. Rajendran

    18/111

    8 a = 4 . 1 2 * 1 0 ^ - 1 0

    9 d = a / sqrt ( h ^ 2 + k ^ 2 + l ^ 2 )10 printf ( \nFor ( 1 1 1) p l an e \nThe l a t t i c e s p a c i n g i s %. 3 f1010 m , d * 1 0 ^ 1 0 )

    11 // ( i i )12

    13 h =1

    14 k =1

    15 l =2

    16 a = 4 . 1 2 * 1 0 ^ - 1 0

    17 d = a / sqrt ( h ^ 2 + k ^ 2 + l ^ 2 )

    18 printf ( \n\nFor ( 1 1 2 ) p l an e \nThe l a t t i c e s p a c i n g i s

    %.3 f 1010 m , d * 1 0 ^ 1 0 )19 // ( i i i )20

    21 h =1

    22 k =2

    23 l =3

    24 a = 4 . 1 2 * 1 0 ^ - 1 0

    25 d = a / sqrt ( h ^ 2 + k ^ 2 + l ^ 2 )

    26 printf ( \n\nFor ( 1 2 3 ) p l an e \nThe l a t t i c e s p a c i n g i s%.3 f 1010 m , d * 1 0 ^ 1 0 )

    Scilab code Exa 2.15 Lattice spacing from Miller indices

    1 / / Exa mpl e 2 . 1 5 , p ag e no382 clear

    3 clc

    4 h =2

    5 k =2

    6 l =07 a = 4 . 9 3 8 * 1 0 ^ - 1 0

    8 d = a / sqrt ( h ^ 2 + k ^ 2 + l ^ 2 )

    9 printf ( \nThe l a t t i c e s p a c i n g f o r ( 2 2 0 ) p l a n e i s %. 3f1010 m , d * 1 0 ^ 1 0 )

    17

  • 8/13/2019 Material Science_V. Rajendran

    19/111

    Scilab code Exa 2.16 Number of atoms in Al foil

    1 / / Exa mpl e 2 . 1 6 , p ag e no392 clear

    3 clc

    4 a = 0 . 4 0 5 * 1 0 ^ - 1 0 //m5 t = 0 . 0 0 5 //m6 A = 2 5 * 1 0 ^ - 2 //m

    7 n = t * A / a ^ 38 printf ( The number o f a to ms i n t h e Al f o i l i s %. 2 f

    1 0 2 8 , n * 1 0 ^ - 2 8 )

    Scilab code Exa 2.17 no of unit cells in 1 kg metal

    1 / / Exa mpl e 2 . 1 7 , p ag e no392 clear

    3 clc4 a = 2 . 8 8 * 1 0 ^ - 1 0 //5 d = 7 2 0 0 //k/m36 n = 1 / ( d * a ^ 3 )

    7 printf ( The number o f u n i t c e l l p r e s e nt i n 1 kgm et al i s %. 4 f 1 0 2 4 , n * 1 0 ^ - 2 4 )

    Scilab code Exa 2.18 percentage volume change during structural changes

    1 / / Exa mpl e 2 . 1 8 , p ag e no392 clear

    3 clc

    4 r b c c = 0 . 1 2 5 8 * 1 0 ^ - 9

    18

  • 8/13/2019 Material Science_V. Rajendran

    20/111

    5 r f c c = 0 . 1 2 9 2 * 1 0 ^ - 9

    6 a = 4 * r b c c / sqrt (3)7 v b c c = ( a ^ 3 ) / 2

    8 a 1 = 4 * r f c c / sqrt (2)

    9 v f c c = ( a 1 ^ 3 ) / 4

    10 v p = ( v b c c - v f c c )

    11 vp = floor ( v p * 1 0 ^ 3 2 )

    12 v p = v p * 1 0 ^ - 3 2 / v b c c

    13 printf ( The v ol um e c ha n ge i n %% d u r i n g g t h es t r u c t u r a l c ha ng e i s %. 4 f , v p * 1 0 0 )

    Scilab code Exa 2.19 Copper Density

    1 / / Exa mpl e 2 . 1 9 , p ag e no402 clear

    3 clc

    4 a w t = 6 3 . 5 * 1 0 ^ - 3 // g5 a v g = 6 . 0 2 3 * 1 0 ^ 2 6

    6 r = 1 . 2 7 3 * 1 0 ^ - 1 0

    7 n =4

    8 a = 4 * r / sqrt (2)9 d = n * a w t / ( a v g * a ^ 3 )

    10 printf ( The d e n s i t y o f c o pp e r i s %. 4 f gm/m3 ,d )

    Scilab code Exa 2.20 Atomic Radius

    1 / / Exa mpl e 2 . 2 0 , p ag e no412 clear

    3 clc4 d = 7 8 6 0

    5 m = 5 5 . 8 5

    6 n =2

    7 a v g = 6 . 0 2 3 * 1 0 ^ 2 6

    19

  • 8/13/2019 Material Science_V. Rajendran

    21/111

    8 a = ( n * m * 1 0 ^ - 3 / ( a v g * d ) ) ^ ( 1 / 3 )

    9 r = a * sqrt ( 3 ) / 410 printf ( \nThe l a t t i c e c o n s t a n t o f a l f ai r o n i s %. 4 f A , a * 1 0 ^ 1 0 )

    11 printf ( \nThe a to m i c r a d i us o f a l fai r o n i s %. 5 f 1010 m , r * 1 0 ^ 1 0 )

    Scilab code Exa 20.21 Lattice constant

    1 / / Exa mpl e 2 . 2 1 , p ag e no422 clear3 clc

    4 d = 8 9 6 0

    5 m = 6 3 . 5 4

    6 n =4

    7 a v g = 6 . 0 2 3 * 1 0 ^ 2 6

    8 a = ( n * m * 1 0 ^ - 3 / ( a v g * d ) ) ^ ( 1 / 3 )

    9 printf ( \nThe l a t t i c e c o n s t a n t o f c o pp e r i s %. 4 f A , a * 1 0 ^ 1 0 )

    Scilab code Exa 2.22 Glancing angle

    1 / / Exa mpl e 2 . 2 2 , p ag e no422 clear

    3 clc

    4 a = 3 . 8 1 * 1 0 ^ - 1 0 //m5 h =1

    6 k =3

    7 l =28 l a m = 0 . 5 8 * 1 0 ^ - 1 0

    9 n =2

    10 d = a / sqrt ( h ^ 2 + k ^ 2 + l ^ 2 )

    11 t h e t a = asin ( n * l a m / ( 2 * d ) )

    20

  • 8/13/2019 Material Science_V. Rajendran

    22/111

    12 printf ( The a n gl e o f g l a n ci n g a t which 2 nd o r de r

    d i f f r a c t i o n p at te rn o f N aCl o cc ur s i s %. 2 f ,t h e t a * 1 8 0 / % p i )

    Scilab code Exa 2.23 Lattice constant

    1 / / Exa mpl e 2 . 2 3 , p ag e no432 clear

    3 clc

    4 h =35 k =0

    6 l =2

    7 t h e t a = 3 5 / / i n d e g r e e s8 l a m = 0 . 7 * 1 0 ^ - 1 0 //m9 n =1

    10 d = n * l a m / ( 2 * sin ( t h e t a * % p i / 1 8 0 ) )

    11 printf ( \nThe i n t e r p l a n a r d i s t a n c e f o r ( 3 02 ) p la ne i s%.3 f 1011 m , d * 1 0 ^ 1 1 )

    12 a = d * sqrt ( h ^ 2 + k ^ 2 + l ^ 2 )

    13 printf ( \nThe l a t t i c e c o n s t a n c e i s %. 2 f 1010 m ,a

    *10^10)

    Scilab code Exa 2.24 Plane Drawing

    1 / / Exa mpl e 2 . 2 4 , p ag e no442 clear

    3 clc4 / / / f o r p l a n e ( 0 , 0 , 1 )5 deff ( z=f (x , y ) , z=x0y0 )6 x = 0 : 0. 2 :3 ; y = x ;

    7 // c l f ( ) ;

    21

  • 8/13/2019 Material Science_V. Rajendran

    23/111

    Figure 2.1: Plane Drawing

    8 subplot (311)

    9 fplot3d ( x , y , f , a l p h a = 5 , t h e t a = 3 1 )

    10

    11 / / / F or p l a n e ( 1 , 0 , 1 )12 deff ( z=f (x , y ) , z=x1y0 )13 x = 0 : 0. 2 :3 ; y = x ;

    14 // c l f ( ) ;15 subplot (312)

    16 fplot3d ( x , y , f , a l p h a = 5 , t h e t a = 3 1 )17

    18 / / / F or p l a n e ( 1 , 1 , 1 )19 deff ( z=f (x , y ) , z=x1y1 )20 x = 0 : 0. 2 :3 ; y = x ;

    21 // c l f ( ) ;22 subplot (313)

    23 fplot3d ( x , y , f , a l p h a = 5 , t h e t a = 3 1 )

    Scilab code Exa 2.25 Interplanar spacing

    22

  • 8/13/2019 Material Science_V. Rajendran

    24/111

    Figure 2.2: Plane Drawing

    23

  • 8/13/2019 Material Science_V. Rajendran

    25/111

    1 / / Exa mpl e 2 . 2 5 , p ag e no45

    2 clear3 clc

    4 t h e t a = 1 2 / / i n d e g r e e s5 l a m = 2 . 8 2 * 1 0 ^ - 1 0 //m6 n =1

    7 d = n * l a m / ( 2 * sin ( t h e t a * % p i / 1 8 0 ) )

    8 printf ( The i n t e r p l a n a r s p ac i ng i s %. 3 f 1010 m ,d*10^10)

    Scilab code Exa 2.26 Lattice spacing and deBroglie wavelength

    1 / / Exa mpl e 2 . 2 6 , p ag e no462 clear

    3 clc

    4 t h e t a = 2 7 . 5 / 2 // i n d e g r e e s5 a = 0 . 5 6 3 * 1 0 ^ - 9

    6 n =1

    7 h =1

    8 k =1

    9 l =110 d = a / sqrt ( h ^ 2 + k ^ 2 + l ^ 2 )

    11 printf ( \nThe l a t t i c e s p a c i n g f o r t h e p l a n e ( 1 1 1 ) i s%.2 f 10 10 m , d * 1 0 ^ 1 0 )

    12 l a m = 2 * d * sin ( t h e t a * % p i / 1 8 0 ) / n

    13 printf ( \nThe d e B r o g l i e w av el en gt h o f t he n e ut r on si s %. 3 f 1010 m , l a m * 1 0 ^ 1 0 )

    Scilab code Exa 2.27 Lattice constant and atomic radius

    1 / / Exa mpl e 2 . 2 7 , p ag e no462 clear

    3 clc

    24

  • 8/13/2019 Material Science_V. Rajendran

    26/111

    4 h =1

    5 k =16 l =0

    7 d = 2 * 1 0 ^ - 1 0 //m8 a = d * sqrt ( h ^ 2 + k ^ 2 + l ^ 2 )

    9 R = a / ( 2 * sqrt ( 2 ) )

    10 printf ( The l a t t i c e c o n s t a n t i s %. 3 f 1010 m\nThea t o m ic r a di u s o f t h e c r y s t a l i s %. 1 f 1010 m ,a* 1 0 ^ 1 0 , R * 1 0 ^ 1 0 )

    Scilab code Exa 2.28 energy of the neutron

    1 / / Exa mpl e 2 . 2 8 , p ag e no472 clear

    3 clc

    4 t h e t a = 2 2 / / i n d e g r e e s5 d = 1 . 8 * 1 0 ^ - 1 0 //m6 n =1

    7 h = 6 . 6 2 6 * 1 0 ^ - 3 4

    8 m = 9 . 1 * 1 0 ^ - 3 1 //k g

    9 e = 1 . 6 * 1 0 ^ - 1 9 //C10 l a m = 2 * d * sin ( t h e t a * % p i / 1 8 0 ) / n

    11 E = ( 1 / ( 2 * m ) ) * ( h / l a m ) ^ ( 2 )

    12 printf ( \nThe d e B r o g l i e w av el en gt h o f t he n eu tr on i s%.3 f 1010\ n th e e ne rg y o f t he n eu tr on i s %. 2 f

    eV , l a m * 1 0 ^ 1 0 , E / e )

    Scilab code Exa 2.29 InterPlanar Spacing

    1 / / Exa mpl e 2 . 2 9 , p ag e no482 clear

    3 clc

    4

    25

  • 8/13/2019 Material Science_V. Rajendran

    27/111

    5 h =1

    6 k =17 l =1

    8 a = 3 * 1 0 ^ - 1 0

    9 d = a / sqrt ( h ^ 2 + k ^ 2 + l ^ 2 )

    10 printf ( \nThe i n t e r p l a n a r s p ac i ng f o r t he p l a ne ( 1 01 )i s %. 3 f 1010 m , d * 1 0 ^ 1 0 )

    Scilab code Exa 2.30 Lattice spacing from Miller indices

    1 / / Exa mpl e 2 . 3 0 , p ag e no482 clear

    3 clc

    4 h =3

    5 k =2

    6 l =1

    7 r f c c = 0 . 1 2 7 8 * 1 0 ^ - 9 //m8 a = 4 * r f c c / sqrt (2)

    9 d = a / sqrt ( h ^ 2 + k ^ 2 + l ^ 2 )

    10 printf ( \nThe l a t t i c e c o ns t a nt = %. 3 f 10610\nThe

    i n t e r p l a n a r s p ac i ng f o r t he p l a ne ( 3 21 ) i s %. 3 f 1011 m , a * 1 0 ^ 1 0 , d * 1 0 ^ 1 1 )

    Scilab code Exa 2.31 Number of atoms in Al foil

    1 / / Exa mpl e 2 . 3 1 , p ag e no492 clear

    3 clc

    4 a = 0 . 4 0 4 9 * 1 0 ^ - 1 0 //m5 t = 0 . 0 0 5 //m6 A = 2 5 * 1 0 ^ - 2 //m7 n = t * A / a ^ 3

    26

  • 8/13/2019 Material Science_V. Rajendran

    28/111

    8 printf ( The number o f a to ms i n t h e Al f o i l i s %. 2 f

    1 0 2 8 , n * 1 0 ^ - 2 8 )

    Scilab code Exa 2.32 energy of the neutron

    1 / / Exa mpl e 2 . 3 2 , p ag e no492 clear

    3 clc

    4 t h e t a = 2 0 / / i n d e g r e e s

    5 d = 2 * 1 0 ^ - 1 0 //m6 n =17 h = 6 . 6 2 6 * 1 0 ^ - 3 4

    8 m = 1 . 6 7 * 1 0 ^ - 2 7 //k g9 e = 1 . 6 * 1 0 ^ - 1 9 //C

    10 l a m = 2 * d * sin ( t h e t a * % p i / 1 8 0 ) / n

    11 E = ( 1 / ( 2 * m ) ) * ( h / l a m ) ^ ( 2 )

    12 printf ( \nThe d e B r o g l i e w av el en gt h o f t he n eu tr on i s%.3 f 1010\ n th e e ne rg y o f t he n eu tr on i s %. 4 f

    eV , l a m * 1 0 ^ 1 0 , E / e )

    Scilab code Exa 2.35 deBroglie wavelength of electrons

    1 / / Exa mpl e 2 . 3 5 , p ag e no512 clear

    3 clc

    4 e = 1 . 6 * 1 0 ^ - 1 9 //C5

    6 h = 6 . 6 2 6 * 1 0 ^ - 3 4

    7 m = 9 . 1 * 1 0 ^ - 3 1 //k g8 e k = 2 3 5 . 2 * e

    9 n =1

    10 t h e t a = 9 . 2 1

    11 l a m = h / sqrt ( 2 * m * e k )

    27

  • 8/13/2019 Material Science_V. Rajendran

    29/111

    12 d = n * l a m / ( 2 * sin ( t h e t a * % p i / 1 8 0 ) )

    13 printf ( \nThe d e B ro g l i e w av el en gt h o f e l e c t r o n i s %. 3 f 1011 m\nThe i n t e r p l a n a r s p ac i ng i s %. 3 f 1010 m , l a m * 1 0 ^ 1 1 , d * 1 0 ^ 1 0 )

    Scilab code Exa 2.36 Lattice spacing from Miller indices

    1 / / Exa mpl e 2 . 3 6 , p ag e no522 clear

    3 clc4 // I n t e r c e p t s a re i n t h e r a t i o 3 a : 4 b a lo ng X ,Y and

    p a r a l l e l t o Z a x i s5 / /x i n t e r c e p t 3 , y i n t e r c e p t 4 and z i n t e r c e p t

    i n f i n i t y6 a = 2 * 1 0 ^ - 1 0 / / 2 A ng st ro m7 h =4

    8 k =3

    9 l =0

    10 d = a / sqrt ( h ^ 2 + k ^ 2 + l ^ 2 )

    11 printf ( The l a t t i c e s p a c in g f o r t he p l an e 43 0 i s %. 1

    f1010 m , d * 1 0 ^ 1 0 )

    Scilab code Exa 2.38 Plane Drawing

    1 / / Exa mpl e 2 . 3 8 , p ag e no532 clear

    3 clc

    4 printf ( Same a s e xa mp le 2 . 2 4 o f t h e s ame c h a p t er )

    28

  • 8/13/2019 Material Science_V. Rajendran

    30/111

    Chapter 3

    Characterisation of material

    Scilab code Exa 3.1 wavelength and frequency of Xrays

    1 / / Exa mpl e 3 . 1 , p ag e no892 clear

    3 clc

    4 h = 6 . 6 2 6 * 1 0 ^ - 3 4 / / J s5 e = 1 . 6 * 1 0 ^ - 1 9 //C6 c = 3 * 1 0 ^ 8 //m/s

    7 v = 1 0 0 0 0 //V8 l a m _ m i n = ( h * c ) / ( e * v )

    9 V = c / l a m _ m i n

    10 printf ( \n ( i ) \nThe w a v el e n g th o f Xr a y s e m i tt e dL am da mi n = %. 2 f A \n ( i i ) \nThe f r eq u e nc y o f Xr a y beam e m i tt e d i s %. 1 f 1 0 1 8 Hz , l a m _ m i n * 1 0 ^ 1 0 ,V * 1 0 ^ - 1 8 )

    Scilab code Exa 3.2 wavelength and velocity of electrons

    1 / / Exa mpl e 3 . 2 , p ag e no892 clear

    29

  • 8/13/2019 Material Science_V. Rajendran

    31/111

    3 clc

    4 v = 1 0 0 0 0 //V5 i = 2 * 1 0 ^ - 3 //A6 e = 1 . 6 * 1 0 ^ - 1 9 //C7 t =1

    8 m = 9 . 1 * 1 0 ^ - 3 1 //k g9 // ( i )

    10 n = i * t / e

    11 printf ( The no o f e l e c t r o n s s t r i k i n g t h e t a r g e t p e rse con d =%.2 f 1 0 1 6 , n * 1 0 ^ - 1 6 )

    12 // ( i i )13 v1 = sqrt ( 2 * e * v / m )

    14 // ( i i i )15 l a m = 1 2 4 0 0 / v

    16 printf ( \n ( i i ) \nThe v e l o c i t y o f e l e c t r o n =%. 2 f 1 0 7m/ s \n ( i i i ) \n Wa v el en g th o f xr a y s=%. 2 f A , v1* 1 0 ^ - 7 , l a m )

    Scilab code Exa 3.3 wavelength and angle for 2nd order bragg reflection

    1 / / Exa mpl e 3 . 3 , p ag e no902 clear

    3 clc

    4 d = 5 . 6 5 3 4 * 1 0 ^ - 1 0

    5 t h e t a = 1 3 . 6 6 6 6 // i n d e g r e e s6 n =1

    7 // ( i )8 l a m = 2 * d * sin ( t h e t a * % p i / 1 8 0 ) / n

    9 printf ( \n ( i ) \nLambda =%. 3 f1010 m , l a m * 1 0 ^ 1 0 )10 // ( i i )

    11 n =212 t h e t a = asin ( n * l a m / ( 2 * d ) )

    13 t h e t a = t h e t a * 1 8 0 / % p i

    14 printf ( \n ( i i ) \n2nd o r d er Bragg r e f l e c t i o n a t a n g l eTh et a2 = % f , t h e t a )

    30

  • 8/13/2019 Material Science_V. Rajendran

    32/111

    Scilab code Exa 3.4 Grating spacing and glancing angle

    1 / / Exa mpl e 3 . 4 , p ag e no912 clear

    3 clc

    4 v = 2 4 8 0 0

    5 n =1

    6 l a m = 1 . 5 4 * 1 0 ^ - 1 0 //m

    7 g a = 1 5 . 8 / / d e g r e e8 // ( i )9 d = n * l a m / ( 2 * sin ( g a * % p i / 1 8 0 ) )

    10 printf ( \n ( i ) \n g r at i ng s p a c i n f f o r NaCl c r y s t a l =%f 1010 m , d * 1 0 ^ 1 0 )

    11 // ( i i )12 l a m _ m i n = 1 2 4 0 0 / v

    13 l a m _ m i n = l a m _ m i n * 1 0 ^ - 1 0

    14 t h e t a = asin ( n * l a m _ m i n / ( 2 * d ) )

    15 t h e t a = t h e t a * 1 8 0 / % p i

    16 printf ( \n ( i i ) \ n g l a n c i n g a n g l e f o r minimum

    w a v el e n g th = % f d e g r e e s , t h e t a )

    Scilab code Exa 3.5 wavelength of radiation

    1 / / Exa mpl e 3 . 5 , p ag e no922 clear

    3 clc

    4 l a m = 0 . 7 0 78 * 1 0^ - 1 0

    5 w t = 4 26 w t 1 = 4 8

    7 l a m 1 = ( l a m * ( w t - 1 ) ^ 2 ) / ( w t 1 - 1 ) ^ 2

    8 printf ( \n Wa ve le ng th o f cadmium r a d i a t i o n i s %. 4 f A , l a m 1 * 1 0 ^ 1 0 )

    31

  • 8/13/2019 Material Science_V. Rajendran

    33/111

    Scilab code Exa 3.6 Energy of thermal neutron

    1 / / Exa mpl e 3 . 6 , p ag e no922 clear

    3 clc

    4 l a m = 1 0 ^ - 1 0 //m5 h = 6 . 6 2 6 * 1 0 ^ - 3 4

    6 m = 1 . 6 7 5 * 1 0 ^ - 2 7

    7 e 1 = 1 . 6 0 2 * 1 0 ^ - 1 9 / / e v8 e = ( h ^ 2 ) / ( 2 * m * l a m ^ 2 )

    9 e = e / e 1

    10 printf ( \nThe e n er g y o f t h er m al n e ut r on w it hw av el en gt h 1 A i s %f eV ,e )

    Scilab code Exa 3.8 temperature of thermal neutron

    1 / / Exa mpl e 3 . 8 , p ag e no942 clear

    3 clc

    4 l a m = 0 . 1 //nm5 T = ( 2 . 5 1 6 ^ 2 ) / ( l a m ) ^ 2

    6 printf ( t e m pe ra t ur e o f t he rm al n eu tr on c o r r es p o n d i ngt o 1A i s %. 0 f K ,T )

    32

  • 8/13/2019 Material Science_V. Rajendran

    34/111

    Chapter 4

    Cohesion between atoms

    Scilab code Exa 4.1 Coulomb interatomic energy

    1 / / Exa mpl e 4 . 1 , p ag e no922 clear

    3 clc

    4 R = 2 . 8 1 * 1 0 ^ - 1 0 //m5 e = 1 . 6 * 1 0 ^ - 1 9

    6 e p s = 8 . 8 5 4 * 1 0 ^ - 1 2

    7 U = - ( e ^ 2 ) / ( 4 * % p i * e p s * R )8 printf ( The Coulomb i n t e r a t o m i c e n e r g y i s %. 2 f eV ,U

    * 1 0 ^ 1 9 / 1 . 6 )

    33

  • 8/13/2019 Material Science_V. Rajendran

    35/111

    Chapter 5

    Crystal Imperfections

    Scilab code Exa 5.1 Average distance between dislocations

    1 / / Exa mpl e 5 . 1 , p ag e no1302 clear

    3 clc

    4

    5 a = 3 . 6 1 5 * 1 0 ^ - 1 0 //m6 t _ a n g = 0 . 7 5 / / i n d e g r e e

    7 h =18 k =1

    9 l =0

    10 d _ 1 1 0 = a / sqrt ( h ^ 2 + k ^ 2 + l ^ 2 )

    11 D = d _ 1 1 0 / tan ( t _ a n g * % p i / ( 1 8 0 * 2 ) )

    12 printf ( The a v e r ag e d i s t a n c e b et we en t h ed i s l o c a t i o n s i s %. 3 f A , D * 1 0 ^ 6 )

    Scilab code Exa 5.2 Schottky defects per unit cell

    1 / / Exa mpl e 5 . 2 , p ag e no1302 clear

    34

  • 8/13/2019 Material Science_V. Rajendran

    36/111

    3 clc

    4 l p = 4 . 0 1 8 5 * 1 0 ^ - 1 0 //m5 d e n s = 4 2 8 5 //kg/m36 a v g = 6 . 0 2 2 * 1 0 ^ 2 6

    7 w t _ c s = 1 3 2 . 9

    8 w t _ c l = 3 5 . 5

    9 N = ( d e n s * a v g * l p ^ 3 ) / ( w t _ c s + w t _ c l )

    10 s d = ( 1 - N ) * 1 0 0 / 1

    11 printf ( The number o f S c ho t tk y d e f e c t s p e r u n i t c e l l= %.3f%% , s d )

    35

  • 8/13/2019 Material Science_V. Rajendran

    37/111

    Chapter 6

    Classification of solids

    Scilab code Exa 6.1 Wavelength of light emitted from LED

    1 / / Exa mpl e 6 . 1 , p ag e no1432 clear

    3 clc

    4 e = 1 . 6 0 9 * 1 0 ^ - 1 9 //C5 e g = 1 . 8 //eV6 h = 6 . 6 2 6 * 1 0 ^ - 3 4

    7 c = 3 * 1 0 ^ 8 //m/s8 E = e * e g

    9 l a m d a = h * c / E

    10 printf ( The w av el en gt h o f l i g h t e m it t ed fro m g i ve nLED i s %. 3 f m , l a m d a * 1 0 ^ 7 )

    Scilab code Exa 6.2 Band gap of given GaAsP

    1 / / Exa mpl e 6 . 2 , p ag e no1442 clear

    3 clc

    4 l a m = 6 7 1 5 * 1 0 ^ - 1 0 //m

    36

  • 8/13/2019 Material Science_V. Rajendran

    38/111

  • 8/13/2019 Material Science_V. Rajendran

    39/111

    Chapter 7

    Elecron theory of Solids

    Scilab code Exa 7.1 mobility of electrons in copper

    1 / / Exa mpl e 7 . 1 , p ag e no1602 clear

    3 clc

    4 r h o = 1 . 7 3 * 1 0 ^ - 8 //Ohmm5 z = 6 3 . 5

    6 d = 8 . 9 2 * 1 0 ^ 3 //kg/m3

    7 a v g = 6 . 0 2 3 * 1 0 ^ 2 68 e = 1 . 6 * 1 0 ^ - 1 9 //C9 m = 9 . 1 1 * 1 0 ^ - 3 1 //Kg

    10

    11 n = a v g * d / z

    12 s i g = 1 / r h o

    13 t a u = s i g * m / ( n * e ^ 2 )

    14 m u = s i g / ( n * e )

    15

    16 printf ( M ob i l i t y o f e l e c t r o n s i n c o pp er i s %. 2 f

    10 3 m2/Vs , m u * 1 0 ^ 3 )

    Scilab code Exa 7.2 resistivity of copper

    38

  • 8/13/2019 Material Science_V. Rajendran

    40/111

    1 / / Exa mpl e 7 . 2 , p ag e no161

    2 clear3 clc

    4 r = 1 . 8 5 * 1 0 ^ - 1 0 //m5 t = 3 * 1 0 ^ - 1 4 // s6 m = 9 . 1 1 * 1 0 ^ - 3 1 //Kg7 e = 1 . 6 * 1 0 ^ - 1 9 //C8 a = r * ( 4 / sqrt ( 3 ) )

    9 n e = 2 / a ^ 3

    10 r h o = m / ( n e * t * e ^ 2 )

    11 printf ( R e s i s t i v i t y o f c o pp er i s %. 3 f 10 8 Ohmm ,r h o * 1 0 ^ 8 )

    Scilab code Exa 7.3 resistivity of sodium

    1 / / Exa mpl e 7 . 3 , p ag e no1612 clear

    3 clc

    4

    5 r = 1 . 8 5 * 1 0 ^ - 1 0 //m

    6 t = 3 . 1 * 1 0 ^ 1 4 // s7 m = 9 . 1 1 * 1 0 ^ - 3 1 //Kg8 e = 1 . 6 * 1 0 ^ - 1 9 //C9 n = 2 5 . 3 3 * 1 0 ^ 2 7

    10 r h o = m / ( n * t * e ^ 2 )

    11 printf ( The e l e c t r i c R e s i s t i v i t y o f s od iu m a t 0 Ci s %. 3 f 1036 Ohmm , r h o * 1 0 ^ 3 6 )

    Scilab code Exa 7.4 mobility of electrons in meatls

    1 / / Exa mpl e 7 . 4 , p ag e no1622 clear

    3 clc

    39

  • 8/13/2019 Material Science_V. Rajendran

    41/111

    4

    5 r = 1 . 8 5 * 1 0 ^ - 1 0 //m6 t = 3 . 4 * 1 0 ^ - 1 4 // s7 m = 9 . 1 1 * 1 0 ^ - 3 1 //Kg8 e = 1 . 6 * 1 0 ^ - 1 9 //C9 n = 5 . 8 * 1 0 ^ 2 8 // per m3

    10 r h o = m / ( n * t * e ^ 2 )

    11 printf ( \nThe e l e c t r i c r e s i s t i v i t y of ma t e r i al i s %. 3 f10 8 Ohmm , r h o * 1 0 ^ 8 )

    12 m u = e * t / m

    13 printf ( \nThe m o bi l it y o f t h e e l e c t r o n i n a m e t a l i s%.2 f 10 3 m2/vs , m u * 1 0 ^ 3 )

    Scilab code Exa 7.5 drift velocity of electrons

    1 / / Exa mpl e 7 . 5 , p ag e no1632 clear

    3 clc

    4

    5 r h o = 1 . 5 4 * 1 0 ^ - 8 //ohmm

    6 E = 1 0 0 //V/m7 n = 5 . 8 * 1 0 ^ 2 8 //m38 e = 1 . 6 * 1 0 ^ - 1 9 //C9 m u = 1 / ( r h o * n * e )

    10 v d = m u * E

    11 printf ( \ n M ob i li t y o f e l e c t r o n i n s i l v e t r i s %. 4 f 10 3 m2/vs \n\nThe d r i f t v e l o c i t y o f t h ee l e c t r o n i n s i l v e r i s %. 5 f m/ s , m u * 1 0 ^ 3 , v d )

    Scilab code Exa 7.6 mobility of electrons

    1 / / Exa mpl e 7 . 6 , p ag e no1632 clear

    40

  • 8/13/2019 Material Science_V. Rajendran

    42/111

    3 clc

    45 d = 1 0 . 5 * 1 0 ^ 3 //kg/m36 s i g = 6 . 8 * 1 0 ^ 7 // pe r Ohmm7 w t = 1 0 7 . 9 //kg/m38 e = 1 . 6 * 1 0 ^ - 1 9 //C9 a v g = 6 . 0 2 3 * 1 0 ^ 2 6 //atoms/m3

    10

    11 n = a v g * d / w t

    12 m u = s i g / ( n * e )

    13 printf ( The m o b i l i t y o f e l e c t r o n i s % . 3 f 102 m 2 .V / s , m u * 1 0 ^ 2 )

    Scilab code Exa 7.7 Lorentz Number

    1 / / Exa mpl e 7 . 7 , p ag e no1642 clear

    3 clc

    4 s i g = 5 . 8 7 * 1 0 ^ 7

    5 k = 3 9 0 //W/mk

    6 T = 2 9 37 L = k / ( s i g * T )

    8 printf ( The L o r e n t z number i s %. 3 f 10 8 W.Ohm/K2, L * 1 0 ^ 8 )

    Scilab code Exa 7.8 Lorentz Number

    1 / / Exa mpl e 7 . 8 , p ag e no164

    2 clear3 clc

    4

    5 t = 1 * 1 0 ^ - 1 4 // s6 T = 3 0 0 //K

    41

  • 8/13/2019 Material Science_V. Rajendran

    43/111

    7 m = 9 . 1 1 * 1 0 ^ - 3 1 //Kg

    8 e = 1 . 6 * 1 0 ^ - 1 9 //C9 n = 6 * 1 0 ^ 2 8 // per m310 s i g = ( n * t * e ^ 2 ) / m

    11 printf ( \ n t h e e l e c t r i c a l c o n d u c t i v i t y i s %. 4 f 107/ohmm , s i g * 1 0 ^ - 7 )

    12 k = 1 . 3 8 * 1 0 ^ - 2 3

    13 k 1 = n * % p i ^ 2 * k ^ 2 * T * t / ( 3 * m )

    14 printf ( \n\n Th er ma l c o n d u c t i v i t y i s %. 2 f W/mk , k 1 )15 L = k 1 / ( s i g * T )

    16 printf ( \n\ n t he L o r e n t z number i s %. 4 f 10 8 W.Ohm/k 2 , L * 1 0 ^ 8 )

    Scilab code Exa 7.9 conductivity of copper

    1 / / Exa mpl e 7 . 9 , p ag e no1652 clear

    3 clc

    4

    5 d = 8 9 0 0 //kg/m3

    6 c u = 6 3 . 57 t = 1 0 ^ - 1 4 // s8 a v g = 6 . 0 2 3 * 1 0 ^ 2 3

    9 n = a v g * d * 1 0 0 0 / c u

    10 m = 9 . 1 * 1 0 ^ - 3 1 //k g11 e = 1 . 6 * 1 0 ^ - 1 9

    12

    13 s i g = ( n * t * e ^ 2 ) / m

    14 printf ( The e l e c t r i c a l c o n d u c t i v i t y i s %. 3 f 1 0 7 /Ohmm , s i g * 1 0 ^ - 7 )

    Scilab code Exa 7.10 drift velocity of electrons in silver piece

    42

  • 8/13/2019 Material Science_V. Rajendran

    44/111

    1 / / Exa mpl e 7 . 1 0 , p ag e no166

    2 clear3 clc

    4 r h o = 1 . 6 * 1 0 ^ - 8 //Ohmm5 e = 1 . 6 * 1 0 ^ - 1 9 //C6 f e = 5 . 5 * e // J7 a v g = 6 . 0 2 3 * 1 0 ^ 2 3

    8 d = 1 . 0 5 * 1 0 ^ 4 / / d e n s i t y9 w t = 1 0 7 . 9 * 1 0 ^ - 3 / / a t o mi c w e i g ht

    10 m = 9 . 1 * 1 0 ^ - 3 1 //k g11 c = 3 * 1 0 ^ 8 //m/s12 s i g = 1 / r h o

    13 n = a v g * d / w t14 t = s i g * m / ( n * e ^ 2 )

    15 printf ( \nThe c o n d u c t i v i t y o f s i l v e r p i e c e i s %. 2 f 1 0 7 p e r Ohmm\n\nThe r e l a x a t i o n t im e i s %. 2 f 101 4 s , s i g * 1 0 ^ - 7 , t * 1 0 ^ 1 4 )

    16 l a m = c * t

    17 v d = s i g * 1 0 0 / ( n * e )

    18 printf ( \n\nThe d r i f t t v e l o c i t y y o f e l e c t r o n s i n t hes i l v e r p i e c e i s % . 2 f m/ s , v d )

    Scilab code Exa 7.11 resistivity of copper

    1 / / Exa mpl e 7 . 1 1 , p ag e no1672 clear

    3 clc

    4 r 1 = 1 . 7 * 1 0 ^ - 8

    5 t 2 = 3 0 0

    6 t 1 = 7 0 0 + 2 7 3

    7 r 2 = r 1 * sqrt ( ( t 1 / t 2 ) )8 printf ( The r e s i s t i v i t y y o f t h e c o p p e r w i r e i s %. 4 f 10 8 Ohmm , r 2 * 1 0 ^ 8 )

    43

  • 8/13/2019 Material Science_V. Rajendran

    45/111

    Scilab code Exa 7.12 mobility and drift velocity of electrons

    1 / / Exa mpl e 7 . 1 2 , p ag e no1682 clear

    3 clc

    4

    5 r h o = 1 . 5 4 * 1 0 ^ - 8

    6 e = 1 . 6 * 1 0 ^ - 1 9 //C7 e f = 5 . 5 * e // J8 n = 5 . 8 * 1 0 ^ 2 8 / / / p er c u b i c m et er9 m = 9 . 1 * 1 0 ^ - 3 1 //k g

    10

    11 // ( i )12 t = m / ( r h o * n * e ^ 2 )

    13 m u = e * t / m

    14 printf ( \n ( i ) \nThe r e l a x a t i o n t im e i s %. 2 f 1014 s \nThe m o b i l i t y o f t he e l e c t r o n s i s %. 4 f 103 m2/Vs , t * 1 0 ^ 1 4 , m u * 1 0 ^ 3 )

    15

    16 // ( i i )17 v d = e * t * 1 0 0 / m

    18 printf ( \n\n ( i i ) \ n t h e d r i f t v e l o c i t y o f e l c t r o n i s %. 5 f m/ s , v d )

    19

    20 // ( i i i )21 vf = sqrt ( 2 * e f / m )

    22 printf ( \n\n ( i i i ) \nFermi v e l o c i t y i s %. 2 f 1 0 6 m / s ,v f * 1 0 ^ - 6 )

    23

    24 // ( i v )25 l a m = v f * t

    26 printf ( \n\n ( iv )\nThe mean f r e e p at h i s %. 3 f 10 8 m , l a m * 1 0 ^ 8 )

    44

  • 8/13/2019 Material Science_V. Rajendran

    46/111

    Chapter 8

    Statics and Band theory of

    Solids

    Scilab code Exa 8.1 Fermi energy

    1 / / Exa mpl e 8 . 1 , p ag e no2082 clear

    3 clc

    4 d _ c u = 8 . 9 6 * 1 0 ^ 3 // d e n s i t y o f cu5 a _ c u = 6 3 . 5 5 / / Ato mic w e ig h t o f cu6 d _ z = 7 1 0 0

    7 a _ z = 6 5 . 3 8

    8 d _ a l = 2 7 0 0

    9 a _ a l = 2 7

    10 a v g = 6 . 0 2 3 * 1 0 ^ 2 6

    11 h = 6 . 6 2 6 * 1 0 ^ - 3 4

    12 m = 9 . 1 * 1 0 ^ - 3 1 //k g13 e = 1 . 6 * 1 0 ^ - 1 9 //C14

    15 // ( i )16 n _ c u = d _ c u * a v g / a _ c u17 e _ c u = ( h ^ 2 / ( 8 * m ) ) * ( 3 * n _ c u / % p i ) ^ ( 2 / 3 )

    18 e _ c u = e _ c u / e

    19 printf ( \n( i ) F or Cu\nThe e l e c t r o n c o n c e n t r a t i o n i n

    45

  • 8/13/2019 Material Science_V. Rajendran

    47/111

    Cu i s %. 4 f 1 0 2 8 p e r m 3\ n Fe rm i e n e r g y a t 0 k =%

    . 4 f eV , n _ c u * 1 0 ^ - 2 8 , e _ c u )2021 // ( i i )22 n _ z = d _ z * a v g * 2 / a _ z

    23 e _ z = ( h ^ 2 / ( 8 * m ) ) * ( 3 * n _ z / % p i ) ^ ( 2 / 3 )

    24 e _ z = e _ z / e

    25 printf ( \n ( i ) F o r Zn\nThe e l e c t r o n c o n c e n t r a t i o n i nZn i s %. 4 f 1 0 2 8 p e r m 3\ n Fe rm i e n e r g y a t 0 k =%. 4 f eV , n _ z * 1 0 ^ - 2 8 , e _ z )

    26

    27 // ( i )

    28 n _ a l = d _ a l * a v g * 3 / a _ a l29 e _ a l = ( h ^ 2 / ( 8 * m ) ) * ( 3 * n _ a l / % p i ) ^ ( 2 / 3 )

    30 e _ a l = e _ a l / e

    31 printf ( \n ( i ) F or A l\nThe e l e c t r o n c o n c e n t r a t i o n i nAl i s %. 4 f 1 0 2 8 p e r m 3\ n Fe rm i e n e r g y a t 0 k =%. 4 f eV , n _ a l * 1 0 ^ - 2 8 , e _ a l )

    Scilab code Exa 8.2 Density of States

    1 / / Exa mpl e 8 . 2 , p ag e no2102 clear

    3 clc

    4 a v g = 6 . 0 2 3 * 1 0 ^ 2 6

    5 h = 6 . 6 2 6 * 1 0 ^ - 3 4

    6 m = 9 . 1 * 1 0 ^ - 3 1 //k g7 e = 1 . 6 * 1 0 ^ - 1 9 //C8 n = 8 . 4 9 0 5 * 1 0 ^ 2 8

    9

    10 e f = ( h ^ 2 / ( 8 * m ) ) * ( 3 * n / % p i ) ^ ( 2 / 3 )11 e f = e f / e

    12 g a m = 6 . 8 2 * 1 0 ^ 2 7

    13 x = ( g a m * sqrt ( e f ) ) / 2

    14 printf ( The d e n si t y o f s t a t e s f o r Cu a t t he Fermi

    46

  • 8/13/2019 Material Science_V. Rajendran

    48/111

    l e v e l f o r T = 0 K i s %. 0 f 1027 m3 , x * 1 0 ^ - 2 7 )

    Scilab code Exa 8.3 Nordheims Coefficient

    1 / / Exa mpl e 8 . 3 , p ag e no2102 clear

    3 clc

    4 r n i = 6 3 //n Ohm.m5 r c r = 1 2 9

    6 k = 1 1 2 07 c = ( k * 1 0 ^ - 9 ) / ( 0 . 8 * ( 1 - 0 . 8 ) )

    8 printf ( The Nord heims c o e e f i c i e n t i s %. 0 f 10 6 Ohmm , c * 1 0 ^ 6 )

    Scilab code Exa 8.4 Conductivity of Al

    1 / / Exa mpl e 8 . 4 , p ag e no211

    2 clear3 clc

    4 d = 2 7 0 0 //kh/m35 a w t = 2 7

    6 t = 1 0 ^ - 1 4 // s7 e = 1 . 6 * 1 0 ^ - 1 9 //C8 m = 9 . 1 * 1 0 ^ - 3 1 //Kg9 a v g = 6 . 0 2 3 * 1 0 ^ 2 6

    10 n = a v g * d * 3 / a w t

    11 s i g = ( n * t * e ^ 2 ) / m

    12 printf ( The c o n d u ct i v i t y o f Al i s %. 4 f 107 ohmm. ,s i g * 1 0 ^ - 7 )

    47

  • 8/13/2019 Material Science_V. Rajendran

    49/111

    Scilab code Exa 8.5 Fermi distribution Function

    1 / / Exa mpl e 8 . 5 , p ag e no2112 clear

    3 clc

    4 e 1 = 0 . 0 1 //eV5 e = 1 . 6 * 1 0 ^ - 1 9 //C6 e d = e * e 1

    7 T = 2 0 0 //K8 E = 1 / ( 1 + % e ^ ( e d / ( T * 1 . 3 8 * 1 0 ^ - 2 3 ) ) )

    9 printf ( The Fermy d i s t r i b u t i o n f u n c t i o n f o r e ne rg y Ei s %. 4 f ,E )

    Scilab code Exa 8.6 Fermi temperature

    1 / / Exa mpl e 8 . 6 , p ag e no2122 clear

    3 clc

    4

    5 v = 0 . 8 6 * 1 0 ^ 6 //m/s

    6 m = 9 . 1 * 1 0 ^ - 3 1 //Kg7 e = 1 . 6 * 1 0 ^ - 1 9 //C8 k = 1 . 3 8 * 1 0 ^ - 2 3 //J/K9 E = ( m * v ^ 2 ) / 2

    10 T = E / k

    11 printf ( \nThe f e r mi e ne rg y i s %. 3 f 1019 J\nTheF er mi T em pe ra tu re Tf i s %. 2 f 104 K , E * 1 0 ^ 1 9 , T* 1 0 ^ - 4 )

    Scilab code Exa 8.7 Density of States

    1 / / Exa mpl e 8 . 7 , p ag e no2122 clear

    48

  • 8/13/2019 Material Science_V. Rajendran

    50/111

    3 clc

    45 m = 9 . 1 * 1 0 ^ - 3 1 //Kg6 d E = 0 . 0 1 //eV7 h = 6 . 6 3 * 1 0 ^ - 3 4 / / / J s8 e F = 3 //eV9 e = 1 . 6 * 1 0 ^ - 1 9 //C

    10 E 1 = e F * e

    11 E 2 = E 1 + e * d E

    12

    13 n = ( 4 * % p i * ( 2 * m ) ^ ( 1 . 5 ) ) / h ^ 3

    14 k = ( ( 2 * 0 . 3 5 2 3 / 3 ) * ( ( E 2 ^ ( 1 . 5 ) - ( E 1 ^ ( 1 . 5 ) ) ) ) )

    15 n = n * k16 printf ( The n umber o f s t a t e s l y i n g b etw een t he

    e n er gy l e v e l i s %. 2 f 1 0 2 5 , n * 1 0 ^ - 2 5 )

    Scilab code Exa 8.8 Fermi Velocity

    1 / / Exa mpl e 8 . 8 , p ag e no2142 clear

    3 clc4 T f = 2 4 6 0 0 //K5 m = 9 . 1 1 * 1 0 ^ - 3 1 //Kg6 k = 1 . 3 8 * 1 0 ^ - 2 3

    7 vf = sqrt ( 2 * k * T f / m )

    8 printf ( The F erm i V e l o c i t y i s %. 4 f 1 0 6 m / s , vf* 1 0 ^ - 6 )

    Scilab code Exa 8.9 Fermi Energy

    1 / / Exa mpl e 8 . 9 , p ag e no2142 clear

    3 clc

    49

  • 8/13/2019 Material Science_V. Rajendran

    51/111

    4 n = 1 8 . 1 * 1 0 ^ 2 8 // p e r c u b i c m

    5 h = 6 . 6 2 * 1 0 ^ - 3 4 / / J s6 m = 9 . 1 * 1 0 ^ - 3 1 //Kg7 e = 1 . 6 * 1 0 ^ - 1 9 //C8 e f = ( ( 3 * n / ( 8 * % p i ) ) ^ ( 2 / 3 ) ) * ( ( h ^ 2 ) / ( 2 * m ) )

    9 e f = e f / e

    10 printf ( The Fermi e ne rg y a t 0 K i s %. 2 f eV , e f )

    Scilab code Exa 8.10 Fermi Energy

    1 / / Exa mpl e 8 . 1 0 , p ag e no2152 clear

    3 clc

    4 n = 1 8 . 1 * 1 0 ^ 2 8 // p e r c u b i c m5 h = 6 . 6 2 * 1 0 ^ - 3 4 / / J s6 m = 9 . 1 * 1 0 ^ - 3 1 //Kg7 e = 1 . 6 * 1 0 ^ - 1 9 //C8 e f = ( ( 3 * n / ( 8 * % p i ) ) ^ ( 2 / 3 ) ) * ( ( h ^ 2 ) / ( 2 * m ) )

    9 e f = e f / e

    10 printf ( The Fermi e ne rg y a t 0 K i s %. 2 f eV , e f )

    Scilab code Exa 8.11 Fermi distribution Function

    1 / / Exa mpl e 8 . 1 1 , p ag e no2152 clear

    3 clc

    4 e = 1 . 6 * 1 0 ^ - 1 9 //C5 E d = 0 . 5 * e

    6 k = 1 . 3 8 * 1 0 ^ - 2 37 x = 0 . 0 1

    8 T = E d / ( k * log ( ( 1 / x ) - 1 ) )

    9

    50

  • 8/13/2019 Material Science_V. Rajendran

    52/111

    10 printf ( T e mp er at ur e a t w hi ch t h e r e i s 1%%

    p r o b a b i l i t y t ha t a s t a t e w i t h 0 . 5 eV e ne rg yo c cu p ie d a bo ve t he Fermi e ne rg y l e v e l i s %. 1 f K ,T )

    Scilab code Exa 8.12 theorotical example

    1 / / Exa mpl e 8 . 1 2 , p ag e no2162 clear

    3 clc4 printf ( T h e o r o t i c a l Exam [ p l e )

    Scilab code Exa 8.13 theorotical example

    1 / / Exa mpl e 8 . 1 , p ag e no2172 clear

    3 clc

    4 printf ( T h e o r o t i c a l Exam [ p l e )

    Scilab code Exa 8.14 Energies for different probabilities

    1 / / Exa mpl e 8 . 1 4 , p ag e no2182 clear

    3 clc

    4 e f = 2 . 1

    5 k = 1 . 3 8 * 1 0 ^ - 2 36 T = 3 0 0 //K7 e = 1 . 6 * 1 0 ^ - 1 9 // c8 // ( i )9 p 1 = 0 . 9 9

    51

  • 8/13/2019 Material Science_V. Rajendran

    53/111

    10 E 1 = e f + ( k * T * log ( - 1 + 1 / p 1 ) ) / e

    1112 // ( i i )13 p 2 = 0 . 0 1

    14 E 2 = e f + ( k * T * log ( - 1 + 1 / p 2 ) ) / e

    15

    16 // ( i i i )17 p 3 = 0 . 5

    18 E 3 = e f + ( k * T * log ( - 1 + 1 / p 3 ) ) / e

    19

    20 printf ( \nThe e n e r g i e s f o r t he o cc up yi ng o f d e l e c t r o n s a t %d K f o r t he p r o b a b i l i t y o f %. 2 f i s

    %. 2 f , T , p 1 , E 1 )21

    22 printf ( \nThe e n e r g i e s f o r t he o cc up yi ng o f d e l e c t r o n s a t %d K f o r t he p r o b a b i l i t y o f %. 2 f i s%. 2 f , T , p 2 , E 2 )

    23

    24 printf ( \nThe e n e r g i e s f o r t he o cc up yi ng o f d e l e c t r o n s a t %d K f o r t he p r o b a b i l i t y o f %. 2 f i s%. 2 f , T , p 3 , E 3 )

    Scilab code Exa 8.15 Fermi distribution Function

    1 / / Exa mpl e 8 . 1 5 , p ag e no2192 clear

    3 clc

    4 e = 1 . 6 * 1 0 ^ - 1 9 //C5 e d = 0 . 0 2 * e

    6 T 1 = 2 0 0

    7 T 2 = 4 0 08 k = 1 . 3 8 * 1 0 ^ - 2 3

    9 f e 1 = 1 / ( 1 + % e ^ ( e d / ( k * T 1 ) ) )

    10 f e 2 = 1 / ( 1 + % e ^ ( e d / ( k * T 2 ) ) )

    11 printf ( \nThe F ermi d i s t r i b u t i o n f u n c t i o n f o r t he

    52

  • 8/13/2019 Material Science_V. Rajendran

    54/111

    g i v e n e n er g y a t %d K i s %. 4 f , T 1 , f e 1 )

    12 printf ( \nThe F ermi d i s t r i b u t i o n f u n c t i o n f o r t heg i v e n e n er g y a t %d K i s %. 4 f , T 2 , f e 2 )

    Scilab code Exa 8.16 Fermi Energy

    1 / / Exa mpl e 8 . 1 6 , p ag e no2202 clear

    3 clc

    4 d = 1 0 5 0 0 / / d e n s i t y5 a v g = 6 . 0 2 2 * 1 0 ^ 2 66 a w t = 1 0 7 . 9

    7 n = d * a v g / a w t / / p er c u b i c m8 h = 6 . 6 2 * 1 0 ^ - 3 4 / / J s9 m = 9 . 1 * 1 0 ^ - 3 1 //Kg

    10 e = 1 . 6 * 1 0 ^ - 1 9 //C11 e f = ( ( 3 * n / ( 8 * % p i ) ) ^ ( 2 / 3 ) ) * ( ( h ^ 2 ) / ( 2 * m ) )

    12 e f = e f / e

    13 printf ( The Fermi e ne rg y f o r g i ve n m et al i s %. 2 f eV , e f )

    Scilab code Exa 8.17 Fermi distribution Function

    1 / / Exa mpl e 8 . 1 7 , p ag e no2212 clear

    3 clc

    4 e = 1 . 6 * 1 0 ^ - 1 9 //C5 e d = 0 . 2 * e

    6 T 1 = 3 0 07 T 2 = 1 0 0 0

    8 k = 1 . 3 8 * 1 0 ^ - 2 3

    9 f e 1 = 1 / ( 1 + % e ^ ( e d / ( k * T 1 ) ) )

    10 f e 2 = 1 / ( 1 + % e ^ ( e d / ( k * T 2 ) ) )

    53

  • 8/13/2019 Material Science_V. Rajendran

    55/111

    11 printf ( \nThe F ermi d i s t r i b u t i o n f u n c t i o n f o r t he

    g i v e n e n er g y a t %d K i s %. 6 f , T 1 , f e 1 )12 printf ( \nThe F ermi d i s t r i b u t i o n f u n c t i o n f o r t heg i v e n e n er g y a t %d K i s %. 4 f , T 2 , f e 2 )

    Scilab code Exa 8.18 Electron density

    1 / / Exa mpl e 8 . 1 8 , p ag e no2212 clear

    3 clc4

    5 h = 6 . 6 2 * 1 0 ^ - 3 4 / / J s6 m = 9 . 1 * 1 0 ^ - 3 1 //Kg7 e = 1 . 6 * 1 0 ^ - 1 9 //C8 e f = 3 * e

    9 k = ( ( 3 / ( 8 * % p i ) ) ^ ( 2 / 3 ) ) * ( ( h ^ 2 ) / ( 2 * m ) )

    10 k = e f / k

    11 n = k ^ ( 1 . 5 )

    12 printf ( The number o f f r e e e l e c t r o n s c o n c e n t r a t i o ni n m et al i s %. 2 f 1 0 28 p er c u b ic m et er ,n

    * 1 0 ^ - 2 8 )

    Scilab code Exa 8.19 concentration of free electrons

    1 / / Exa mpl e 8 . 1 8 , p ag e no2212 clear

    3 clc

    4

    5 h = 6 . 6 2 * 1 0 ^ - 3 4 / / J s6 m = 9 . 1 * 1 0 ^ - 3 1 //Kg7 e = 1 . 6 * 1 0 ^ - 1 9 //C8 e f = 5 . 5 * e

    9 k = ( ( 3 / ( 8 * % p i ) ) ^ ( 2 / 3 ) ) * ( ( h ^ 2 ) / ( 2 * m ) )

    54

  • 8/13/2019 Material Science_V. Rajendran

    56/111

    10 k = e f / k

    11 n = k ^ ( 1 . 5 )12 printf ( The number o f f r e e e l e c t r o n s c o n c e n t r a t i o ni n m et al i s %. 3 f 1 0 28 p er c u b ic m et er ,n* 1 0 ^ - 2 8 )

    Scilab code Exa 8.20 carrier density and fermi velocity

    1 / / Exa mpl e 8 . 1 8 , p ag e no221

    2 clear3 clc

    4

    5 h = 6 . 6 2 * 1 0 ^ - 3 4 / / J s6 m = 9 . 1 * 1 0 ^ - 3 1 //Kg7 e = 1 . 6 * 1 0 ^ - 1 9 //C8 e f = 7 * e

    9 k = ( ( 3 / ( 8 * % p i ) ) ^ ( 2 / 3 ) ) * ( ( h ^ 2 ) / ( 2 * m ) )

    10 k = e f / k

    11 n = k ^ ( 1 . 5 )

    12 printf ( The number o f f r e e e l e c t r o n s c o n c e n t r a t i o n

    i n m et al i s %. 2 f 1 0 28 p er c u b ic m et er ,n* 1 0 ^ - 2 8 )

    13 v t h = sqrt ( 2 * e f / m )

    14 printf ( \nThe t er ma l v e l o c i t y o f e l e c t r o n s i n c o pp eri s %. 3 f 1 0 6 m / s , v t h * 1 0 ^ - 6 )

    55

  • 8/13/2019 Material Science_V. Rajendran

    57/111

    Chapter 10

    Transport Properties of

    Semiconductors

    Scilab code Exa 10.1 Intrinsic concentration conductivity and resistivity

    1 / / Exa mpl e 1 0 . 1 , p ag e no2672 clear

    3 clc

    4 T = 3 0 0 //K5 m u e = 0 . 4 //m2/Vs6 m u h = 0 . 2

    7 e = 1 . 6 * 1 0 ^ - 1 9 //C8 e g = 0 . 7 * e // J9 m = 9 . 1 * 1 0 ^ - 3 1 //k g

    10 m e = 0 . 5 5

    11 m h = 0 . 3 7

    12 h = 6 . 6 2 6 * 1 0 ^ - 3 4

    13 k = 1 . 3 8 * 1 0 ^ - 2 3

    14 n i = 2 * ( 2 * % p i * k * T / ( h ^ 2 ) ) ^ ( 1 . 5 )

    15 n i = n i * ( m ^ 1 . 5 ) * ( m h * m e ) ^ ( 3 / 4 )16 n i = n i * % e ^ ( - e g / ( k * T ) )

    17 printf ( \nThe i n t r i n s i c c o nc e n t r at i o n ni =%. 3 f 1 0 1 3/m3 , n i * 1 0 ^ - 1 3 )

    18

    56

  • 8/13/2019 Material Science_V. Rajendran

    58/111

    19 s i g = n i * e * ( m u e + m u h )

    20 r h o = 1 / s i g21 printf ( \n I n t r i n s i c C o n d u c ti v i t y , S ig ma =%. 3 f 10 6p e r m 3\n I n t r i n s i c R e s i s t i v i t y , r h o = %. 2 f 106Ohmm , s i g * 1 0 ^ 6 , r h o * 1 0 ^ - 6 )

    Scilab code Exa 10.2 Fermi Energy

    1 / / Exa mpl e 1 0 . 2 , p ag e no268

    2 clear3 clc

    4 n i = 1 . 4 5 * 1 0 ^ 1 0 //cm35 n d = 1 0 ^ 1 6 //cm36 k = 1 . 3 8 * 1 0 ^ - 2 3

    7 T = 3 0 0

    8 e = 1 . 6 * 1 0 ^ - 1 9 //C9 E f = k * T * log ( n d / n i )

    10 E f = E f / e

    11 printf ( The F ermi e ne rg yy w it h r e s p e c t t o Ef i ni n t r i n s i c Si = %.3 f eV , E f )

    Scilab code Exa 10.3 Resistance of Germanium

    1 / / Exa mpl e 1 0 . 3 , p ag e no2692 clear

    3 clc

    4 n i = 2 . 5 * 1 0 ^ 1 9 //m35 m u e = 0 . 3 9 //m2/Vs

    6 m u h = 0 . 1 97 l = 1 0 ^ - 2 //m8 e = 1 . 6 * 1 0 ^ - 1 9 //C9 s i g = n i * e * ( m u e + m u h )

    10 R = l / ( s i g * 1 0 ^ - 6 )

    57

  • 8/13/2019 Material Science_V. Rajendran

    59/111

    11 printf ( The c o n d u c t i v i t y o f i n t r i n s i c Ge i s %. 2 f /

    ohmm\nThe R e s i s t a n c e i s %. 0 f , s i g , R )

    Scilab code Exa 10.4 conductivity of Intrinsic semiconductor

    1 / / Exa mpl e 1 0 . 4 , p ag e no2692 clear

    3 clc

    4 n i = 1 . 5 * 1 0 ^ 1 6 //m3

    5 m u e = 0 . 1 3 //m2/Vs6 m u h = 0 . 0 5

    7 e = 1 . 6 * 1 0 ^ - 1 9 //C8 s i g = n i * e * ( m u e + m u h )

    9 printf ( The c o n d u c t i v i t y o f i n t r i n s i c Ge i s %. 2 f 10 4 /ohmm , s i g * 1 0 ^ 4 )

    Scilab code Exa 10.5 Intrinsic Resistivity

    1 / / Exa mpl e 1 0 . 5 , p ag e no2702 clear

    3 clc

    4 n i = 2 . 1 5 * 1 0 ^ 1 3 //cm35 m u e = 3 9 0 0 //cm2/Vs6 m u h = 1 9 0 0

    7 e = 1 . 6 * 1 0 ^ - 1 9 //C8 s i g = n i * e * ( m u e + m u h )

    9 r = 1 / s i g

    10

    11 printf ( The c o n d u c t i v i t y o f i n t r i n s i c Ge i s %. 2 f 10 2 /ohmcm\n The i n t r i n s i c r e s i s t i v i t y i s %.0f Ohmcm , s i g * 1 0 ^ 2 , r ) / / a n s w er s n o t m a tc hi n g w i thbook s ans .

    58

  • 8/13/2019 Material Science_V. Rajendran

    60/111

    Scilab code Exa 10.6 electrical conductivity of boron doped semiconduc-tor

    1 / / Exa mpl e 1 0 . 6 , p ag e no2702 clear

    3 clc

    4 n i = 2 . 1 * 1 0 ^ 1 9 //m35 m u e = 0 . 4 //m2/Vs6 m u h = 0 . 2

    7 e = 1 . 6 * 1 0 ^ - 1 9 //C8 p = 4 . 5 * 1 0 ^ 2 3 //m39 s i g = n i * e * ( m u e + m u h )

    10 r = p * e * m u h

    11

    12 printf ( The c o n d u c t i v i t y o f i n t r i n s i c Ge i s %. 3 f 10 2 /ohmcm\nThe i n t r i n s i c r e s i s t i v i t y i s %. 2 f1 0 4 , s i g , r * 1 0 ^ - 4 )

    Scilab code Exa 10.7 Hole concentration conductivity and Resistance

    1 / / Exa mpl e 1 0 . 7 , p ag e no2712 clear

    3 clc

    4 n = 5 * 1 0 ^ 2 8 //m35 n i = 1 . 4 5 * 1 0 ^ 1 3 //m36 m u e = 1 . 3 5 //m2/Vs7 m u h = 0 . 4 5

    8 e = 1 . 6 * 1 0 ^ - 1 9 //C9 p = 4 . 5 * 1 0 ^ 2 3 //m3

    10 s i g = n i * e * ( m u e + m u h )

    11 r h o = 1 / s i g

    12 //r ho= r ho1 0 1 2

    59

  • 8/13/2019 Material Science_V. Rajendran

    61/111

    13 r = r h o * 1 0 ^ 1 2

    14 n d = n / 1 0 ^ 915 p = ( n i ^ 2 ) / n d

    16 s i g 2 = n d * e * m u e

    17

    18 printf ( \nThe i n t r i n s i c c o n d u c t i v i t y i s %. 2 f 10 6/ohmcm\n\nThe i n t r i n s i c r e s i s t i v i t y i s %. 2 f10 5Ohmm\n\ n R e s i s t a n c e = %. 2 f 10 7 Ohm\n\nDonar c o n c e n t r a t i o n i s %. 0 f 1 0 1 9\n\n C on c en t ra t io n o f h o l e i s %. 1 f 106 m3\n\n C o n d u c t i v i t y = %. 1 f p e r ohmm , s i g * 1 0 ^ 6 , r h o* 1 0 ^ - 5 , r * 1 0 ^ - 1 7 , n d * 1 0 ^ - 1 9 , p * 1 0 ^ - 6 , s i g 2 )

    Scilab code Exa 10.8 Band Gap of Ge

    1 / / Exa mpl e 1 0 . 8 , p ag e no2722 clear

    3 clc

    4

    5 T = 3 0 0 //K

    6 r h o = 2 . 1 2 //ohmm7 m u e = 0 . 3 6 //m2/Vs8 m u h = 0 . 1 7

    9 e = 1 . 6 * 1 0 ^ - 1 9 //C10 m = 9 . 1 * 1 0 ^ - 3 1 //k g11 h = 6 . 6 2 6 * 1 0 ^ - 3 4

    12 s i g = 1 / r h o

    13 n i = s i g / ( e * ( m u h + m u e ) )

    14 printf ( \ n C o n d u c t i v i t y = %. 6 f p e r Ohmm\n I n t r i n s i cc a r r i e r c o n c e n t r a t i o n , n i=%. 5 f 1 0 1 8 , s i g , n i

    * 1 0 ^ - 1 8 )15

    16 k = 1 . 3 8 * 1 0 ^ - 2 3

    17 N c = 2 * ( 2 * % p i * k * T / h ^ ( 2 ) ) ^ ( 1 . 5 )

    18 N c = N c * ( 0 . 5 * m ) ^ ( 1 . 5 )

    60

  • 8/13/2019 Material Science_V. Rajendran

    62/111

    19 N v = 2 * ( 2 * % p i * k * T / h ^ ( 2 ) ) ^ ( 1 . 5 )

    20 N v = N v * ( 0 . 3 7 * m ) ^ ( 1 . 5 )21 printf ( \nNc=%. 3 f1 0 2 4\nNv=%. 3 f1 0 2 4 , N c * 1 0 ^ - 2 4 , N v* 1 0 ^ - 2 4 )

    22 e g = 2 * k * T * log ( sqrt ( N c * N v ) / n i )

    23 e g = e g / e

    24 printf ( \nThe ba nd g ap o f Ge i s %. 3 f eV , e g )

    Scilab code Exa 10.9 carrier concentration of intrinsic semiconductor

    1 / / Exa mpl e 1 0 . 9 , p ag e no2732 clear

    3 clc

    4 e = 1 . 6 * 1 0 ^ - 1 9 //C5 m = 9 . 1 * 1 0 ^ - 3 1 //k g6 h = 6 . 6 2 6 * 1 0 ^ - 3 4

    7 k = 1 . 3 8 * 1 0 ^ - 2 3

    8 e g = 0 . 7 * e

    9 T = 3 0 0 //K10 n i = 2 * ( 2 * % p i * m * k * T / ( h ^ ( 2 ) ) ) ^ ( 1 . 5 )

    11 n i = n i * % e ^ ( - e g / ( 2 * k * T ) )12 printf ( The c a r r i e r c o n c e n t r a t i o n o f an i n t r i n s i c

    s e m ic o n d uc t o r i s = %. 2 f 1 0 1 8 p e r m 3 , n i * 1 0 ^ - 1 8 )

    Scilab code Exa 10.10 Electrical conductivity of Si

    1 / / Exa mpl e 1 0 . 9 , p ag e no2732 clear

    3 clc4 e = 1 . 6 * 1 0 ^ - 1 9 //C5 m = 9 . 1 * 1 0 ^ - 3 1 //k g6 h = 6 . 6 2 6 * 1 0 ^ - 3 4

    7 k = 1 . 3 8 * 1 0 ^ - 2 3

    61

  • 8/13/2019 Material Science_V. Rajendran

    63/111

    8 e g = 1 . 1 * e

    9 m u e = 0 . 4 8 //m2 /V. s10 m u h = 0 . 0 1 3 //m2 /V. s11 T = 3 0 0 //K12 n i = 2 * ( 2 * % p i * m * k * T / ( h ^ ( 2 ) ) ) ^ ( 1 . 5 )

    13 n i = n i * % e ^ ( - e g / ( 2 * k * T ) )

    14

    15 s i g = n i * e * ( m u e + m u h )

    16 printf ( \nThe c a r r i e r c o n c e n t r a t i o n o f an i n t r i n s i cs e m ic o n d uc t o r i s = %. 2 f 1 0 1 6 p e r m 3\n t h ee l e c t r i c a l c o n d u c t i i v i t y od S i i s %. 3 f 10 3 p e r

    Ohmm , n i * 1 0 ^ - 1 6 , s i g * 1 0 ^ 3 )

    Scilab code Exa 10.11 Fermi energy of Silicon

    1 / / Exa mpl e 1 0 . 1 1 , p ag e no2752 clear

    3 clc

    4 e = 1 . 6 * 1 0 ^ - 1 9 //C5 e g = 1 . 1 2

    6 m e = 0 . 1 27 m h = 0 . 2 8

    8 T = 3 0 0

    9 k = 1 . 3 8 * 1 0 ^ - 2 3

    10

    11 e f = ( e g / 2 ) + ( 3 * k * T / 4 ) * log ( m h / m e )

    12 printf ( The Fermi e ne rg y o f S i a t 30 0 K i s %. 3 f eV ,ef )

    Scilab code Exa 10.12 effect of temperature on Fermi level

    1 / / Exa mpl e 1 0 . 1 2 , p ag e no2752 clear

    62

  • 8/13/2019 Material Science_V. Rajendran

    64/111

    3 clc

    45 e = 1 . 6 0 * 1 0 ^ - 1 9 //C6 e g = 1 * e

    7 k = 1 . 3 8 * 1 0 ^ - 2 3

    8 m =4

    9 T = 0 . 1 * e * 4 / ( 3 * k * log ( m ) )

    10 printf ( Te mper at ur e a t which Fermi l e v e l i s s h i f t e d10%% i s %. f K ,T )

    Scilab code Exa 10.13 Conductivity of Ge

    1 / / Exa mpl e 1 0 . 1 3 , p ag e no2762 clear

    3 clc

    4

    5 e = 1 . 6 * 1 0 ^ - 1 9 //C6 n i = 2 . 4 * 1 0 ^ 1 9 //m37 m u e = 0 . 3 9 //m2/Vs8 m u h = 0 . 1 9 //m2/Vs

    9 s i g = n i * e * ( m u e + m u h )10 printf ( The c o n d u ct i v i t y o f Ge a t 300 K i s %. 2 f p er

    Ohmm , s i g )

    Scilab code Exa 10.14 Fermi Energy level

    1 / / Exa mpl e 1 0 . 1 4 , p ag e no2772 clear

    3 clc4

    5 e = 1 . 6 * 1 0 ^ - 1 9 //C6 T 1 = 3 0 0 //K7 T 2 = 3 3 0 //K

    63

  • 8/13/2019 Material Science_V. Rajendran

    65/111

    8 e g = 0 . 3

    9 e g 2 = e g * T 2 / T 110 printf ( E cE f3 30=%.2 f eV\n\nAt 3 30 K , t h e Fe rm ie ne rg y l e v e l l i e s %. 2 f eV , b e ll o w t he c o nd u ct i onband . , e g 2 , e g 2 )

    Scilab code Exa 10.15 Conductivity of Ge

    1 / / Exa mpl e 1 0 . 1 5 , p ag e no277

    2 clear3 clc

    4 e = 1 . 6 * 1 0 ^ - 1 9 //C5 e g = 0 . 7 2 * e //eV6 t 1 = 2 9 3 //K7 t 2 = 3 1 3 //K8 k = 1 . 3 8 * 1 0 ^ - 2 3

    9 sig1=2

    10 n = ( t 2 / t 1 ) * % e ^ ( ( e g / ( 2 * k ) ) * ( ( 1 / t 1 ) - ( 1 / t 2 ) ) )

    11 s i g 2 = s i g 1 * n

    12 printf ( The c o n d u c t i v i t y o f Ge a t 40 C i s %. 3 f p e r

    Ohmm , s i g 2 )

    Scilab code Exa 10.16 Intrinsic concentration of Si

    1 / / Exa mpl e 1 0 . 1 6 , p ag e no2782 clear

    3 clc

    4 e = 1 . 6 * 1 0 ^ - 1 9 //C

    5 m = 9 . 1 * 1 0 ^ - 3 1 //k g6 m m = 0 . 3 1 * m //k g7 h = 6 . 6 2 6 * 1 0 ^ - 3 4

    8 k = 1 . 3 8 * 1 0 ^ - 2 3

    9 e g = 1 . 1 * e

    64

  • 8/13/2019 Material Science_V. Rajendran

    66/111

    10 T = 3 0 0 //K

    11 n i = 2 * ( 2 * % p i * m m * k * T / ( h ^ ( 2 ) ) ) ^ ( 1 . 5 )12 n i = n i * % e ^ ( - e g / ( 2 * k * T ) )

    13 printf ( The i n t r i n s i c c o n c e n t r a t i o n o f S i a t %d K i s%.4 f 10 1 5 e l e c t r o n s p er m3 , T , n i * 1 0 ^ - 1 5 )

    Scilab code Exa 10.17 Drift Velocity

    1 / / Exa mpl e 1 0 . 1 7 , p ag e no279

    2 clear3 clc

    4 h c = 0 . 5 5 * 1 0 ^ - 1 0 //m3//As5 c c = 5 . 9 * 1 0 ^ 7 // pe r Ohmm6 T = 3 0 0 //K7 d m = h c * c c

    8 printf ( The d r i f t m o b i l i t y i s g i v en by mu d = %. 1 f 103 m2/Vs , d m * 1 0 ^ 3 )

    Scilab code Exa 10.18 average no of electron per Cu atom

    1 / / Exa mpl e 1 0 . 1 8 , p ag e no2792 clear

    3 clc

    4

    5 s i g = 5 . 9 * 1 0 ^ 7 // pe r Ohmm6 e = 1 . 6 * 1 0 ^ - 1 9 //C7 m u = 3 . 2 * 1 0 ^ - 3 //m2/Vs8 d = 8 9 0 0 / / d e n s i t y

    9 a v g = 6 . 0 2 2 * 1 0 ^ 2 310 n i = s i g / ( e * m u )

    11 a w t = 6 3 . 5

    12 n = a v g * d * 1 0 0 0 / a w t

    13 k = n i / n

    65

  • 8/13/2019 Material Science_V. Rajendran

    67/111

    14 printf ( C o n ce nt ra ti on o f f r e e e l e c t r o n i n p u r e Cu i s

    %.2 f 1 0 2 8\nThe a v e ra g e number o f e l e c t r o n sc o n t r i b u t e d p e r Cu atom i s %. 2 f i . e . %. 0 f ,n* 1 0 ^ - 2 8 , k , k )

    Scilab code Exa 10.19 Mobility of Ge

    1 / / Exa mpl e 1 0 . 1 9 , p ag e no2802 clear

    3 clc4 i = 5 * 1 0 ^ - 3 //A5 v = 1 . 3 5 // v6 l = 0 . 0 1 //m7 b = 5 * 1 0 ^ - 3

    8 t = 1 0 ^ - 3 //m9 a = 5 * 1 0 ^ - 6 //m2

    10 v y = 2 0 * 1 0 ^ - 3

    11 H = 0 . 4 5 //Wb/m212

    13 r h o = v * a / ( l * i )

    14 E y = v y / t15 j = i / a

    16 k = E y / ( H * j )

    17 R h = 3 * % p i * k / 8

    18 m u = R h / r h o

    19 printf ( The m o b i l i t y o f t h e Ge s am pl e i s %. 2 f m 2/Vs , m u )

    Scilab code Exa 10.20 Hall Potential Difference

    1 / / Exa mpl e 1 0 . 2 0 , p ag e no2822 clear

    3 clc

    66

  • 8/13/2019 Material Science_V. Rajendran

    68/111

    4 I = 2 0 0 //A

    5 H = 1 . 5 //Wb/m26 n = 8 . 4 * 1 0 ^ 2 8 / / e l e c t r o n s p e r m37 d = 1 . 0 * 1 0 ^ - 3 //m8 e = 1 . 6 * 1 0 ^ - 1 9 //C9 v = I * H / ( n * d * e )

    10 printf ( The H a l l p o t e n t i a l d i f f e r e n c e a pp ea ra nc ebet w ee n t he s hi p i s %. 0 f v , v * 1 0 ^ 6 )

    Scilab code Exa 10.21 Mobility of Si

    1 / / Exa mpl e 1 0 . 2 1 , p ag e no2832 clear

    3 clc

    4 r h = 3 . 6 6 * 1 0 ^ - 4 //m3/C5 r h o = 8 . 9 3 * 1 0 ^ - 3 //Ohmm6 e = 1 . 6 * 1 0 ^ - 1 9 //C7 n i = 1 / ( r h * e )

    8 m u h = r h / r h o

    9 printf ( t he c a r r i e r c o nc e nt r at i on o f S i d oped

    s p ec i me n i s %. 3 f 1022 m3\n The m o bi l i t y o f S id op ed s p ec i m en i s %. 5 f m 2/Vs , n i * 1 0 ^ - 2 2 , m u h )

    Scilab code Exa 10.22 Electron concentration and Mobility

    1 / / Exa mpl e 1 0 . 2 2 , p ag e no2832 clear

    3 clc

    4 R h = 3 . 6 6 * 1 0 ^ - 1 1 //m2//As5 s i g = 1 1 2 * 1 0 ^ 7 //ohmm6 e = 1 . 6 * 1 0 ^ - 1 9 //C7 n = 3 * % p i / ( 8 * R h * e )

    8 m u = s i g / ( n * e )

    67

  • 8/13/2019 Material Science_V. Rajendran

    69/111

    9 printf ( \nThe c o n c e n t r a t i o n o f e l e c t r o n s i s % . 0 f

    1029 m3\n th e e l e c t r o n m o b i l i t y a t roomt e m p e r a t u r e = % . 3 f m 2 /Vs , n * 1 0 ^ - 2 9 , m u )

    Scilab code Exa 10.23 Hall voltage

    1 / / Exa mpl e 1 0 . 2 3 , p ag e no2842 clear

    3 clc

    4 I = 5 0 //A5 B = 1 . 5 //T

    6 t = 0 . 5 * 1 0 ^ - 2

    7 e = 1 . 6 * 1 0 ^ - 1 9 //C8 d = 2 * 1 0 ^ - 2

    9 N = 8 . 4 * 1 0 ^ 2 8 //m310 v = B * I / ( N * e * d )

    11 printf ( The H a l l v o l t a g e i s %. 2 f 10 7 V , v * 1 0 ^ 7 )

    Scilab code Exa 10.24 Relaxation time

    1 / / Exa mpl e 1 0 . 2 4 , p ag e no2842 clear

    3 clc

    4 r h o = 1 . 5 4 * 1 0 ^ - 8 //Ohmm5 n i = 5 . 8 * 1 0 ^ 2 8 // per m36 m = 9 . 1 * 1 0 ^ - 3 1 //k g7 e = 1 . 6 * 1 0 ^ - 1 9 //C8 t a u = m / ( r h o * n i * ( e ^ 2 ) )

    9 printf ( The r e l a x a t i o n t i m e o f e l e c t r o n s i n m e t a l i s%.2 f 101 4 s , t a u * 1 0 ^ 1 4 )

    68

  • 8/13/2019 Material Science_V. Rajendran

    70/111

    Scilab code Exa 10.25 Electron mobility in Silver

    1 / / Exa mpl e 1 0 . 2 5 , p ag e no2852 clear

    3 clc

    4 s i g = 6 . 2 2 * 1 0 ^ 7 // per ohmm5 n = 5 . 9 * 1 0 ^ 2 8 //m36 e = 1 . 6 * 1 0 ^ - 1 9 //C7 m u = s i g / ( n * e )

    8 printf ( The m o bi l it y o f e l e c t r o n s i n S i i s %. 2 f 10 3 m2/Vs , m u * 1 0 ^ 3 )

    Scilab code Exa 10.26 Electron mobility and electric field

    1 / / Exa mpl e 1 0 . 2 6 , p ag e no2852 clear

    3 clc

    4 r h o = 0 . 1 //Ohmm5 n i = 1 0 ^ 2 0 // per m36 v d = 1 //m/s

    7 e = 1 . 6 * 1 0 ^ - 1 9 //C8 m u = 1 / ( r h o * n i * e )

    9 E = v d / m u

    10 printf ( \nThe m o bi l it y o f t h e e l e c t r o n s i n m a te r ia li s %. 3 f m 2 /Vs \nThe e l e c t r i c f i e l d i s %.1 f V/m ,

    mu , E )

    Scilab code Exa 10.27 Electron mobility

    1 / / Exa mpl e 1 0 . 2 7 , p ag e no2862 clear

    3 clc

    4 s i g = 6 . 2 2 * 1 0 ^ 7 // pe r Ohmm

    69

  • 8/13/2019 Material Science_V. Rajendran

    71/111

    5 n = 5 . 9 * 1 0 ^ 2 8

    6 e = 1 . 6 * 1 0 ^ - 1 97 m u = s i g / ( n * e )

    8 printf ( The m o b i l i t y o f e l e c t r o n s i n s i l v e r i s %. 2 f 10 3 m2/Vs , m u * 1 0 ^ 3 )

    Scilab code Exa 10.28 Electron mobility and electric field

    1 / / Exa mpl e 1 0 . 2 8 , p ag e no286

    2 clear3 clc

    4 r h o = 0 . 1 //Ohmm5 n i = 1 0 ^ 2 0 // per m36 v d = 1 //m/s7 e = 1 . 6 * 1 0 ^ - 1 9 //C8 m u = 1 / ( r h o * n i * e )

    9 E = v d / m u

    10 printf ( \nThe m o bi l it y o f t h e e l e c t r o n s i n m a te r ia li s %. 3 f m 2 /Vs \nThe e l e c t r i c f i e l d i s %.1 f V/m ,

    mu , E )

    Scilab code Exa 10.29 Electron mobility and conductivity

    1 / / Exa mpl e 1 0 . 2 9 , p ag e no2872 clear

    3 clc

    4

    5 a v g = 6 . 0 2 3 * 1 0 ^ 2 3

    6 m = 9 . 1 * 1 0 ^ - 3 1 //k g7 e = 1 . 6 * 1 0 ^ - 1 9 //C8 d = 8 . 9 2 * 1 0 ^ 3 //kg/m39 r h o = 1 . 7 3 * 1 0 ^ - 8 //Ohmm

    10 z = 6 3 . 5

    70

  • 8/13/2019 Material Science_V. Rajendran

    72/111

    11

    12 n = a v g * d / z13 s i g = 1 / r h o

    14 t a u = s i g * m / ( n * ( e ^ 2 ) )

    15 m u = s i g / ( e * n )

    16 printf ( \nThe r e l a x a t i o n t im e i s %. 2 f 1011 s \nThem o b i l i t y o f e l e c t r o n s i n c op pe r i s % . 2 f m2/Vs \

    nThe c o n d u c t i v i t y o f c op pp er i s %. 2 f 1 0 7 p e rOhmm\n , t a u * 1 0 ^ 1 1 , m u , s i g * 1 0 ^ - 7 )

    Scilab code Exa 10.30 Drift Velocity

    1 / / Exa mpl e 1 0 . 3 0 , p ag e no2882 clear

    3 clc

    4 r h o = 1 . 5 4 * 1 0 ^ - 8 //ohmm5 E = 1 0 0 //V/m6 n i = 5 . 8 * 1 0 ^ 2 8 //m37 e = 1 . 6 * 1 0 ^ - 1 9 //C8 m u = 1 / ( r h o * n i * e )

    9 v d = m u * E10 printf ( The m o b i l i t y o f e l e c t r o n s i n s i l v e r i s %. 4 f

    10 3 m2/Vs \nThe d r i f t v e l o c i t y i d %. 5 f m/ s ,mu *10^3 , vd )

    Scilab code Exa 10.31 Relaxation time

    1 / / Exa mpl e 1 0 . 3 1 , p ag e no288

    2 clear3 clc

    4 r h o = 1 . 4 3 * 1 0 ^ - 8 //Ohmm5 n i = 6 . 5 * 1 0 ^ 2 8 // per m36 e = 1 . 6 * 1 0 ^ - 1 9 //C

    71

  • 8/13/2019 Material Science_V. Rajendran

    73/111

    7 m = 9 . 1 * 1 0 ^ - 3 1 //Kg

    8 t a u = m / ( r h o * n i * e ^ 2 )9 printf ( The r e l a x a t i o n t i m e f o r e l e c t r o n s i n t hem et al i s %. 2 f 101 4 s , t a u * 1 0 ^ 1 4 )

    Scilab code Exa 10.32 Electron mobility in Al

    1 / / Exa mpl e 1 0 . 3 2 , p ag e no2892 clear

    3 clc4

    5 R = 6 0

    6 r h o = 2 . 7 * 1 0 ^ - 8 //Ohmm7 i = 1 5 //A.8 l =5 //m9 m =3

    10 e = 1 . 6 * 1 0 ^ - 1 9 //C11 d = 2 . 7 * 1 0 ^ 3 //kg/m312 a w t = 2 6 . 9 8

    13 a v g = 6 . 0 2 3 * 1 0 ^ 2 3

    14 n = m * a v g * 1 0 0 0 * d / a w t15 printf ( F re e e l e c t r o n c o n c e n t r a t i o n i s % . 3 f 1 0 2 9

    , n * 1 0 ^ - 2 9 )

    16 m u = 1 / ( r h o * n * e )

    17 printf ( \nThe m o b il i t y o f e l e c t r o n i n al umi ni um i s %. 4 f10 3 m2/vs , m u * 1 0 ^ 3 )

    18 v d = m u * i * R * 1 0 ^ - 3 / l

    19 printf ( \nThe d r i f t v e l o c i t y o f t h e e l e c t r o n i n A li s %. 1 f 10 4 m/ s , v d * 1 0 ^ 4 )

    Scilab code Exa 10.33 drift and thermal velocity

    1 / / Exa mpl e 1 0 . 3 3 , p ag e no290

    72

  • 8/13/2019 Material Science_V. Rajendran

    74/111

    2 clear

    3 clc4 R = 0 . 0 2 //Ohmm5 i = 1 5 //A6 m u = 4 . 3 * 1 0 ^ - 3 //m2/Vs7 l =2 //m8 k = 1 . 3 8 * 1 0 ^ - 2 3

    9 m = 9 . 1 * 1 0 ^ - 3 1 //k g10 T = 3 0 0 //K11 v = i * R

    12 E = v / l

    13 v d = E * m u

    14 v t h = sqrt ( 3 * k * T / m )15 printf ( \nThe t h er ma l v e l o c i t y o f t h e f r e e e l e c t r o n s

    i n c o p p er i s %. 3 f mm/ s \nThe d r i f t v e l o c i t y o f e l e c t r o n s i n c op pe r i s %. 3 f mm/ s , v t h * 1 0 ^ - 5 , v d*10^3)

    73

  • 8/13/2019 Material Science_V. Rajendran

    75/111

    Chapter 11

    Mechanical Properties

    Scilab code Exa 11.1 Stress produced in an Al

    1 / / Exa mpl e 1 1 . 1 , p ag e no3322 clear

    3 clc

    4

    5 l d = 2 0 0 0 //k g6 g = 9 . 8 //m/s2

    7 r = 0 . 0 0 58 f o r c e = l d * g

    9 s t r es s = f o rc e / ( % p i * r ^ 2)

    10 printf ( The s t r e s s p ro du ce i n an al umi ni um a l l o y i s%. 1 f MPa, s t r e s s * 1 0 ^ - 6 )

    Scilab code Exa 11.2 perentage elongation and reduction

    1 / / Exa mpl e 1 1 . 2 , p ag e no3322 clear

    3 clc

    4 l f = 5 3 . 7 5 * 1 0 ^ - 3

    74

  • 8/13/2019 Material Science_V. Rajendran

    76/111

    5 l 0 = 5 0 * 1 0 ^ - 3

    6 d f = 9 . 4 * 1 0 ^ - 37 d 0 = 8 . 8 * 1 0 ^ - 3

    8 p l = ( l f - l 0 ) * 1 0 0 / l 0

    9 p a = ( ( % p i * d f ^ 2 ) - ( % p i * d 0 ^ 2 ) ) * 1 0 0 / ( % p i * d f ^ 2 )

    10 printf ( \nThe %% e l o n g a t i o n i s %. 1 f%% a nd \ nth e %%r e d u c ti o n i n a r ea i s %. 3 f%% , p l , p a )

    Scilab code Exa 11.3 Brinell Hardness Number

    1 / / Exa mpl e 1 1 . 3 , p ag e no3322 clear

    3 clc

    4 t s = 9 3 7 //MPa5 b h n = t s / 3 . 4 5

    6 printf ( The B r i n e l l H a rd n es s Number i s %. 2 f , b h n )

    Scilab code Exa 11.4 Tensile strength and fatigue limit of Steel plate

    1 / / Exa mpl e 1 1 . 4 , p ag e no3332 clear

    3 clc

    4 p = 3 0 0 0

    5 D = 1 0

    6 d = 2 . 2

    7 H b = 2 * p / ( % p i * D * ( D - sqrt ( D ^ 2 - d ^ 2 ) ) )

    8 printf ( \n B r i n e l l H ar dn es s Number o f s t e e l P la te , Hb=%. 1 f\n , H b )

    9 t s = 3 . 4 5 * H b10 f l = 0 . 5 * t s

    11 printf ( \nThe T e ns i l e s t re n gt h o f s t e e l p l a t e i s %. 3f MPa\n , t s )

    75

  • 8/13/2019 Material Science_V. Rajendran

    77/111

    12 printf ( \nThe F at ig ue l i m i t o f s t e e l p l a t e i s %. 4 f

    MPa , f l )

    76

  • 8/13/2019 Material Science_V. Rajendran

    78/111

    Chapter 12

    Thermal Properties

    Scilab code Exa 12.1 Change in length due to heating

    1 / / Exa mpl e 1 2 . 1 , p ag e no3502 clear

    3 clc

    4

    5 a l f e = 8 . 8 * 1 0 ^ - 6 / / p e r k6 l o = 0 . 1 //m

    7 d e l T = 9 7 3 //K8 d e l L = a l f e * l o * d e l T

    9 printf ( The c ha ng e i n l e n g t h p ro du ce d b y h e a ti n g i s%. 3 f mm , d e l L * 1 0 ^ 3 )

    Scilab code Exa 12.2 Change in length due to heating

    1 / / Exa mpl e 1 2 . 2 , p ag e no3502 clear

    3 clc

    4

    5 a l f e = 5 . 3 * 1 0 ^ - 6 / / p e r k

    77

  • 8/13/2019 Material Science_V. Rajendran

    79/111

    6 l o = 0 . 1 //m

    7 d e l T = 9 7 3 //K8 d e l L = a l f e * l o * d e l T9 printf ( The c ha ng e i n l e n g t h p ro du ce d b y h e a ti n g i s

    %. 3 f mm , d e l L * 1 0 ^ 3 )

    Scilab code Exa 12.3 Steady state heat Transfer

    1 / / Exa mpl e 1 2 . 3 , p ag e no351

    2 clear3 clc

    4 k = 3 7 1 //J/msk5 d e l T = 5 0 // i n d e g r e e s6 d e l x = 1 0 * 1 0 ^ - 3

    7 h t = k * d e l T / d e l x

    8 printf ( The s t e ad y s t a t e h ea t t r a n s f e r o f 10 mmc op pe r s h e et i s %. 3 f 106 J .m2 . s 1 , h t * 1 0 ^ - 6 )

    Scilab code Exa 12.4 Compression Stress due to Heating

    1 / / Exa mpl e 1 2 . 4 , p ag e no3512 clear

    3 clc

    4 a l f e = 8 . 8 * 1 0 ^ - 6 / / p e r K5 t 1 = 1 3 0 0 //K6 t 2 = 3 2 7 //K7 d e l T = t 1 - t 2

    8 E = 3 7 0 //GPa9 e p = a l f e * d e l T

    10 s i g = e p * E

    11 printf ( \nThe u n c o n s t r a i n e d t h er m al e x p an s i o np ro du ce d by t he h e a ti n g i s %. 4 f 10 3 , e p * 1 0 ^ 3 )

    78

  • 8/13/2019 Material Science_V. Rajendran

    80/111

    12 printf ( \ n th e c o mp r es s io n s t r e s s p ro du ce d by h e a t in g

    i s % . 3 f GPa , s i g )

    Scilab code Exa 12.5 Heat flux transmitted

    1 / / Exa mpl e 1 2 . 5 , p ag e no3522 clear

    3 clc

    4

    5 K = 1 2 0 //W/m.K6 t 2 = 4 2 3

    7 t 1 = 3 2 3

    8 d e l T = t 2 - t 1

    9 d e l x = 7 . 5 * 1 0 ^ - 3 //m10 A = 0 . 5 //m211 Q = K * A * ( d e l T / d e l x )

    12 h p h = Q * 3 6 0 0

    13 printf ( The h e a t f l u x t r a n s mi t t e d t hr ou gh a s h e e tp er h ou r i s %. 2 f 109 J . h1 , h p h * 1 0 ^ - 9 )

    Scilab code Exa 12.6 Youngs Modulus

    1 / / Exa mpl e 1 2 . 6 , p ag e no3532 clear

    3 clc

    4

    5 a l f e = 1 7 * 1 0 ^ - 6 / / / p e r K6 t 2 = 2 9 3 //K7 t 1 = 2 3 3 //K8 d e l T = t 2 - t 1

    9 s t = 1 1 9 //MPa10 k = a l f e * d e l T

    79

  • 8/13/2019 Material Science_V. Rajendran

    81/111

    11 printf ( \nThe s t r a i n p ro duc ed i n t e r o d i s %. 2 f

    103 , k * 1 0 ^ 3 )12 E = ( s t * 1 0 ^ 6 ) / k13 printf ( \nThe You ng s Mo du lu s o f t h e r o d i s %. 1 f GPa

    , E * 1 0 ^ - 9 )

    Scilab code Exa 12.7 temperature Change

    1 / / Exa mpl e 1 2 . 7 , p ag e no353

    2 clear3 clc

    4

    5 l o = 1 1 . 6 //m6 d e l x = 5 . 4 * 1 0 ^ - 3 //m7 a l f L = 1 2 * 1 0 ^ - 6 / / p e r K8 d e l T = d e l x / ( l o * a l f L )

    9 printf ( The maximum t e m p e r a t u r e c a n g e c a n w i t h s t a n dw it ho ut any t he rm al s t r e s s i s %. 2 f K , d e l T )

    Scilab code Exa 12.8 compressive Sress

    1 / / Exa mpl e 1 2 . 7 , p ag e no3542 clear

    3 clc

    4

    5 l o = 0 . 3 5 //m6 a l f e = 2 3 . 6 * 1 0 ^ - 6 / / / p e r K7 t 2 = 3 5 8 //K8 t 1 = 2 8 8 //K9 d e l T = t 2 - t 1

    10 y m = 6 9 //GPa11 k = a l f e * d e l T

    80

  • 8/13/2019 Material Science_V. Rajendran

    82/111

    12 printf ( \nThe s t r a i n p ro duc ed i n t e r o d i s %. 3 f

    103 , k * 1 0 ^ 3 )13 E = y m * k * 1 0 ^ 914 printf ( \nThe c o m pr e ss i v e s t r e s s p ro du ce d i n Al r od

    i s % . 3 f GPa , E * 1 0 ^ - 9 )

    Scilab code Exa 12.9 limit to compression stress

    1 / / Exa mpl e 1 2 . 9 , p ag e no355

    2 clear3 clc

    4 a l f e = 2 0 * 1 0 ^ - 6 / / p e r K5 t 1 = 2 9 3 //K6 s i g = 1 7 2 ///MPa7 E = 1 0 0 //GPa8 d e l T = ( s i g * 1 0 ^ 6 ) / ( E * a l f e * 1 0 ^ 9 )

    9 printf ( \nTfTi=%. 0 f , d e l T )10 printf ( \n\ n t h e maximum t e m p e r a t u r e a t w hi c h t h e r o d

    may b e h e a t ed w i t h o ut \ n e xc e ed i ng a c o m p re s s s i ves t r e s s o f %. 0 f MPa i s %. 0 f K , s i g , d e l T + t 1 )

    Scilab code Exa 12.10 Heat energy Requirement

    1 / / Exa mpl e 1 2 . 1 0 , p ag e no3562 clear

    3 clc

    4 h _ i r = 4 4 4 // J . kg 1.K15 h _ g r = 7 1 1 // J . kg 1.K1

    6 h _ p l = 1 8 8 0 // J . kg1.K17 t 2 = 3 7 3 //K8 t 1 = 3 0 0 //K9 d e l T = t 2 - t 1

    10 W =2 //Kg

    81

  • 8/13/2019 Material Science_V. Rajendran

    83/111

    11

    12 / / ( a ) For I r o n13 q = W * h _ i r * d e l T14

    15 / / ( b ) f o r G r ap h it e16 q 1 = W * h _ g r * d e l T

    17

    18 // ( b ) f o r p o l y pr o p yl e n e19 q 2 = W * h _ p l * d e l T

    20

    21 printf ( The h ea t e ne rg y r e q u i r e d t o r a i s et em p er a tu r e %. 0 f K f ro m i t s t em p er at u re o f \ n i r o n

    , g r a p h i t e