master thes is

110
TITL MAS Mana AUT DIRE DAT LE: Plannin STER DEG agement HORS: M ECTORS: S E: June 25 MA ng optimiza REE: Mas María Lema Silvia Ruiz 5 th 2010 ASTE ation softw ster in Sci a Rosas, Ev Boqué, Ma ER T are tool for ience in T velyn Torra ario García THES r DVB-T an elecommu as López Lozano SIS nd DVB-T2 nication E Engineering g &

Upload: others

Post on 01-Aug-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MASTER THES IS

TITL

MASMana

AUT

DIRE

DAT

LE: Plannin

STER DEGagement

HORS: M

ECTORS: S

E: June 25

MA

ng optimiza

REE: Mas

María Lema

Silvia Ruiz

5 th 2010

ASTE

ation softw

ster in Sci

a Rosas, Ev

Boqué, Ma

ER T

are tool for

ience in T

velyn Torra

ario García

THES

r DVB-T an

elecommu

as López

Lozano

SIS

nd DVB-T2

nication EEngineeringg &

Page 2: MASTER THES IS
Page 3: MASTER THES IS

TIitle: Planning optimization software tool for DVB-T and DVB-T2

Authors: María Lema Rosas, Evelyn Torras López

Directors: Silvia Ruiz Boqué, Mario García Lozano

Date: June 25 th 2010

Overview

Nowadays the implementation of the Digital Terrestrial Television network is an actual fact in the Spanish territory. Its development is crucial for the digital transition in those countries which mainly depend on terrestrial networks for the reception of multimedia contents.

With the aim of giving to the users a high quality signal but with the minimum cost for the operator, it arises the necessity of an optimization of the transmission network. In this way, there are variables that can be modified to obtain this goal, some of them are uncontrollable by the operators and the others are susceptible of optimization. In this last group, it can be found the static internal delays of the transmitters which are of special interest because changes can be done with cost zero.

The main objective of this project is the design and implementation of a planning optimization software tool that adjusts the internal static delay in transmitters of a digital broadcasting network. The final objective is to minimize the self-interfered areas and obtain the correspondent increase in coverage. The planning optimization software tool makes use of a metaheuristic algorithm and can obtain different layers of study with its corresponding results.

This report describes the problems raised by the current network, the algorithm adapted to the needs of the network to optimize, the implementation of the simulation platform as well as its subsequent validation stage, including several graphical results that allow the evaluation of the improvements introduced over the realistic scenario tested.

Finally it has to be mentioned that this work has been performed within the context of the FURIA project, which is a strategic research project funded by the Spanish Ministry of Industry, Tourism and Commerce.

Page 4: MASTER THES IS
Page 5: MASTER THES IS

Resumen

Hoy en día la implementación de una red de Televisión Digital Terrestre es una realidad en España y su desarrollo es crucial para la transición digital para aquellos países en los que la recepción de contenido multimedia depende exclusivamente de las redes terrestres.

Con el objetivo de dar al usuario una gran calidad de señal pero con un coste económico y reducido para las operadoras es necesaria la optimización de la res de transmisión. En este sentido, existen parámetros de red configurables para conseguir este objetivo, algunos de ellos son incontrolables para las operadoras, en cambio otros son susceptibles a la optimización. En este último grupo, se encuentran los retardos estáticos internos de los transmisores que son de especial interés debido a que se pueden modificar a coste cero.

EL principal objetivo del proyecto es el diseño y la implementación de una herramienta software para la planificación óptima de redes que ajusta el parámetro de los retardos estáticos de los transmisores en redes de difusión digital de contenidos con la intención de minimizar las zonas de auto-interferencia y con el correspondiente incremento de cobertura de red. La herramienta software para la planificación hace uso de un algoritmo metaurístico y puede obtener diferentes capas de estudio con sus correspondientes resultados.

La memoria describe los problemas planteados por la red actual, el algoritmo utilizado y como se ha adaptado a las necesidades de la red a optimizar, la implementación de la plataforma de simulación así como su etapa de validación, incluyendo gran cantidad de resultados gráficos que permiten la evaluación de las mejoras introducidas en la red realística testeada.

Finalmente se ha de mencionar que el presente trabajo ha sido realizado en el contexto del proyecto FURIA, el cual es un proyecto de búsqueda estratégica fundado por el ministerio de Industria, Turismo y comercio de España.

Título: Planning optimization software tool for DVB-T and DVB-T2

Autores: María Lema Rosas, Evelyn Torras López

Directores: Silvia Ruiz Boqué, Mario García Lozano

Fecha: 25 de junio de 2010

Page 6: MASTER THES IS
Page 7: MASTER THES IS

INDEX

INTRODUCTION ............................................................................................................ 1 

CHAPTER 1.  INTRODUCTION TO DVB-T ................................................................. 3 

1.1  Changing to a digital mode ............................................................................... 3 

1.2  Digital television around the world .................................................................... 3 

1.3  DVB-T2 physical layer overview ....................................................................... 4 

1.3.1  Basic principle ........................................................................................... 5 

1.3.2  Time domain physical layer considerations .............................................. 6 

1.4  Radio planning of DVB-T systems ................................................................... 7 

1.4.1  Coverage computation .............................................................................. 8 

1.4.2  Interferences and their impact on coverage .............................................. 9 

1.4.3  Solutions to improve coverage area ........................................................ 10 

CHAPTER 2.  DESIGN OF AN ALGORITHM TO MAXIMIZE COVERAGE ............... 11 

2.1  Problem description ........................................................................................ 11 

2.2  Metaheuristic solution ..................................................................................... 12 

2.3  Introduction to Simulated Annealing ............................................................... 13 

2.3.1  Description of the algorithm .................................................................... 13 

2.4  Simulated annealing parameters .................................................................... 15 

2.4.1  Temperature ............................................................................................ 15 

2.4.2  Number of iterations ................................................................................ 16 

2.4.3  Conditions of convergence ...................................................................... 16 

2.4.4  Definition of the cost function .................................................................. 16 

2.5  Implementation issues .................................................................................... 18 

2.5.1  Study of the temperature reduction coefficient ........................................ 18 

2.5.2  Maximum delay value delimitation .......................................................... 20 

2.5.3  Study of the equilibrium condition ........................................................... 22 

CHAPTER 3.  SIMULATION PLATFORM DEVELOPMENT ...................................... 25 

3.1  Required software tools .................................................................................. 25 

3.1.1  Sirenet ..................................................................................................... 25 

3.1.2  Microsoft Visual Studio 2008 ................................................................... 25 

3.1.3  MATLAB .................................................................................................. 26 

3.1.4  Google Earth ........................................................................................... 26 

3.2  Simulator structure ......................................................................................... 27 

3.2.1  Main program .......................................................................................... 28 

3.2.2  Scenario .................................................................................................. 28 

3.2.3  Algorithm ................................................................................................. 30 

3.2.4  Graphical User Interface ......................................................................... 30 

3.3  Code optimization ........................................................................................... 34 

CHAPTER 4.  RESULTS: OPTIMIZATION OF REALISTICS SCENARIOS .............. 35 

Page 8: MASTER THES IS

4.1 Definition of the scenarios .................................................................................. 35 

4.1.1  Tarragona scenario ................................................................................. 35 

4.1.2  Lleida scenario ........................................................................................ 36 

4.1.3  Barcelona scenario ................................................................................. 37 

4.2  Results for geographical optimization ............................................................ 38 

4.2.1  Tarragona ................................................................................................ 40 

4.2.2  Lleida ....................................................................................................... 41 

4.2.3  Barcelona ................................................................................................ 42 

4.3  Optimizing population density ........................................................................ 43 

4.3.1  Population distribution ............................................................................. 44 

4.3.2  Discussion over Tarragona ..................................................................... 45 

4.3.3  Discussion over Lleida ............................................................................ 47 

4.3.4  Discussion over Barcelona ...................................................................... 49 

4.3.5  Conclusions for the cost function approach ............................................ 50 

CHAPTER 5.  RESULTS: IMPACT OF OTHER VARIABLES OVER THE OPTIMIZATION PROCESS .......................................................................................... 51 

5.1  Receiving antennas ........................................................................................ 51 

5.1.1  Definition of the scenarios ....................................................................... 51 

5.1.2  Yagi antennas: Fixed environment .......................................................... 53 

5.1.3  Omnidirectional antennas: Mobile environment ...................................... 58 

5.2  Types of receivers .......................................................................................... 64 

5.2.1  Definition of the scenarios ....................................................................... 64 

5.2.2  Yagi antenna: Fixed environment ........................................................... 65 

5.2.3  Omnidireccional antenna: Mobile environment ....................................... 67 

CHAPTER 6.  CONCLUSIONS .................................................................................. 69 

CHAPTER 7.  REFERENCES .................................................................................... 71 

APPENDICES .................................................................................................................. I 

Page 9: MASTER THES IS

FIGURE INDEX

Fig. 1.1 Different standards around the world ................................................................. 4 Fig. 1.2 Time and frequency representation of the SC and OFDM. In OFDM, N data symbols are transmitted simultaneously on N orthogonal subcarriers [3] ...................... 5 Fig. 1.3 Presentation of the OFDM subcarrier frequency ............................................... 6 Fig. 1.4 Cyclic Prefix added at the beginning of the OFDM symbol ............................... 6 Fig. 2.1 Algorithm work flow .......................................................................................... 12 Fig. 2.2 Block diagram of the search of the initial temperature ..................................... 14 Fig. 2.3 Block diagram of SA ........................................................................................ 15 Fig. 2.4 Cost function computation ............................................................................... 17 Fig. 2.5 Cost function vs. Delta ..................................................................................... 19 Fig. 2.6 Execution time vs. Delta .................................................................................. 19 Fig. 2.7 Delay evolution (4 transmitters, 200 iterations) ............................................... 20 Fig. 2.8 Cost function vs. Max Delay ............................................................................ 21 Fig. 2.9 Execution time vs. Max Delay .......................................................................... 21 Fig. 2.10 Cost function vs. Beta .................................................................................... 22 Fig. 2.11 Execution time vs. Beta ................................................................................. 23 Fig. 3.1 Visualization of KML file ................................................................................... 27 Fig. 3.2 Software tool class diagram ............................................................................. 27 Fig. 3.3 Initial correspondence ...................................................................................... 29 Fig. 3.4 GUI interface .................................................................................................... 30 Fig. 3.5 Example of CIR results .................................................................................... 31 Fig. 3.6 Example of population results .......................................................................... 32 Fig. 3.7 Example of transmitter coverage results ......................................................... 33 Fig. 3.8 Example of CIR by population results .............................................................. 33 Fig. 4.1 Coverage area in Tarragona ............................................................................ 36 Fig. 4.2 Coverage area in Lleida ................................................................................... 37 Fig. 4.3 Coverage area in Barcelona ............................................................................ 38 Fig. 4.4 Type one receiver schema .............................................................................. 39 Fig. 4.5 Initial CIR for Tarragona region ....................................................................... 40 Fig. 4.6 Final CIR for Tarragona region ........................................................................ 40 Fig. 4.7 Initial CIR for Lleida region .............................................................................. 41 Fig. 4.8 Final CIR for Lleida region ............................................................................... 42 Fig. 4.9 Initial CIR for Barcelona region ........................................................................ 43 Fig. 4.10 Final CIR for Barcelona region ...................................................................... 43 Fig. 4.11 Population density for Tarragona ................................................................... 44 Fig. 4.12 Population density for Lleida .......................................................................... 45 Fig. 4.13 Population density for Barcelona ................................................................... 45 Fig. 4.14 Initial population covered in Tarragona .......................................................... 46 Fig. 4.15 Geographical based optimization in Tarragona ............................................. 46 Fig. 4.16 Population based optimization in Tarragona ................................................. 47 Fig. 4.17 Initial population covered in Lleida ................................................................. 47 Fig. 4.18 Geographic based optimization in Lleida ....................................................... 48 Fig. 4.19 Population based optimization in Lleida ........................................................ 48 Fig. 4.20 Initial population covered in Barcelona .......................................................... 49 Fig. 4.21 Geographic based optimization in Barcelona ................................................ 50 Fig. 4.22 Population based optimization in Barcelona .................................................. 50 Fig. 5.1 Example of a conventional Yagi horizontal radiation pattern ........................... 54 Fig. 5.2 Initial coverage in Tarragona in fixed scenario with receiver type one ............ 54 Fig. 5.3 Initial coverage in Lleida in fixed scenario with receiver type one ................... 54 Fig. 5.4 Initial coverage in Barcelona in fixed scenario with receiver type one ............. 55 Fig. 5.5 Final CIR in Tarragona in fixed scenario with receiver type one ..................... 55 Fig. 5.6 Final CIR in Lleida in fixed scenario with receiver type one ............................ 56

Page 10: MASTER THES IS

Fig. 5.7 Final CIR in Barcelona in fixed scenario with receiver type one ...................... 56 Fig. 5.8 Initial percentage of pixels covered ................................................................ 57 Fig. 5.9 Final percentage of pixels covered ................................................................. 57 Fig. 5.10 Initial coverage in Tarragona in portable scenario with receiver type one ..... 58 Fig. 5.11 Initial coverage in Lleida in portable scenario with receiver type one ............ 58 Fig. 5.12 Initial coverage in Barcelona in portable scenario with receiver type one ..... 59 Fig. 5.13 Final coverage in Tarragona in portable scenario with receiver type one ..... 59 Fig. 5.14 Final coverage in Lleida in portable scenario with receiver type one ............ 60 Fig. 5.15 Final coverage in Barcelona in portable scenario with receiver type one ...... 60 Fig. 5.16 Percentage of pixels covered with at least the minimum power .................... 61 Fig. 5.17 Initial coverage of omnidireccional TXs ......................................................... 63 Fig. 5.18 Final coverage of omnidireccional TXs .......................................................... 63 Fig. 5.19 Final coverage according to population ......................................................... 63 Fig. 5.20 Type two receiver schema ............................................................................. 64 Fig. 5.21 Final coverage in Tarragona in fixed scenario with receiver type two ........... 65 Fig. 5.22 Final coverage in Lleida in fixed scenario with receiver type two .................. 65 Fig. 5.23 Final coverage in Barcelona in fixed scenario with receiver type two ............ 66 Fig. 5.24 Comparison of final percentage of pixels covered in fixed scenario .............. 66 Fig. 5.25 Final coverage in Tarragona in portable scenario with receiver type two ...... 67 Fig. 5.26 Final coverage in Lleida in portable scenario with receiver type two ............. 67 Fig. 5.27 Final coverage in Barcelona in portable scenario with receiver type two ...... 67 Fig. 5.28 Comparison of final percentage of pixels covered in portable scenario ....... 68

Page 11: MASTER THES IS

TABLE INDEX

Table 1.1 Specified length of the guard interval [4] ........................................................ 7 Table 1.2 Link budget results .......................................................................................... 9 Table 3.1 Example of KML file ...................................................................................... 27 Table 3.2 Pixel information ........................................................................................... 28 Table 3.3 Legend of population density distribution ..................................................... 32 Table 3.4 Example of code ........................................................................................... 34 Table 3.5 Example of loop jamming ............................................................................. 34 Table 4.1 Analysed transmitters in Tarragona .............................................................. 36 Table 4.2 Analysed transmitters in Lleida ..................................................................... 37 Table 4.3 Analysed transmitters in Barcelona .............................................................. 38 Table 4.4 Radio parameters ......................................................................................... 39 Table 5.1 Principal radio characteristics of portable scenario ...................................... 52 Table 5.2 Principal radio characteristics of fixed scenario ............................................ 52 Table 5.3 Main roads in Lleida region .......................................................................... 62 Table 5.4 Characteristics of the transmitters added ..................................................... 62

Page 12: MASTER THES IS
Page 13: MASTER THES IS

INTRODUCTION 1

INTRODUCTION

In the context of broadcasting television networks, analogical technologies are being replaced by digital ones. This transition of analogical to digital by the roll out of the Digital Video Broadcasting Terrestrial (DVB-T) standard provides advantages in the exploitation of bandwidths, more robustness in front to the noise and another series of advantages that are translated in a clear improvement of the image and the sound, besides adding new applications for users.

One of the strengths of DVB-T is that it can be deployed with a single frequency network (SFN) scheme. This is possible because the physical layer is based on Orthogonal Frequency Division Multiplexing (OFDM) and the introduction of a cyclic prefix (CP) between consecutive symbols. SFNs allow a more efficient use of available bandwidth than classic Multiple Frequency Networks (MFNs). They also simplify the radio-planning process since frequency allocation strategies are not required.

Due to the multipath tolerance that the OFDM scenario has, one receiver is allowed to combine signals coming from different transmitters (TXs), as long as these signals remain inside the guard interval (GI). This interval copes with intersymbol interference (ISI) induced by the multipath channel. The fact of combining signals provides a diversity gain in reception only in the case that TXs are allocated near of the receiver area, however it can happen that a signal is delayed due to the distance between the TX and the receiver area. In that case, this signal cannot be combined because it falls outside of the GI. This phenomenon is call self-interference.

With the aim of giving users a high quality signal but at the same time of limiting expenditures for the operator, it turns necessary the optimization of the transmission network, bearing in mind that the most important factor for the optimization is the minimization of self- interference. There are variables that can be modified to obtain this objective, some of them are uncontrollable by operators, as for example:  The propagation environment and the configuration of OFDM receivers. Given this, different receiver options should be considered and assessed when optimizing the network planning. On the other hand, there exists another type of variables that are susceptible of optimization, such as  the geographic position of the TXs, their transmission power, the configuration of their radiant system and their static internal delays. Among these, the last one is of special interest because changes can be done with cost zero.

Given this, this project develops a  planning optimization software tool that adjusts the static delays of the TXs in SFNs in order to minimize self-interfered areas and with the correspondent increase in coverage for a given broadcasting video network. To solve the optimization problem the software tool makes use of the metaheuristic Simulated Annealing (SA), previously studied in [1], but further improved in this project by adding a complimentary and complete software tool and more layers of study.

The report is organized as follows. First of all a brief introduction to the DVB-T and DVB-T2 standard is presented, consecutively, after setting the problem, the main objectives of the project are explained and the starting points of the simulator are established. Examples of this are the link budget that determines the simulation thresholds and the territory to optimize. Chapter 2 describes the SA algorithm and its parameters, followed by the characterization of the algorithm itself. Then the

Page 14: MASTER THES IS

2 Planning optimization software tool for DVB-T and DVB-T2

optimization software tool structure and implementation is explained in chapter 3. Results are divided in two parts, first of all chapter 4 presents the results obtained with realistic scenarios. Chapter 5 focuses in specific topics and assess the impact of other variables that affect on the received signal, as for example types of receiving antennas or the modification of the type of receiver. Finally, the report is closed with some conclusions, and a set of ideas that can give further lines of investigation on this topic.

This project has been developed under a more ambitious national project named FURIA [2]. FURIA is a SSP (Strategically Singular Project) in the field of Network Audiovisual Technologies, whose main objective is to develop and validate the integration of emergent technologies for the spreading of audiovisual contents in fixed and mobile devices. Joining forces from the different national organisations (companies, technological centres and universities) with the final purpose of increasing the national technological level.

Following the same FURIA consortium definition of its activity [2], this collection of enterprises and organisms will be able to finish the investigation and development stages in the new contents of broadcasting audiovisual technologies, and will realise valuable contributions to the main standardization bodies in an industrial forum context, collaborating with technical proposals in the definition of the new DVB-T standard in the recent years, named DVB-T2.

It is expected that the generated research results of the consortium will be immediately applied, by means of generating pre-industrial outcomes.

Other objectives of the FURIA project are:

Establishment of relationships with other national and European projects, which will allow the enrichment of Spanish technological level.

Contributions to forums and European standards, to grow up Spanish technological consortium acknowledgment and to have influence in the standardisation section.

Page 15: MASTER THES IS

CHAPTER 1. INTRODUCTION TO DVB-T 3

CHAPTER 1. INTRODUCTION TO DVB-T

In the context of video broadcasting networks, analogue technologies have been already replaced by digital transmission technologies. This transition from analogue to digital through the implantation of the DVB-T standard provides the networks with certain advantages such as a better bandwidth exploitation, more robustness in front of noise, and more advantages that are reflected in the improvement on the image and sound, and also includes new applications to the users.

This chapter aims at explaining the main changes from the analogue technology to the digital one, as well as the theoretical background necessary to understand the main features of the DVB-T standard.

1.1 Changing to a digital mode

Digital television arises due to the fact that provides better characteristics than the analogue television. The old method had less spectral efficiency, as every single image was transmitted, in order to improve this mechanism, digital television introduces MPEG-2 compression, which sends the changes of the images and thus, much less information. Due to this fact, the required bandwidth is reduced and then on the same channel several programs can be multiplexed, or they can be transmitted with high definition, multimedia, interactivity can be included, etc. The spectral efficiency is then much higher on digital systems. Another set of common problems found in analogue television are ghost of images due to multipath in the radio channel, noise from weak signals, which degrade the quality of the signal and sound, etc. All this is efficiently solved by a digital transmission.

Moreover, the fact of changing to the DVB-T and DVB-T2 standard does not imply an increment on deployment cost, as most part of the already existing infrastructure can be re-used.

1.2 Digital television around the world

The change towards digital television is being done all around the world. Each country, or a set of countries have decided which standard are going to adapt in their territory. For instance in Europe it is used the DVB-T standard, but there are other possibilities as it is shown in Fig 1.1.

Page 16: MASTER THES IS

4

Fig. 1

As it

In Maupgr(Tecdevegene

Acco2007statiomobidelivsystecond

1.3

Althosomethe m

1.1 Different

can be see

‐ ATSC‐ ISDB

Ame‐ DMB‐ DVB

arch 2006 taded versiohnical Mod

elop an aderation digita

ording to th7, the first onary (fixedile) using ex

ver higher pem should ditions alrea

DVB-T2

ough this pre clue ideasmain proble

standards ar

en, nowaday

C in north AB-T, which rica.

B-T/H in Chi-T in Europ

the consorton of the stule on Nex

dvanced mal terrestria

he commercphase of D

d) and portaxisting aeria

payloads (wprovide a

ady used for

2 physica

roject is studs of how thms that can

round the wo

ys there are

America. is a Japa

na. e.

tium leadingtandard. In

xt Generatiomodulation s

l television

cial requireDVB-T2 wiable receiveals, wherea

with new aeminimum 3r DVB-T.

al layer o

dy from thee physical

n be found w

Plann

orld

e four main

anese stan

g the DVB pJune 2006

on DVB-T) wscheme thstandard, to

ements andll be devot

ers (i.e., unias a seconderials) and t30% increa

overview

e system levlayer of thewhen deplo

ning optimization

standards a

ndard also

project deci6, a formal was establi

hat could bo be named

d call for teted to provits which ca

d and third pthe mobile

ase in paylo

w

vel viewpoine system woying the ne

n software tool f

around the

widely ad

ided to studstudy grouished by thbe adoptedd DVB-T2.

echnologiesvide optimuan be nomaphase will sreception i

oad, under

nt, it is neceorks, in ordetwork.

for DVB-T and D

world:

dopted in

dy options fp named Te DVB Grod by a se

s issued in um receptioadic, but nostudy methossue. The similar cha

essary to exer to unders

DVB-T2

south

for an TM-T2 oup to econd

April on for t fully

ods to novel annel

xplain stand

Page 17: MASTER THES IS

CHAPTER 1. INTRODUCTION TO DVB-T 5

Fig. 1.2 Time and frequency representation of the SC and OFDM. In OFDM, N data symbols are

transmitted simultaneously on N orthogonal subcarriers [3] 

Digital broadcast television is based in OFDM, a well-known transmission technique widely used in communications on the last years. For instance, it is the technology adopted by ADSL, some version of the IEEE 802.11 standar, IEEE 802.16, LTE, data transmission in power-lines and many other standards. OFDM is a very powerful transmission technique. It is based on the principle of transmitting simultaneously many narrow-band orthogonal frequencies, named subcarriers. The number of subcarriers is often noted as N. These frequencies are orthogonal to each other which (in theory) eliminates the interference between channels. Each frequency channel is modulated with a possibly different digital modulation. The frequency bandwidth associated with each of these channels is then much smaller than if the total bandwidth was occupied by a single modulation, which is known as the Single Carrier (SC) (see Fig. 1.2). Having a smaller frequency bandwidth for each channel is equivalent to greater symbol time (N times longer) and then better resistance to multipath propagation (with regard to the SC option). Better resistance to multipath and the fact that the carriers are orthogonal allows a very high spectral efficiency. For these reasons, OFDM is often presented as the best performing transmission technique used for wireless systems.

1.3.1 Basic principle

OFDM makes use of the properties of the Discrete Fourier Transform (DFT) to generate the final signal without the need of one oscillator per sub-carrier. In particular, to speed the calculus, the Fast Fourier (FFT) algorithm is used instead. The FFT can be applied as long as the number of points in the sampled signal is a power of 2 (e.g. N = 256). This condition is easily imposed by the DVB-T standard (or any other standard). The IFFT is the Inverse Fast Fourier Transform operator and realises the reverse operation. OFDM theory shows that the IFFT of magnitude N, applied on N symbols, realises an OFDM signal, where each symbol is transmitted on one of the N orthogonal frequencies. The symbols are the data symbols of the type QPSK, QAM-16 and QAM-64.

If the duration of one transmitted modulation data symbol is Td, then Td = 1/f, where f is the frequency bandwidth of the orthogonal frequencies. As the modulation symbols are transmitted simultaneously,

Page 18: MASTER THES IS

6 Planning optimization software tool for DVB-T and DVB-T2

Fig. 1.3 Presentation of the OFDM subcarrier frequency

This duration, f, is the frequency distance between the maximums of two adjacent OFDM subcarriers, as it can be seen in Fig. 1.3. This figure shows how the neighbouring OFDM subcarriers have values equal to zero at a given OFDM subcarrier maximum, which is why they are considered to be orthogonal. In fact, duration of the real OFDM symbol is a little greater due to the addition of the CP.

1.3.2 Time domain physical layer considerations

After application of the IFFT a Cyclic Prefix must be added at the beginning of the OFDM symbol as it is shown on Fig.1.4. The CP allows the receiver to absorb the delay spread due to the multipath and to avoid intersymbol interference (ISI). The CP that occupies a duration called the Guard Interval (GI) is a temporal redundancy to give continuity to the OFDM signal. On the other hand, including this prefix reduces the effective data rate because during this time no new information is transmitted.

Following the DVB organization rules that are shown in the recommendations, there are several possible GIs. The operator may choose among these options considering the radio channel features in its particular deployment. Table 1.1 remarks the recommended lengths. Note that mode 8k and 2k stand for the two different periods of symbols that are considered in the standard: 896 s and 224 s respectively. The GI is always given as a fraction of this value. This fraction represents de percentage of time in which no new information is transmitted. Consequently, for the same ‘degree of inefficiency’ the 8k mode allows deploying larger SFNs.

Fig. 1.4 Cyclic Prefix added at the beginning of the OFDM symbol

Page 19: MASTER THES IS

CHAPTER 1. INTRODUCTION TO DVB-T 7

Table 1.1 Specified length of the guard interval [4]

For instance, in this project it has been applied the OFDM 8k mode, with 56μs of GI. The longest GIs are suitable for networks with longer distances between TX stations, as for example with national SFNs. The shortest intervals are suitable for regional or local broadcast transmissions. In summary, the longer the guard interval is, the less interference will appear, but less information is sent.

1.4 Radio planning of DVB-T systems

Radio planning DVB-T networks allows basically two types of deployment, on the one hand the classic Multi – Frequency Networks (MFN), and on the other hand Single – Frequency Networks (SFN).

Conventionally planned DVB-T networks consist of TXs with independent programme signals and with individual radio frequencies. Therefore they are also referred to as MFN. In order to cover large areas with one DVB-T signal a certain number of radio-frequency channels is needed. The number of channels depends on the robustness of the transmission, i.e. the type of modulation associated with the applied channel code rate and on the objective of planning, (full area coverage or coverage of densely populated areas only). As the robustness of a broadcasting system is generally expressed in terms of protection ratios, one might expect that the number of channels needed for DVB-T is significantly lower than for analogue broadcasting as the protection ratios are generally lower in the digital case. However, due to some other phenomena, the number of radio-frequency channels needed for conventionally planned DVB-T networks tends to be in the same order as with analogue TV systems. The frequency resource expressed as the number of channels needed to provide one signal at any location is far higher with MFN than with SFN. Nevertheless, one of the advantages that MFNs have is that it is not necessary to have synchronous emissions as one area is only served by one TX.

In a SFN, all TXs are synchronously modulated with the same signal and radiate on the same frequency. Due to the multi-path capability of OFDM with its GI, signals from several TXs arriving at a receiving antenna may contribute constructively to the total wanted signal. However, the limiting effect of the SFN technique is the so-called self-interference of the network. If signals from far distant transmitters are delayed more than allowed by the GI they behave as noise-like interfering signals rather than as wanted signals. The strength of such signals depends on the propagation conditions, which will vary with time. The self-interference of an SFN for a given transmitter spacing is reduced by selecting a large GI. In order to keep the redundancy due to the GI down to a reasonably low value (25 %), the useful symbol length has also to be large given the transmitter spacing in most European countries. Thus the 8k-mode was introduced. On the other hand a smaller GI would lead to a higher number of TXs.

Page 20: MASTER THES IS

8 Planning optimization software tool for DVB-T and DVB-T2

With the SFN technique large areas can be served with a common multiplex at a common radio frequency. Therefore the frequency efficiency of SFNs appears to be very high compared to MFNs. Gaps in the coverage area of an SFN are easily filled by adding a new transmitter or repeater without the need for additional frequencies.

In conventionally planned networks and particularly in single TX situations, a common way to achieve service continuity at a high percentage of locations is to include a relatively large fade margin in the link budget and thus to increase the transmitter power significantly. However with omnidirectional reception in SFNs, where the wanted signal consists of several signal components from different transmitters the variations of which are only weakly correlated, fades in the field strength of one transmitter may be filled by another transmitter. This is translated into a receiving gain, and therefore transmitters with the SFN technique should be able to transmit with lower power.

As it has been explained on the problematic, this project has adopted the SFN technique as it seems to be the most efficient when deploying a DVB-T network and in fact is the option used in Spain at several geographical levels (national, regional, local).

1.4.1 Coverage computation

In order to make possible a feasible analysis of the DVB-T/T2 coverage, it is necessary to compute a link budget to guess the amount of power required at the receiver. It is important to fix the initial level of carrier to interference ratio (CIR) that the receiver must achieve in order to have a good visualization of TV, this value was extracted from [4], and placed as an input data in the link budget.

The link budget takes into account all the losses or degradation the signal suffers since it is emitted until arrives to the receiver end. Depending on the sophistication that is desired to provide to the calculation more or less parameters can be taken into account. For instance, in this project, environments focused on fixed scenario have the same link budget than the portable ones, as it is quite difficult to combine several parameters on a single receiver in Sirenet.

The whole link budget is placed in Appendix A, however below these lines there is a summary in Table 1.2 with the most relevant aspects.

Page 21: MASTER THES IS

CHAPTER 1. INTRODUCTION TO DVB-T 9

Table 1.2 Link budget results

Parameter  Units  Result 

Band     Band V 

Receiving Condition     Fixed antenna (outdoor 10 m) 

Frequency  f [MHz]  800 

Boltzmann Constant  k [J∙K‐1]  1,38E‐23 

Bandwidth  B [Hz]  7,60E+06 

Temperature  T0 [K]  290 

Thermal noise power  Pn,th [dBW]  ‐135,2 

Receiver noise figure  F [dB]  7 

Total noise power  Pn [dBW]  ‐128,2 

Minimum carrier to noise ratio required by system 

CNR [dB]  2  8  14  18  26 

Minimum receiver signal input power 

Ps min [dBW] 

‐126,2  ‐120,2  ‐114,2  ‐110,2  ‐102,2 

In order to assure an 18 dB of carrier to noise ratio, the minimum power received must be almost -110 dBW, which corresponds to -80 dBm. Based on these results every pixel that receives a value of power beyond this threshold is considered to be covered by one or more transmitters.

Regarding the coverage area, the one selected is the entire region of Catalonia. The TXs placed in this area are a total of 180, which is a very high number taking into account that the scenario must be optimized, so in the case the whole Catalonia territory is set to be analysed, the simulation time would be prohibitive, in this case different pieces of terrain are selected. As for the scenario, the pixel resolution may vary depending on the exact detail that the results are desired, but it is necessary to mention that, if this resolution is set too small the execution time is going to rise. In this project it is considered that on each pixel there’s placed a receiver sharing all the same characteristics.

In DVB-T there are basically two types of receiver defined, one that catches the transmitter whose echo first arrives, and the other selects the transmitter taking into account the most powerful signal. This is more detailed when explaining all the sets of scenarios prepared for the simulations. The TX’s information is more specific, as each one has different values of altitude or position. However, the emitting power of all the TXs is considered the same, although it is known that in real conditions each TX can have its own configuration of power, tilt, delay value, etc.

1.4.2 Interferences and their impact on coverage

Several types of interferences can interact and contribute negatively on the received signal. For instance the same signal received, can have one or more echoes due to the multipath phenomenon. DVB-T standards offer protection against these, due to the orthogonal frequency multiple division, every frequency carrier is divided into a subset of subcarriers, being smaller in frequency bandwidth terms. Even more protection is added with the GI, which can protect the receiver from other types of interferences. In a SFN network all the TXs send information at the same frequency, being possible the reception of one or more signals coming from different sources. If this signal echoes are received inside the GI, then it is said that the signal contributes positively, on the

Page 22: MASTER THES IS

10 Planning optimization software tool for DVB-T and DVB-T2

contrary will degrade the signal quality. Moreover, other services operating at near frequencies can have an interfering contribution to the signals.

1.4.2.1 Deployment of an SFN network

As it is previously explained in sections above, the SFN network allows to complement the received signal with the ones coming from other transmitters. However, this idea can be extrapolated into the analogue, which means that one pixel that initially is covered by one or more transmitter, loses its quality due to the strong self-interference that suffers from the transmitters placed nearby. For this reason SFN networks must be optimized, in order to reduce these levels of interference and make sure that all the signals coming to a given receiver perform a good quality one, instead of destroying it.

It is clear that the longer the GI is, the easier the reduction of self-interference, as many echoes will arrive inside the CP. However this also implies a less efficient transmission since no new information is contained in the added interval and so the effective data rate is reduced. Besides, mobile television is gaining focus particularly in the context of the DVB-T2 standard, and long symbols with large GIs are much more sensitive to Doppler Effect. A good system design implies as short as possible GIs while maintaining sufficient multipath protection.

1.4.3 Solutions to improve coverage area

Several solutions arise in order to reduce the impact of the self-interferences in SFN networks. There exist basically two types of variables, the ones which are uncontrolled by the operator and those that are susceptible of optimization.

On the first classification of variables one can contemplate the propagation environment and the configuration of the OFDM receivers. The fact that one receiver is set to one type or another changes the coverage and the impact on the interferences, this is studied in further chapters in this project. However, this cannot be managed by the operator, the variables that can control are those regarding the transmitters such as, its geographic position, the configuration of the radiant system (radiation pattern, downtilt, nullfilling techniques), the transmission power or the static delays. Moreover, in a context of operative DVB-T networks and in some cases in the beginning of a transition towards DVB-T2, powers, antennas and positions (in this order) are increasingly more static and unlikely to be dramatically changed.

Given this, this project is focused on the optimization of the static delays of the transmitters in an SFN network. The final objective is then, to reduce the self-interfered areas and with its consequent increase in coverage area. This action can be performed manually, but it turns very difficult to find an optimal solution due to the interdependencies of the variables. For this reason, this project proposes a technique that optimizes a set of transmitters in a given area, and searches for the set of delays that minimize the areas affected by ISI.

Page 23: MASTER THES IS

CHAPTER 2. DESIGN OF AN ALGORITHM TO MAXIMIZE COVERAGE 11

CHAPTER 2. DESIGN OF AN ALGORITHM TO MAXIMIZE COVERAGE

2.1 Problem description

The problematic analysed in this project, as it was presented in the section before, is to improve the coverage area by means of changing the delays of all the transmitters so the maximum number of pixels under a test area are improved. First of all, let analyse with a simple example which is the impact of changing the internal delay of a repeater.

Let consider a canonical scenario in which two TXs (L on the left and R on the right) are deployed in a flat terrain. Under these circumstances, the border between the areas with the second contribution falling inside or outside the GI is given by the locus of points where the difference of the distances to the two TX is a constant, that is a hiperbola with both TXs as foci. However, not the full area on the left of the left semi-hiperbola and on the right of the right semi-hiperbola are necessarily out of coverage. As long as the CNR is good enough, other contributions can be received out of the GI. Self-interfered areas can be modified by means of changes on static delays. Thus, for example, if the internal delay of L is increased, then R has virtually got closer and consequently the left semi-hiperbola is reduced (eventually eliminated). Conversely, this action has a negative effect on R, because now L has been virtually moved further away and so the self-interfered area on the right is increased. This simple modification could be useful for example in an environment in which R transmits with a higher power and so can cope with the signal from L causing interference. More details on this can be found in [1].

To be able to solve this problem in a case with many TXs, it is necessary to find the combination of delays such as the highest number of pixels is improved. The simplest possibility to solve the problem is just using a brute force search. Of course this cannot be done, the search requires a prohibitive computational time. In particular, assuming a finite set of m possible delays and n TXs, each value can be assigned to every TX with repetition. The assignment of the same values to different TXs also changes the solution (TXA-delay1, TXB-delay2) (TXA-delay2, TXB-delay1). Thus, the solutions space is a variation with repetition of m values taken from n in n:

, (2.1)

The number of solutions is then, dependent on the maximum delay value and the number of transmitters. For instance, focusing on a scenario with 40 TXs and 10000 possible delays (from 0 to 100 s in steps of 0.01 s), then the number of possible solutions is 3.98·1016020. So a brute force search of the solution is completely infeasible and other options have to be developed. This problem is in fact a combinatorial optimization one which can be viewed as searching for the best element of some set of discrete items, therefore, in principle, any sort of iterative search algorithm or metaheuristic can be used to obtain good solutions in a reasonable computation time.

Page 24: MASTER THES IS

12

2.2

The algorsolutset e

Fig. 2

Amobe fobe ap

Metastatemutaspacwith differlocalis baopersolutresoladopengin

Metahe

proposal inrithm respotion. In partequal. The F

2.1 Algorithm

ng the famiound, for inspplied with

aheuristics ae...), usuallyates the prece of solutioa worst corences with minima. Inasically orieator’s reqution. Moreolution of co

pted in this neering as f

euristic s

n this projeonsible for ticular, the Fig.2.1 expl

m work flow

ily of metahstance, Genmore or les

also requirey derived froesent solutioons can be st at particu

h respect ton this projecented to thirements aover, is onombinatoriawork. SA i

for example

solution

ect is basethe optimisimulator oains the alg

heuristic algnetic Algoritss difficulty t

e a procedom the curron. In most

both uphillular momen

o local searcct it is decidhe minimiznd express

ne of the al optimizatis being wie:

Plann

ed on the uzation of a

optimizes thgorithm wor

gorithms a bthms, Tabu to this partic

ure to generent one. Thof them, it l or downhints of the sch since it

ded to run thzation of a ses the gloalgorithms tion problemdely used a

ning optimization

use an adaan initial vhe solution kflow.

big number Search or S

cular proble

erate a newhis is usualis interestinill and that search. In fais intended he SA algo

cost funcobal value o

that enjoyms and it at many lev

n software tool f

aptation of alid, thougin which al

of different SA. In fact em.

w combinatly a probab

ng to note thmeans accact, this is to avoid ge

rithm, its retion Fcost tof a certainys more pis the onevels of tele

for DVB-T and D

a metaheuh possibly ll the delay

possibilitieall of them

tion (or solbilistic actionhat moves icepting soluone of the etting trapp

esolution mehat gathersn radio plaopularity in

e that has ecommunica

DVB-T2

uristic bad,

ys are

s can could

ution, n that in the utions main

ped in ethod s the nning n the been

ations

Page 25: MASTER THES IS

CHAPTER 2. DESIGN OF AN ALGORITHM TO MAXIMIZE COVERAGE 13

Frequency allocation problem: [5; 6; 7]. Location of TXs and transmission powers: [8; 9]. Hub location problem: [10; 11].

2.3 Introduction to Simulated Annealing

SA is widely used in the resolution of combinatorial optimization problems, and in particular to try to find solutions to NP-hard problems. In this type of problems it is not possible finding an optimal solution in a polynomial time in relation to the size of the problem. With the help of metaheuristics, and in particular of SA, a near-optimal solution can be found in a reasonable period of time. For instance, the traveling sales man problem is a classic one, and there are many others.

2.3.1 Description of the algorithm

Let consider the physical process in which the temperature of a given liquid is reduced. If this action is performed abruptly below its melting point, the result is a disorganized state with a much higher energy than the one corresponding to the compost in crystalline state. In this case, the molecules have reached a local minimum of energy. On the contrary, if the liquid’s temperature is reduced slowly and according to a given cooling rule, the liquid evolves to a state of equilibrium with minimum internal energy, it is the one corresponding to an ordered and crystalline compost.

Inspired on this procedure, the SA algorithm was developed as a helpful tool in the resolution of combinatorial optimization problems. The cooling process is formulated as the search of the solution implying a lower value of a given cost function (energy). This is done as follows:

Starting with a unique solution of a problem, SA changes it in an iterative and random fashion. These modifications are done on a restricted way, so for example if the solution is represented as a vector or combination of elements, only one position of it would be changed. For each new proposed solution, SA compares the final energy (the cost functions) of both solutions. If the energy obtained on the new solution is lower than the old one, then this new solution is accepted and substitutes the current one. If, on the contrary, the energy rises, the new solution is accepted with a probability determined by the Boltzmann factor e‐Δf/T,  where Δf is the energy difference f(i+1)‐f(i) between the new state i+1 and the one before i, and T corresponds to the current system’s temperature. This accepting rule is known as the Metropolis criterion. In the case of a combinatorial optimization problem it is defined as:

11, 1

, 1 (2.2)

The probability of accepting a new solution worse than the current one is lower as the difference of energies grows, and it is also lower as the temperature of the system decreases. This procedure of generation, and acceptation or refutation is repeated a given number of iterations for the same value of temperature. Once all the iterations

Page 26: MASTER THES IS

14

are dcontican whenof chor, u

At thsearcsolutfrom [12] indef

Rega

1

2

Fig. 2

done the sinuously thealso be de

n arriving tohanges, thentil it excee

is point, thech. As the tion tends tolocal minimthat SA l

finitely.

arding the a

. The seaanalogy molecule

2. A seconsystem cto a mini

2.2 Block dia

system cooe same proetermined ao the last itee procedureeds the max

e algorithm temperatu

o zero. Thismums and ieads to a

algorithm ex

arch of thethis will co

es move tot

nd part thacost (physicimum state

agram of the

ols itself (thcedure, unt

a given numeration if th

e continues ximum numb

can changeure value ds dependenimproves th global m

xecution, tw

e suitable orrespond ttally random

t consists cally this wof energy).

search of th

Plann

he system’stil the final tmber of ac

he algorithmuntil reach

ber of iterat

e towards adecreases, nce on the he final soluinimum wh

wo parts can

maximum to the proc

m). (See Fig

on the seaould corres (See Fig. 2

e initial temp

ning optimization

s temperattemperature

cceptations m has not rehing the mitions.

new value the probabtemperature

ution. Actuahen the nu

n be clearly

initial temcedure of thg. 2.2)

arch of a sspond to the2.3).

perature

n software tool f

ure is redue is reachefor each t

eached the nimum num

of temperability of acce lets the a

ally, it can bumber of i

defined:

perature (ohe solid fus

solution thae crystalliza

for DVB-T and D

uced), reped. By the wtemperaturedesired nu

mber of cha

ature or finiscepting a walgorithm esbe demonstiterations g

on the physion until a

at minimizeation of the

DVB-T2

eating way, it e, so, umber anges

sh the worse scape trated grows

ysical all the

s the solid

Page 27: MASTER THES IS

CHAP

Fig. 2

Regavaluerandrespereceiinitia

2.4

The paraother

2.4.

The iterat

The the abeingspecproce

TER 2. DESIGN

2.3 Block dia

arding to the (from the omly. This dect the pixeiving antenlly the cost

Simula

performancmeters. Forwise unexp

1 Tempe

system netively as we

initial valuealgorithm wig all of the

cific value. Oess will ha

N OF AN ALGO

agram of SA

he search opool of pos

delay leadsels changesnna. This n

function to

ated ann

ce of the or this reaspected resu

erature

eds to estaell.

e must be cill waste timm acceptedOn the otherdly move

ORITHM TO MA

of a new sossible value

s on a new cs, and thus,ew coveragbe compar

nealing p

algorithm ison it is neults can be o

ablish an in

computed tame making md. This is oer hand, if thfrom the in

AXIMIZE COVER

olution, the es, from zecoverage of, the time inge changesed.

paramete

is quite seecessary toobtained.

nitial tempe

aking into amany moveout of interehe initial vanitial solutio

RAGE

program wro to the mf this base snstant in whs the numb

ers

ensitive to pay speci

erature and

account thaements throuest as the salue of tempon, and fro

will pick a nomaximum destation, as thich the echber of pixe

the adjustmial attention

d the policy

t, if it resultughout the system is nperature is som the beg

ode and a elay establisthe distanceho arrives t

els KO, whi

ment of sen to their v

y that reduc

ts too high,solutions s

not followingset very lowinning it ca

15

delay shed) e with to the ich is

everal value,

ces it

, then pace, g any w, the an be

Page 28: MASTER THES IS

16 Planning optimization software tool for DVB-T and DVB-T2

trapped on a local optimum, thus loosing the opportunity to explore other regions and finding some of the global optimums of the system.

So, following the above explanation, the initial value of temperature T0 must be calculated to guarantee that it is high enough so that almost all the transitions are accepted. Therefore, it is necessary to define a ratio of acceptances (ratio=transitions accepted/all transitions) and when it is near to 1 (or 100% of probability) then this temperature is said to be suitable. To find this value, the next procedure has been implemented: Starting with a small temperature, this is repeatedly multiplied by 1.5 until the ratio is comprised between 0,8 - 0,9.

The way in which the temperature T is decremented is important in terms of execution time and final cost as well. For this particular study-case, the following schema has been used because it preserves the convergence theory of SA as much as possible [12]:

·

(2.3)

The aggressiveness in the reduction of T can be controlled with , so that the simulation time can be adjusted to the available hardware capabilities. On the other hand σ represents the standard deviation of the cost evolution with temperature Ti. In particular, if changes on T are very small on state i, then a sharper decrease is promoted by σ.

2.4.2 Number of iterations

Ideally the reduction of temperature must be done when, for a given level of temperature the system has reached the steady state; but, the fact of doing this, leads into an unacceptable processing demand. For this reason it is defined an upper bound on the total number of iterations (transitions) that the algorithm does for a single value of temperature. This number must be close to the number of the neighbour solutions [13] as on each intern loop the algorithm visits a number of these before reducing the temperature value.

2.4.3 Conditions of convergence

The algorithm finishes its search when the ratio of accepted solutions is lower than 1%. When the system reaches this situation, it means that there will be no more significant changes on the cost function. Obviously, the algorithm also finishes when the cost function is zero.

2.4.4 Definition of the cost function

The definition of the cost function is very important when designing SA. This function is the one that must be minimized by changing continuously some parameters of the system. On this project it is necessary to minimize the total number of pixels not totally covered on a given region.

Page 29: MASTER THES IS

CHAP

It is ilack transscenconschan

In thi

1

2

In thcomp

2.4.4

In thcoveapplizero

Fig. 2

TER 2. DESIGN

important toof receive

smitters planario are thosidering all lnging the tra

is project tw

. First of number validatinadjustmeenvironmquantify

2. So, in orsolution

e following pared in det

4.1 Proced

his project tered in the ies a randoand the ma

2.4 Cost func

N OF AN ALGO

o highlight ted power, aced near. ose in whiclosses and ansmitters d

wo ways of c

all, it is coof pixels ong the correent. Howevment, as it the populat

rder to makthe cost fun

chapters btail.

dure to comp

the cost fuscenario. Tm delay, taaximum del

ction comput

ORITHM TO MA

hat a pixel or due toThe total nh the total rgains at th

delay.

computing t

nsidered thn the Cataloect functionver, and in is shown intion affected

ke the algornction is ana

both ways o

pute the co

unction hasTo do that, king into acay value.

tation

AXIMIZE COVER

may be noto the stronnumber of received po

he receiver.

the cost fun

hat the funconia territor

ning of the order to pl

n Chapter 4d by this pro

rithm more alysed also

of calculatin

ost function

the goal othe progra

ccount that t

RAGE

t covered byng self-inte

pixels thatower is high

The goal i

nction are st

ction intendry. This stualgorithm

lace this si4, results reoblem.

intelligent wo in terms of

ng the cost

of reducingam choosesthis value s

y any transrference cat may be imher than thes to reduce

tudied:

ded to minimdy is usefuas well as mulator in eveal that i

when searcf population

function a

g the numbs a randomshould be co

mitter due taused by mproved oe sensitivitye this numb

mize is thel in the senthe parama more reas much wis

hing for then.

re analysed

ber of pixel transmitteomprised am

17

to the other n the

y after ber by

e total nse of meters

alistic ser to

e best

d and

s not r and mong

Page 30: MASTER THES IS

18 Planning optimization software tool for DVB-T and DVB-T2

This new delay value of the transmitter under test is the current proposed solution, at this point, the algorithm analyses if this solution leads on a reduction of the total number of pixels not covered, as is to say, if the cost function is reduced. To compute this value, the program calculates the fictitious distance (the real distance plus an increment due to the delay applied) of the selected transmitter respect all the pixels of the scenario, and it is analysed how it affects to the total coverage. As it has been explained on the first chapter of this project, the fact of changing the fictitious distance of a transmitter towards any pixel, leads to a change in the moment in which the signal arrives to each receiver, being possible that if initially was interfering, now can contribute positively, or vice versa.

The cost function follows a few simple rules to analyse if a pixel is covered or not. The first step is to analyse for each pixel which are the transmitters’ signals that arrive inside the GI, and which are interfering the useful ones. Once this classification is done, the cost function can calculate the CIR value for each pixel and can classify the pixels according its coverage.

When there is no contribution of any signal in which the received power is higher than the sensitivity, the pixel is considered as null as it is not receiving enough power from any transmitter of the scenario. This situation can never be improved as the transmitted power is not a matter of optimization, just the propagation of the signal arriving to a pixel. Moreover, it may happen that due to the time instant of arrival of some signal echoes they won’t be placed inside the GI, being a source of interference. As a result the CIR of the pixel (receiver) is below the desired one. In this case, the pixel is considered as not covered or Pixel KO, because modifying the time instant of the transmitters this problem can be solved. In any other case, the pixel is considered like covered or Pixel OK. The Fig 2.4 explains the above lines.

When the algorithm classifies all the pixels according to the explanation, it is computed the total number of Pixels KO or the total population affected regarding the two approaches of computing the cost function.

The number obtained is the cost solution or final energy of the proposed solution. Now it is evaluated by the Metropolis criterion that it will decide that if the solution is accepted or not. All these steps will be repeated as many times as the algorithm determines.

2.5 Implementation issues

As it was explained in the above section, it is very important to adjust all the parameters in order to obtain a better performance of the algorithm. This section explains the different measurements that have been done in this project to compute the values of the principal parameters. It is important to highlight that when analysing the behaviour of the algorithm, it is necessary to arrive into a commitment between execution time and final value of the cost function.

2.5.1 Study of the temperature reduction coefficient

This parameter (delta: δ) is important in the sense of execution time and final values of the cost function. If the temperature is not “significantly different” from one loop to another, the probability of having the same result is very high. On the other hand, if the

Page 31: MASTER THES IS

CHAPTER 2. DESIGN OF AN ALGORITHM TO MAXIMIZE COVERAGE 19

temperature of the system decreases in a rapid way, then interesting solutions can be missed, although execution time reduces notoriously. As it is previously explained, it has been chosen a logarithmic reduction depending on the delta parameter. The higher it is, the stronger the temperature reduces.

In order to compute the best value of δ several simulations have been done, and it has been compared the different final values of the cost function and the execution times. The scenario was built with 15 transmitters and 700 iterations per value of temperature (maximum delay Number of transmitters) were executed.

Fig. 2.5 Cost function vs. Delta

Fig. 2.6 Execution time vs. Delta

1038

1040

1042

1044

1046

1048

1050

1052

1054

Number of pixels uncovered

Delta_0.1

Delta_0.5

Delta_0.9

Delta_3

0,0

1000,0

2000,0

3000,0

4000,0

5000,0

6000,0

7000,0

Time (s)

Delta_0.1

Delta_0.5

Delta_0.9

Delta_3

Page 32: MASTER THES IS

20 Planning optimization software tool for DVB-T and DVB-T2

The graphs (Fig. 2.5 and 2.6) show the average final cost obtained from five simulations, as well as the maximum and minimum value obtained. The results show the previously announced effect of δ. As the temperature decreases more slowly, the total number of evaluated solutions increases, the solution space is more smoothly explored. Therefore, it is possible to obtain better cost values. However, when this happens, the execution time of the program raises exponentially, while the result of the cost function is just slightly lower (in average, just half a pixel comparing the two first cases).

According to the results, the value that best solves this trade-off is δ = 0.5. In this case, the average cost function is almost the same as when it is equal to 0.1 and the execution time is 3.6 times less. Besides, if higher values of delta are tested, the results on cost function worsen without an outstanding benefit in execution time. As a conclusion, from now on the value established for the temperature reduction coefficient is set to 0.5.

2.5.2 Maximum delay value delimitation

At the beginning of the simulations, SA is totally random, and the best result for each iteration is quite different from the one obtained just before. This is, because the higher the temperature is, the higher is the probability of accepting wrong solutions for the problem as well. On each simulation, there is a moment in which the algorithm stabilizes and finds a region in which the results are better, which is close to the final one.

The problem here is that is needed to provide the algorithm with a wide enough variety of delays. Setting the possible values to a too low range implies poorer solutions. On the other hand if the range is too large, the algorithm wastes iterations evaluating redundant solutions. Note that what it is important is the relative delay among transmitters and not the absolute values themselves. In order to find the appropriate maximum value (the minimum is fixed to zero) a testing simulation has been run. The obtained results are shown on Fig. 2.7.

Fig. 2.7 Delay evolution (4 transmitters, 200 iterations)

0,00E+00

1,00E‐05

2,00E‐05

3,00E‐05

4,00E‐05

5,00E‐05

0 20 40 60 80 100 120 140 160

Tíme (s)

iterations

TX_1

TX_2

TX_3

TX_4

Page 33: MASTER THES IS

CHAPTER 2. DESIGN OF AN ALGORITHM TO MAXIMIZE COVERAGE 21

The four transmitters start choosing delay values with random variation but as the system gets cooler, the delay values get nearer to the optimal ones. The maximum delay value was established initially at 50 s, and the final cost value was around 166 pixels not covered. As results show, transmitter four seems to need more range, as the final delay value is pretty near to the maximum one. For this reason, it may be profitable to prove higher values of delays.

In order to test the improvement in the cost function, several ranges of delays are tested in five simulations, and then the average cost is represented. The next graphs (see Fig. 2.8) show the results.

Fig. 2.8 Cost function vs. Max Delay

Fig. 2.9 Execution time vs. Max Delay

0

20

40

60

80

100

120

140

160

180

Number of pixels not covered

50

65

80

90

0

20

40

60

80

100

120

Execution tim

e (s)

50

65

80

90

Page 34: MASTER THES IS

22 Planning optimization software tool for DVB-T and DVB-T2

The decline in cost function with respect the maximum delay value is very representative. Initially, establishing 50 s, it was considered a value which was not enough for the transmitters in order to minimize the number of pixels not covered. Results show that there were not enough values to find a suitable solution. When increasing the maximum number of delays the cost function decreases, arriving to a point (over 80 pixels) in which no improvement happens when changing the maximum delay value. The final value established for the following simulations is 90 s, as it has slightly lower cost function.

However, modifying this parameter has an impact on the execution time, as the equilibrium is computed as the product (first approximation) and this is the most rapid loop. Fig. 2.9 represents the evolution of the execution time depending on the value of Max delay. The value chosen is the one which takes more time to find an optimal solution, this is due to the fact that the neighbouring is much larger.

2.5.3 Study of the equilibrium condition

Equilibrium is the parameter which determines the number of iterations that must be done for a single value of temperature. Theory of SA mathematically demonstrates that if this parameter tends to infinite, then the best solution is found with probability one. Since this is not practical, an empirical value has been obtained.

This value is governed by a new parameter β(0<β<1) which represents a percentage of the total number of neighbour solutions, which is estimated to be the product of the number of transmitters and the maximum delay value established in the previous section. The main goal is to find the best value of β according to the final value of the cost function and execution time as well. The parameters established for these simulations are the same than in the previous one, four transmitters, maximum delay of 90 μs and temperature coefficient value δ=0.5.

Fig. 2.10 Cost function vs. Beta

78

80

82

84

86

88

90

92

94

96

98

Number of pixels not covered

Beta_0,1

Beta_0.5

Beta_1

Page 35: MASTER THES IS

CHAPTER 2. DESIGN OF AN ALGORITHM TO MAXIMIZE COVERAGE 23

Fig. 2.11 Execution time vs. Beta

The above graphs (Fig. 2.10 and 2.11) show the result of five simulations. The bar represents the average value and then it is represented the maximum and minimum value obtained. It must be taken into account that the fact of changing the value of β leads to an important change on the equilibrium value (number of transitions per value of temperature) which relates the total number of solutions that can be explored. When β is low, as in the case of 0.1, means that only 10% of the total neighbouring solutions are being explored, for this reason results are worse than in the case beta is equal to 1 and all of them are explored.

It is a matter of fact that if the number of iterations grows the execution time rises exponentially and, as it is a function of the number of transmitters, the bigger the scenario is more time will take to the simulator to find a solution. Nevertheless, this time results are not so high (over 100 s for only four transmitters), so in order not to lose any possible good solution it has been decided not to apply any value of beta in the equilibrium value.

 

 

0

20

40

60

80

100

120

Time(s) Beta_0.1

Beta_0.5

Beta_1

Page 36: MASTER THES IS
Page 37: MASTER THES IS

CHAPTER 3. SIMULATION PLATFORM DEVELOPMENT 25

CHAPTER 3. SIMULATION PLATFORM DEVELOPMENT

Once the algorithm to maximize the coverage is designed, it is necessary, as it has been explained before, to develop a Radio-planning Optimization platform in order to run the algorithm. The platform is the responsible to manage the input and output data needed by the algorithm and also is the responsible of representing the results in an understanding way for the user.

Given this, this chapter explains the different software tools that are needed to develop and implement the global Radio-planning Optimization platform. Consequently, it is explained how the optimization software is structured and implemented.

3.1 Required software tools

This section depicts the set of programs that have been required to develop and implement the optimization tool. They all integrate the development framework that has been used along this project.

3.1.1 Sirenet

Sirenet is a radio spectrum management tool set aside for radio networks planning and the electromagnetic compatibility analysis. The tool is based on the simulation of real environments relying on an advanced geographical information system (GIS), on the exact reproduction of the behaviour of the radio electric equipments and on the most advanced and current algorithms for the prediction of the radio propagation on different environments. The tool presents a friendly interface on a Windows platform. The managing is simple and intuitive and its functionality adapts to the needs of different user's profiles.

The choice of this tool and not other is justified by its proven capabilities in the analysis and synthesis of networks following the DVB-T standard. For this project it is used a digital elevation model (DEM) referenced by Universal Transverse Mercator (UMT) coordinates with a resolution of 20 m 20 m.

3.1.2 Microsoft Visual Studio 2008

This tool is an Integrated Development Environment (IDE) from Microsoft. It can be used to develop console and graphical user interface applications. In particular, Visual

Studio supports different programming languages such as C/C++, VB.NET and C#.

In this project both, C# and Visual Basic, have been used and combined taking the best of them. The reasons are indicated subsequently:

Page 38: MASTER THES IS

26 Planning optimization software tool for DVB-T and DVB-T2

1. The C# language was created to be a simple, modern, general-purpose, object-oriented programming language. It provides support for software engineering principles and offers software robustness, durability, and programmer productivity.

2. Visual Basic is a programming language that allows creating Graphical User Interface (GUI) applications in a simple way. The use of both allows the programmers to create an application with very complex code but very simple GUI.

3.1.3 MATLAB

Matlab is a numerical computing environment that allows matrix manipulations, plotting of functions and data, implementation of algorithms and interfacing with programs written in other languages.

In this case this tool is only used for testing. In the first phases of the development, Matlab was used to picture and analyse the scenario created by the optimization tool. The drawback of this kind of representation is its simplistic view. Besides, creating transparencies over the DEM is not straight forward. For those reasons and in order to improve the quality of the outputs, Google Earth was used instead in the final version of the platform.

3.1.4 Google Earth

Google Earth (GE) is a virtual globe, map and geographic information program; it was created by Keyhole, Inc, a company acquired by Google in 2004. It maps the Earth by

the superimposition of images obtained from satellite imagery, and aerial photography.

This project uses the GE library, which allows to embed a GE application in a Visual Basic one, to show the final results obtained in a real digital map, clearly outperforming the initial results obtained with Matlab.

In order to show images in GE, it is necessary to create a Keyhole Mark-up Language (KML) file, which is a format used to display geographic data in an “earth browser” such as GE, Google Maps or Google Maps for mobile. KML uses a tag-based structure with nested elements and attributes and it is based on the Extensible Markup Language (XML) standard.

In the Table 3.1 it is shown an example of KML file, is possible to appreciate that the text file is written using tags, marked with ‘< >’, and values inside the tags. Fig. 3.1 shows the corresponding result of the previous file once the GE has read it and has processed the information.

Once the simulation tool was developed, the only program required to run it is GE that must be installed in the computer previously.

Page 39: MASTER THES IS

CHAPTER 3. SIMULATION PLATFORM DEVELOPMENT 27

3.2 Simulator structure

In order to understand the Planning optimization software tool it is necessary a brief description of the programmed code. For this purpose, the class diagram is provided, showing the interconnection among all the elements (Fig.3.2).

Fig. 3.2 Software tool class diagram

<?xml version="1.0" encoding="UTF-8"?> <kml xmlns="http://www.opengis.net/kml/2.2"> <Document> <GroundOverlay> <name>CoberturaInicialCOLLSEROLA_BARCELONA</name> <color>80ffffff</color> <drawOrder>15</drawOrder> <Icon> <href>CoberturaInicialCOLLSEROLA_BARCELONA.jpg </href></Icon> <LatLonBox>

<north>41.9560278931201</north> <south>41.2461504003643</south> <east>2.87671247699269</east> <west>1.4274046397569</west> </LatLonBox>

</GroundOverlay> <Placemark>

<name>COLLSEROLA_BARCELONA</name> <styleUrl>#ImagenBTS</styleUrl> <description> Name: COLLSEROLA_BARCELONA Delay 5,30499565289588E-05 s </description> <Point> <extrude>1</extrude> <coordinates>2.11533107324137,41.4191951922794,0</coordinates> </Point>

</Placemark> </Document> </kml>

Table 3.1 Example of KML file

Fig. 3.1 Visualization of KML file

Page 40: MASTER THES IS

28 Planning optimization software tool for DVB-T and DVB-T2

3.2.1 Main program

This part of the code is the core of the program; its main tasks are summarized as follows:

Creation of the scenario Responsible for calling the optimization algorithm and processing its results Is in charge of reading the input files and acquiring the required data It also implements and interfaces to talk with visual application Finally, it is responsible for the connection of all the elements and brings the

information from one part to other.

3.2.2 Scenario

This class contains all the necessary elements to create a virtual scenario based on the data loaded from the input files. This data is mainly of three types:

Target area to analyse: DEM, population density per pixel. Transmitter’s data: coordinates, name, power, individual coverage obtained with

Sirenet. Receiver’s data: basically the type of hardware implementation, which affects

the treatment of the OFDM signal. Further details are given in the results chapters.

Then it will be created a virtual pixel matrix, where each pixel represents an area of 1 km2 over the area to be analysed. The class Pixel contains all the necessary information of this reduced area as described in Table 3.2.

Note that information in bold is read from input files organized as three information layers, an altimetry layer, a population layer and a type of receiver layer. These represent the height above sea level, the number of inhabitants in the pixel and the kind of the receiver that the pixel has, respectively.

Table 3.2 Pixel information

Pixel Class Properties

Coordinates (x, y , height)

Population

Type of receiver

Real distance to each transmitter

Fictitious distance to each transmitter (after considering the device internal delay)Received power from each transmitter

Interference power level

Useful signal power level

Page 41: MASTER THES IS

CHAPTER 3. SIMULATION PLATFORM DEVELOPMENT 29

There is no need to mention that all this data must be coherent in order to obtain valid results. This was verified with the help of Matlab and following all the steps that a user must perform to generate a solution:

1. The first thing to do is select the coverage area to be analysed. 2. Then transmitters are placed and the coverage of each one is computed.

These steps are done using Sirenet. Subsequently, the next steps are done using the optimization tool.

3. The coverage data is exported into files with a format that will be understandable by the optimization tool in order to create the virtual scenario successfully.

4. The coverage information is imported and then the starting point of the scenario is calculated, such as the initial levels of CIR and the distances from each pixel to all the transmitters.

5. Once the algorithm calculates de CIR levels in the region selected, results obtained from the program are processed with Matlab where then are compared with those from Sirenet. Fig. 3.3 shows the correspondence of the initial coverage area computed by Sirenet (right window in the picture) with the initial scenario created by the optimization tool (left window). It can be seen that both match perfectly.

Of course, the verification step was only required during the development of the platform. In a normal use of the final version of the tool, this is not required at any point.

Fig. 3.3 Initial correspondence

Page 42: MASTER THES IS

30 Planning optimization software tool for DVB-T and DVB-T2

3.2.3 Algorithm

The algorithm implemented to optimize the network is an adaptation of SA to this particular problem, as it has been explained in Chapter 2. This piece of code runs the optimization. To be able to do it, SA uses the data and parameters created by the Scenario class and saves results in different variables and files that are further used in the application part.

3.2.4 Graphical User Interface

In order to visualise the results in a more friendly way a graphical user interface (GUI) is developed. As explained before, this application makes use of Google Earth to show the results obtained from the algorithm painted over the maps.

This part of the code is the responsible not only of representing the results but also of processing the output data of the algorithm, in order to create the KML and text files that allow recording the results obtained before. As it is plotted in Fig. 3.4 the interface is divided in two parts, the first one is where the GE application is placed and the second one contains the controls to access the different results.

The most important information that comes out of the program, in this case to the operator, is the optimal delay that has been calculated for each transmitter, as is the information required to adjust the time instant of emitting signals. Given this, the first idea was to introduce this data into Sirenet and observe the optimization in terms of coverage in their maps, but after the initial trials it was observed that this task was too tedious and discouraged making multiple assessments, due to the fact that the values of delays must be introduced manually transmitter by transmitter.

Fig. 3.4 GUI interface

Page 43: MASTER THES IS

CHAPTER 3. SIMULATION PLATFORM DEVELOPMENT 31

For this reason it was finally decided to implement an interface with GE to represent the results obtained when the optimal delays are applied to each transmitter. There are three kinds of results that the tool is programmed to show, however, more results are generated to perform statistics.

3.2.4.1 Initial and Final CIR

This map shows the coverage area, pixels are coloured in blue or red according to the value of CIR. The legend of the colours is:

Red: If the CIR value is lower than 18 dB. Blue: CIR value is higher than 18 dB. Transparent: When the total received power (interference plus constructive

signals) is lower than a certain threshold (-80 dBm, obtained from link budget calculus, as explained in Chapter 1), then it is considered that the pixel cannot improve its coverage, not at least with this type of optimization. Therefore, the pixel is not evaluated by SA and it is not painted.

In Fig.3.5 it is pictured how the application shows these results. In this map is possible to observe, apart from the levels of CIR and the pixels not evaluated, specific data corresponding to each transmitter as it is the name and delay applied, this information appears by clicking over the transmitter icon.

Fig. 3.5 Example of CIR results

Page 44: MASTER THES IS

32 Planning optimization software tool for DVB-T and DVB-T2

3.2.4.2 Population Density

The population density option in the list represents the population per km2 distributed in the target area to be analysed, taking into account that each pixel has an area of 1 km2. It is assumed that the population density corresponds to the total number of inhabitants living under the area of a pixel.

The colour will be different depending on the quantity, the possibilities are detailed in Table 3.3, starting upon the yellow pixels, representing zero population density, up to cyan that represents population densities higher than five hundred inhabitants. Fig. 3.6 represents an example of how the application pictures the population density distribution in the target area. More details on how this layer was created are given in Section 4.3.1.

Table 3.3 Legend of population density distribution

Inhabitants / km2

0 x<50 50<x<200 200<x<350 350<x<500 x>500

Fig. 3.6 Example of population results

Page 45: MASTER THES IS

CHAPTER 3. SIMULATION PLATFORM DEVELOPMENT 33

3.2.4.3 Initial and Final Coverage of each transmitter

For every transmitter two maps of coverage can be shown, one corresponds to the initial coverage, and another represents the same information after the optimization (Fig. 3.7). Each map plots in blue all pixels to which the transmitter sends a signal that contributes constructively in the receiver at that pixel.

3.2.4.4 Initial and Final CIR by population

This result is a combination of the population density map mixed with the results of the values of initial and final CIR. In this case the map paints the pixels in which the CIR is higher than 18 dB, but the colour is the one corresponding to the population density following the previously defined legend in Table 3.3. This kind of result allows quantifying the population affected by the optimization of coverage as it is appreciated in Fig. 3.8.

Fig. 3.7 Example of transmitter coverage results

Fig. 3.8 Example of CIR by population results

Page 46: MASTER THES IS

34 Planning optimization software tool for DVB-T and DVB-T2

3.3 Code optimization

It is required an optimized code in which the simulation time is as low as possible. By the way, there is no need to mention that SA parameters must be properly adjusted so that the simulations are not unnecessarily long (see Section 2.5). Usually, the program execution spends a lot of time in a small part of the code; this is the so called rule of 90-10, where 90% of the execution time is spent in the 10% of the code that usually contains loops.

Given this, doing some changes in the code, it is possible to reduce the execution time dramatically, like simplifying algebraic instructions, using threads which parallelize the execution or doing loop jamming (put together two or more loops). In this case, the options that have been applied are the use of threads and loop jamming, also called loop fusion, is a kind of optimization that replaces multiples loops with a single one. For example Table. 3.4 represents a code in which are needed two loops to assign values to variables, but applying loop jamming the same code turns into the one depicted on Table 3.5, where the same assignation of values is done but in this case with only one loop.

Also, it is taken into account that the computer in which the program runs is an Intel Xeon CPU X3320 @ 2.5GHz with 4 GB of RAM memory. For example, in optimization involving 25 transmitters in a scenario of 9600 km2 the simulation finishes in 19 hours 40 minutes, taking into account that mainly all the pixels are being analysed. In any case a pixel does not fulfil the requirements of minimum power is then deleted to speed up the optimization.

Table 3.4 Example of code Table 3.5 Example of loop jamming

int i, a[100], b[100]; for (i = 0; i < 100; i++) { a[i] = 1; b[i] = 2; }

int i, a[100], b[100]; for (i = 0; i < 100; i++) a[i] = 1; for (i = 0; i < 100; i++) b[i] = 2;

Page 47: MASTER THES IS

CHAPTER 4. RESULTS: OPTIMIZATION OF REALISTICS SCENARIOS 35

CHAPTER 4. RESULTS: OPTIMIZATION OF REALISTICS SCENARIOS

During the previous chapters the problem and the method to solve it were presented, as well as the software tool developed to calculate and show results. Due to the high number of transmitters and pixels the area has, it is not possible to run a simulation taking into account the whole Catalan territory. In this sense, three different, independent scenarios have been defined. This chapter explains the definition of these pieces of territory, the initial snap-shot of interferences (CIR levels) and results from both approaches to compute the cost function mentioned previously (Section 2.4.4).

4.1 Definition of the scenarios

The scenarios have been defined considering several geographic features of Catalonia. As the whole area is very varied, demographically and geographically, it is interesting to choose three very well differentiated territories.

Catalonia presents a very well defined geographic diversity, in a relatively reduced area, about 32.000 km2 with a seaboard of almost 580 km. Nowadays, there are in Catalonia 946 municipalities, from which 28 do not exceed the number of 100 of inhabitants and 21 have more than 50.000 inhabitants. Nevertheless, almost 70% of the population live on the 45 most populated areas (those which are over 20.000 inhabitants).

Along this territory different kinds of relief can be found, the big ones are the Pirinees and the Pre-pirinees; limiting in the north with the Pre-pirinees there is the Central Depression, which is the Catalan sector referring to the Ebro’s depression. Finally, there are the littoral mountain ranges and the Transversal ones.

4.1.1 Tarragona scenario

The first test area defined belongs to the Pre-littoral and littoral mountain ranges situated in the south part of Catalonia. In this part of the territory is where Tarragona is located. This area is quite high populated in a heterogeneous distribution, being mostly on the seaboard part.

On the Tarragona region, a total of 14 transmitters were placed and the desired test region covers 4050 km2. The coordinates and the matrix size are:

N=4596010 W=333350 Matrix size: 50 x 81 pixels

The Table 4.1 lists the analysed transmitters and Fig.4.1 represents in the map the coverage area for this region.

Page 48: MASTER THES IS

36 Planning optimization software tool for DVB-T and DVB-T2

Fig. 4.1 Coverage area in Tarragona

4.1.2 Lleida scenario

The following scenario chosen to simulate belongs to the Central Depression area, and where the province of Lleida is located. This fraction of territory is the less populated and with the less population density of Catalonia, the unique municipality that exceeds the 20.000 inhabitants is the capital Lleida, and concentrates over the 30% of the total population. The piece of Lleida chosen for the simulations is quite plain and covers 6497 km2.

The simulation proposed is with 13 transmitters listed in Table 4.2. Note that these are not all the transmitters placed on the zone, just a part were selected to run their optimization. The upper left corner in UTM coordinates is:

N=4637770 W=265030 Matrix sixe: 73 x 89 pixels

Note that the pixel size remains the same as in the previous analysis, 1 km2. Fig. 4.2 represents the coverage area to analyse in this region.

Table 4.1 Analysed transmitters in Tarragona

Name  Coord_x  Coord_y  H 

MARMELLAR  377845  4578365  17 

MONTAGUT_QUEROL  368189  4585311  15 

MONTBLANC  351565  4579235  24 

REUS  341460  4557949  10 

SALOU  343246  4549611  24 

SANT_PERE_MÀRTIR  424677  4583037  40 

SANT_SADURNÍ_D'ANOIA  400413  4584890  16 

SITGES  403808  4566217  20 

TARRAGONA_LLORITO  355223  4555667  20 

TORREDEMBARRA  365496  4557812  28 

VENDRELL  375288  4561866  26 

VESPELLA_GAIÀ  362545  4563208  18 

VILAFRANCA  389289  4579400  17 

Vilanova_i_la_Geltru  392924  4564199  35 

Page 49: MASTER THES IS

CHAPTER 4. RESULTS: OPTIMIZATION OF REALISTICS SCENARIOS 37

4.1.3 Barcelona scenario

The last area chosen to be analysed belongs also to the Pre-littoral and littoral mountain ranges, but in this case situated on the central part of the Catalan seaboard. Barcelona, the capital province of Catalonia is located in this area. Therefore, Barcelona province is much more populated than any of the others analysed. The population density rises up to 700,43 inhabitants/km2.

It has a higher number of transmitters, but again, only some of them are optimized. The total analysed area is of 9600 km2. The upper left coordinates of this area are:

N=4646090 W=369670 Matrix size: 80 x 120 pixels.

Table 4.3 lists the transmitters placed on this territory and Fig. 4.3 represents, as in the previous cases, the coverage area of Barcelona.

Table 4.2 Analysed transmitters in Lleida

Name  Coord x  Coord y  h 

AGRAMUNT  340934  4624475  27 

ALMACELLES  287972  4623637  26 

ALMATRET  285319  4575154  12 

ALMENAR  298255  4629035  21 

ALPICAT  294323  4615529  59 

BALAGUER  318327  4629074  18 

BALTASSANA  333115  4577075  7 

LES BORGES BLANQUES  322964  4598010  13 

MEQUINENÇA  273983  4586092  22 

MOLLERUSSA  324772  4610892  11 

PUIG_DE_VALL  304465  4607765  22 

PUNTA_CURULL  329035  4580105  19 

ULLDEMOLINS  320395  4577825  14 

Fig. 4.2 Coverage area in Lleida

Page 50: MASTER THES IS

38 Planning optimization software tool for DVB-T and DVB-T2

Table 4.3 Analysed transmitters in Barcelona

4.2 Results for geographical optimization

Once chosen all the transmitters and the area to be analysed, it is obtained the map of the CIR of the territory taking into account that all the transmitters’ delays are set to zero. This is the starting point for the simulator as it has already calculated how much pixels perceive a value higher than the minimum required CIR, and therefore the number of pixels that must be improved by SA. In this case the cost function is computed as the number of pixels KO in a given territory.

The simulations executed in the previous scenarios follow the same radio frequency characteristics, in terms of transmitter and receiver adjustments. This includes the type of emitting and receiving antennas, the height of each, the propagation model and the thresholds established, these last are based on the link budget explained on Chapter 1. The following Table 4.4 summarizes the principal radio characteristics.

Name  Coord x  Coord y  h 

AIGUAFREDA  436707  4624181  5 

BAIX_LLOBREGAT  415075  4577735  22 

BELLATERRA_II  424195  4595945  29 

BOIXADORS  387745  4622915  26 

CASTELLDEFELS  414178  4570272  25 

SANT_CELONI  455725  4622945  22 

COLLSEROLA_BARCELONA  426071  4585671  100 

SANTA_COLOMA_GRAMANET  434670  4590033  20 

COLLSUSPINA  433522  4630263  46 

FARELL  427608  4612332  3 

GRANOLLERS  441467  4606786  15 

IGUALADA  381505  4601435  35 

SANT_ANDREU_LLAVANERES  457367  4602795  25 

MANRESA  402697  4620680  14 

CABRILS‐MATARO  448705  4597505  8 

MOLINS_DE_REI  415405  4585955  22 

MONTCADA  433655  4593486  28 

MONTSERRAT  401425  4606805  21 

SABADELL  424750  4601631  20 

SANT_SADURNI_D'ANOIA  400413  4584890  16 

SALLENT  408835  4630745  20 

SANTA_MARIA_D'OLO  420310  4637405  25 

TERRASSA  418145  4602058  20 

VALLBONA_D'ANOIA  391817  4599345  9 

VIC  438475  4642565  25 

Fig. 4.3 Coverage area in Barcelona

Page 51: MASTER THES IS

CHAP

Table

The and are dto thspecstandbetwthis c

The typesreceiit’s einten

The Partiare tinterf

Fig. 4

TER 4. RESUL

e 4.4 Radio p

Receiv

Transmi

ERP (effectits gain reladone with oe case of m

cifications budard. Besid

ween the stacan be done

type of recs of receivivers are co

echo arrivesnded to expl

first echo tng from thithen positivference.

4.4 Type one

0

Power (dBm)

TS: OPTIMIZAT

parameters

ver

itter

tive radiateative to a h

omnidirectiomobile anteut that is exdes, the fiarting point e much mor

ceiver definvers can beonfigured as the first. Tlain.

that arrivesis instant thve contribu

e receiver sc

10

Guard in

TION OF REAL

Type

Antenna

H

Prmin

CIRmin

Pixel res

ERP

Antenna

Propagat

d power) ishalf-wave donal antennaennas whichxpected to grst simulatof the simure easily wit

ned on the e contemps type one,The figure

s to the reche GI will etions of po

chema

20 30

nterval

LISTICS SCENA

olution

tion model

the producipole in a gas on the rh is a scengain much mions also sulator and Sth omnidire

first row inlated. For , which mea(Fig. 4.4) s

ceiver will cnd 56 μs la

ower, and t

40

Time (µs)

ARIOS

1:

O

10

-1

18

1

11

O

R

ct of the powgiven directreceiving ponario alreadmore momeserved to

Sirenet (seectional rece

n Table 4.4instance inans that cashows a gra

correspond ater. All thethe ones th

50 60

: catches th

Omni directio

0 m

115 dBW

8 dB

km2

1.25 dBW

Omni directio

REC 1546 IT

wer supplietion. These oint. This wy considere

entum with tassure the

e Chapter 3eivers.

4, is specifien this first

atches the taphical exa

to the sere echoes thhat remain

70 8

he first ech

onal

onal

TU-R

d to the antfirst simula

would corresed in the Dthe new DVe correct m3), and of co

ed becausesimulations

ransmitter wample of wh

rving transmat remain ioutside ar

80

39

ho

tenna ations spond DVB-T VB-T2 match ourse

e two s the which hat is

mitter. nside e the

Page 52: MASTER THES IS

40

4.2.

First mapsobtaipowehandthe leThusonce

Fig. 4

Fig. 4

1 Tarrag

of all, the os shown in ined on eacer level is nd, the red oevel of CIRs, Fig. 4.5 se the simula

4.5 Initial CIR

4.6 Final CIR

ona

optimizationFigures 4.5

ch pixel. It inot enoughones corres

R is under 18hows first t

ator run SA.

R for Tarrago

R for Tarrago

n results ob5 and 4.6 cs recalled t

h and so it spond to tho8 dB, beinghe initial CI

ona region

ona region

Plann

tained in thcorrespond that a non-cis not cons

ose in whicg impossibleR followed

ning optimization

he Tarragonto the test

coloured pixsidered for ch the interfe the correcby the Fig.

n software tool f

na region ararea and t

xel means toptimizatio

ference is hct visualizat

4.6, that pi

for DVB-T and D

re analysedhe levels othat the recon. On the higher and tion of televictures the

DVB-T2

d. The of CIR ceived

other thus,

vision. result

Page 53: MASTER THES IS

CHAPTER 4. RESULTS: OPTIMIZATION OF REALISTICS SCENARIOS 41

Comparing both snap-shots it is verified that the fact of modifying the delays of the transmitters can lead into an important change on coverage. Initially, most of the littoral mountain region was partly uncovered having several points of low coverage. SA, by adjusting the time instant in which the transmitters are supposed to send the signals, can improve highly the level of self interferences. In order to have an idea of the amount of pixels improved, without any delay adjustment the number of pixels considered OK were 1658 over a total of 4050, this is almost a 40% of coverage on the region, once the results are obtained the number of pixels considered OK rises to 2466 which means a 60% of coverage region, a 20% of improvement on this scenario.

4.2.2 Lleida

The same as in the previous case is done in the region of Lleida, were almost the same number of transmitters is placed but the area is larger. For this reason, it may happen that many points do not receive enough power to exceed the minimum required (remember that this number is computed as the total contribution of power, the serving base stations but also the interfering ones), and these points of the map cannot be improved by changing the transmitter’s delay.

The next figure extracted from the simulator, represents the map with the initial CIR levels (Fig. 4.7) and the following represents the final ones (Fig. 4.8).

Once more, the coverage of the region is improved once SA applied the changes on the delays. The total number of pixels that receive power levels higher than the minimum required one are 2873, which means over a 45% of the total area. Initially, this area is covered on a 22%.

Fig. 4.7 Initial CIR for Lleida region

Page 54: MASTER THES IS

42 Planning optimization software tool for DVB-T and DVB-T2

Fig. 4.8 Final CIR for Lleida region

The important problem found in this area is that the most important city (Lleida) is almost entirely uncovered due to the strong self interference that suffers. This means that over 30% of the population remains uncovered despite the changes done. This last idea is one of the clue points on the discussion of the cost function calculation approach, explained in this chapter. It is a matter of fact that by introducing a new transmitter with a high level of transmitted power this problem could be initially solved, but in contrast it would generate more interference in other areas, and one of the objectives is to optimize the use of the existing infrastructure.

4.2.3 Barcelona

The last area to be analysed is Barcelona. As it was highlighted on the previous section, this area owns much more transmitters than the other two; the test area, however is larger as well. The fact of placing more transmitters can lead to more interferences, and here, the lack of coverage can be an important problem as in the whole province live over 74% of the total Catalan population.

After observing the results (Fig 4.9 and 4.10), the fact of placing so much transmitters leads to strong interferences and thus, a lack of coverage on areas which initially should be covered. For example, what happens in the region of Granollers, as it can be appreciated on the first map. In this case SA enhances most of the pixels belonging to the sea, which is not profitable at all. However, the improvement in number of pixels is significant; at the initial study only a 20% of the total pixels were considered to have a good signal quality, and once SA modifies the delays this percentage rises up to 37%. Once more, as on the previous case, it is necessary to add a variable to be able to distinguish the nature of the pixel or rather, its population density.

Page 55: MASTER THES IS

CHAPTER 4. RESULTS: OPTIMIZATION OF REALISTICS SCENARIOS 43

Fig. 4.9 Initial CIR for Barcelona region

Fig. 4.10 Final CIR for Barcelona region

4.3 Optimizing population density

The optimization procedure initially proposed for the algorithm shows a good performance and works properly in the sense of improving as much pixels as possible under a given area. However, at this point the program is not provided of intelligence to guess which points of the map are more problematic in the sense that are more overpopulated. The results already shown are positive, but when considering the total amount of population uncovered the three areas must be improved even more.

For this reason, it is proposed a modification in the algorithm. Now the cost function defined in Chapter 2 is used. Hence, once a pixel is considered not to be covered, instead of taking into account just the pixel itself on the cost function, it will be considered the amount of population that collects. By adjusting the cost function adding

Page 56: MASTER THES IS

44 Planning optimization software tool for DVB-T and DVB-T2

a different weight on each pixel, the optimization focuses on those areas in which more users have coverage problems.

This section is focused on the comparison of both approaches, the geographical based optimization and the population based one. For this purpose, two simulations are done in each region, and results are shown in terms of population density.

4.3.1 Population distribution

As the population distribution layer was not available during the realization of the project, it was required to generate it manually from the data extracted in [15]. The procedure to introduce this data into the program is:

1. First knowing the central coordinates of the town and the area, guess how many pixels are occupied by this town.

2. On each pixel that belongs to this town, it is introduced the population density (inhabitants/km2). This is done straightforward because one pixel has a size of 1 km x 1 km size.

3. The document with the exact data can be found in Appendix B.

The following figures show the final population distribution on the three scenarios (See Fig. 4.11, 4.12 and 4.13). The correspondence of each colour was already detailed in Table 3.3. As it can be appreciated on the images extracted from the simulator, the population distribution is only an approximation of the real one. Nevertheless this is accurate enough for the purposes of this project, and of course it is much better than a null consideration of this data.

Fig. 4.11 Population density for Tarragona

Page 57: MASTER THES IS

CHAPTER 4. RESULTS: OPTIMIZATION OF REALISTICS SCENARIOS 45

Fig. 4.12 Population density for Lleida

Fig. 4.13 Population density for Barcelona

4.3.2 Discussion over Tarragona

This first area is quite populated mostly on the seaboard; however, when the transmitters are not adjusted the areas provided with more inhabitants suffer from strong interferences, having as a result poor signal quality on the most important cities such as Tarragona and Reus (Fig. 4.14).

Page 58: MASTER THES IS

46 Planning optimization software tool for DVB-T and DVB-T2

Fig. 4.14 Initial population covered in Tarragona

The optimization applied with both approaches is shown in Fig. 4.15 and 4.16. When SA searches for a solution minimizing the total population uncovered, the program enhances the result and adjusts the delays of the transmitters so that areas with more inhabitants are covered. It is noticeable how if population data is taken into account, then the sea is left out of the optimization objectives.

Comparing the results, it can be observed that when just the geographical area is optimized, then the final number of covered pixels is higher. Nevertheless, the important difference appears when analysing the total served people, when SA seeks the minimum number of pixels, the population covered is 569564 inhabitants, but if population is actively considered in the optimization then the algorithm reaches a total of 638065 inhabitants. This means that indeed, it is not so important to have as much pixels as possible, but those that are selected are the most problematic ones, in the sense that many people live in there.

Fig. 4.15 Geographical based optimization in Tarragona

Page 59: MASTER THES IS

CHAPTER 4. RESULTS: OPTIMIZATION OF REALISTICS SCENARIOS 47

Fig. 4.16 Population based optimization in Tarragona

4.3.3 Discussion over Lleida

In this region there are not many high populated centers, so the improvement should be focused on the largest city, Lleida. With the initial configuration of the transmitters (no delay) the most important city suffers from strong interferences and the quality of the received signal is not high enough, as it is shown in Fig 4.17. Fig. 4.18 and 4.19 correspond to the results considering both approaches, being the first geographical based optimization and the second population based optimization.

When applying SA with the population based optimization on this scenario, the final result is that the transmitters’ delays are modified in order to improve the more populated area (Lleida) rather than those which are not so problematic.

Fig. 4.17 Initial population covered in Lleida

Page 60: MASTER THES IS

48 Planning optimization software tool for DVB-T and DVB-T2

Fig. 4.18 Geographic based optimization in Lleida

Fig. 4.19 Population based optimization in Lleida

The fact of considering the number of inhabitants when analysing the terrain means that one solution that benefits the most populated areas can be detrimental to other areas not so highly populated. When changing the delays, a given small village initially covered can then be worsened. On the geographical based optimization, this does not happen as every pixel is considered equally. So, for instance, the first approach proposes a solution that increases the coverage on the area between Balaguer and Mollerussa. On the contrary, with the second approach, the most enhanced area is Lleida, and the region between Mollerusa and Balaguer remains out of coverage, just as it was before any type of optimization.

Page 61: MASTER THES IS

CHAPTER 4. RESULTS: OPTIMIZATION OF REALISTICS SCENARIOS 49

4.3.4 Discussion over Barcelona

The last scenario to be analysed in this discussion is the most problematic one in terms of population density. As it was shown in the population distribution map, the Barcelona province owns very large municipalities all of them highly populated. Again, the most crowded zones are located near the seaboard, and as it happened in the Tarragona scenario, when SA applies the optimization it may happen that most of the pixels improved are indeed part of the sea.

Given the previous paragraph, it is important to notice if the second approach manages to improve the most populated areas. Fig. 4.20 shows the population distribution layer of the map, corresponding to the areas in which the CIR is equal or higher than the desired one before any type of optimization is performed. Next, Fig. 4.21 and 4.22 show the results taking into account both optimization approaches, the territory-centric and the population-centric one respectively.

Running SA the coverage obviously increases, however it can be observed that both solutions are totally opposite. The first one leaves the city of Barcelona with several points out of coverage, and this is because of the amount of transmitters that are placed nearby generating strong interference. The second solution, effectively improves the coverage of the metropolitan area, as it is the one more populated, but the interior part remains with strong interference problems. On these cases, the problem may be solved by placing some repeaters on the area with less transmitted power, reducing interferences caused in other zones.

Fig. 4.20 Initial population covered in Barcelona

Page 62: MASTER THES IS

50 Planning optimization software tool for DVB-T and DVB-T2

Fig. 4.21 Geographic based optimization in Barcelona

Fig. 4.22 Population based optimization in Barcelona

4.3.5 Conclusions for the cost function approach

Based on the results extracted from the three different simulations, SA is more selective on the optimization when the procedure considers population data. On the other hand, when the program just analyses the number of pixels, it has no intelligence to know if one pixel is important enough or not, so what happens is that a lot of pixels belonging to the sea, or mountains where no people live improve their connectivity, while other important pixels remain uncovered. By changing the way of calculating the cost function, it may happen that finally a smaller geographical area is improved, but with a higher number of served inhabitants.

Finally, it is important to mention that many pixels on the area cannot be initially improved because the received power is not enough from the beginning, and as it has been already explained this is not a delay adjustment issue, it may be solved by increasing the emitted power or by the installation of new transmitters or gap-fillers (repeaters).

Page 63: MASTER THES IS

CHAPTER 5. RESULTS: IMPACT OF OTHER VARIABLES OVER THE OPTIMIZATION PROCESS 51

CHAPTER 5. RESULTS: IMPACT OF OTHER VARIABLES OVER THE OPTIMIZATION PROCESS

This chapter aims to study the impact that certain collateral parameters have on the optimization result. In particular, it has been taken into account the variety of types of receivers that can exist in real networks. This has been done by adapting the receivers to the type of service being used and thus considering different types of receivers.

5.1 Receiving antennas

Normally, depending on the type of environment receiving antennas are different because it is intended to choose the radiation pattern that gives better performance to the system. In general, most coverage studies concerning digital terrestrial TV have been aimed towards fixed reception using roof-level directional receiving antennas. However the possibility of outdoor or indoor reception on a portable receiver with an in-built or set-top receiving antenna might offer substantial additional user benefits. This situation would not be represented by the general case with directive antennas, since portable equipment usually receive ominidirectionally. In this project up to the moment, all the simulations were done with omnidirectional antennas, which could be a good choice if it is always considered the worst case scenario.

Portable reception will take place under a great variety of conditions e.g. outdoor, indoor, ground-floor or higher-floors and with simple antennas. The conditions for portable reception differ from fixed reception in the:

• absence of receiving antenna gain and directivity;

• reduced feeder loss;

• generally lower reception height;

• building penetration loss in the case of indoor reception.

The main objective of this section is to compare and discuss the different ways in which the receiver point can be set.

5.1.1 Definition of the scenarios

The scenarios that have been simulated are very similar to the ones presented in the previous chapter with some changes in the receiver point, but the geographical situation and the population remain equal.

In this case two different receiver points are defined, both of them adapted to the service that it is going to be received. For instance, when simulating a portable scenario the principal radio characteristics are the ones listed in Table 5.1.

Page 64: MASTER THES IS

52 Planning optimization software tool for DVB-T and DVB-T2

Table 5.1 Principal radio characteristics of portable scenario

Receiver

Type 1: catches the first echo

Antenna Omnidirectional

Height 1.5 m

Prmin -115 dBW

CIRmin 18 dB

Pixel resolution 1 km2

Transmitter ERP 11.25 dBW

Antenna Omnidirectional

Propagation model REC 1546 ITU-R

Note that in this case the height of the receiver antenna is set to 1.5 m as it is recommended on the implementation guidelines given by the European Broadcasting Union in [4]. In this same document it is also mentioned that while the propagation model is correct enough to apply in a portable scenario, some extra losses should be added due to the indoor penetration of the signals, which is not considered in the REC 1546 ITU-R. Moreover, when considering a fixed scenario, radio characteristics are the ones shown in Table 5.2.

The sensitivity set for both receivers is the same, but for sure that this could change depending on the device.

Table 5.2 Principal radio characteristics of fixed scenario

Receiver

Type 1: catches the first echo

Antenna Directional (Yagi)

Gain 14 dB

Height 10 m

Prmin -115 dBW

CIRmin 18 dB

Pixel resolution 1 km2

Transmitter ERP 11.25 dBW

Antenna Omni directional

Propagation model REC 1546 ITU-R

Page 65: MASTER THES IS

CHAPTER 5. RESULTS: IMPACT OF OTHER VARIABLES OVER THE OPTIMIZATION PROCESS 53

5.1.2 Yagi antennas: Fixed environment

As it is previously mentioned, when considering a fixed environment the most common situation is to place directive antennas in the roof in order to gain altitude aiming at having line of sight with the TX. The most common antenna used in this case is the Yagi-Uda, commonly known as Yagi. This is a directive antenna which means that has maximum gain in one direction and atenuates the transmitted/received signal in other angles, this is profitable to attenuate interfering signals coming from other transmitters, as it can be appreciated in Fig. 5.1, which shows a conventional horizontal radiation pattern of a Yagi antenna.

In this project the radiation pattern of the antenna was not introduced manually in the simulator. Instead, using the software tool Sirenet, the coverage of each transmitter was computed considering a Yagi of 14 dB of gain, meaning that the data extracted from Sirenet (the received power in each point of the map) considers this information within the received power.

Fig. 5.1 Example of a conventional Yagi horizontal radiation pattern

Page 66: MASTER THES IS

54 Planning optimization software tool for DVB-T and DVB-T2

The initial coverage taking into account this fixed environment is shown in the next collection of figures. (See Fig. 5.2, 5.3 and 5.4)

Fig. 5.2 Initial coverage in Tarragona in fixed scenario with receiver type one

Fig. 5.3 Initial coverage in Lleida in fixed scenario with receiver type one

Page 67: MASTER THES IS

CHAPTER 5. RESULTS: IMPACT OF OTHER VARIABLES OVER THE OPTIMIZATION PROCESS 55

Fig. 5.4 Initial coverage in Barcelona in fixed scenario with receiver type one

The received power enhances in the entire area, and for this reason the initial level of signal is better having Yagi antennas in the roof than omnidirectional, based on the results shown in Chapter 4, Fig. 4.16, 4.19 and 4.22. The reason of this difference on the initial snap-shot is that being directive, all the interfering echoes does not have much contribution. By the way, the number of pixels that exceed the minimum level of received power increases, which means that initially there are more pixels capable of being improved, the region in which this is most noticeable is in Lleida.

The optimization done in this three scenarios follow the same characteristics than the ones in the previous chapters, being the cost function computed as a sum of the population uncovered. Results are shown in Fig. 5.5, 5.6 and 5.7.

Fig. 5.5 Final CIR in Tarragona in fixed scenario with receiver type one

Page 68: MASTER THES IS

56 Planning optimization software tool for DVB-T and DVB-T2

Fig. 5.6 Final CIR in Lleida in fixed scenario with receiver type one

Fig. 5.7 Final CIR in Barcelona in fixed scenario with receiver type one

Once the optimization is done in all the scenarios defined, the coverage increases in all cases, as it was already predictable. For instance, the area defined in Tarragona is the one that improves the most as the final coverage raises a 18% from the initial one, while Barcelona improves an 8,3% and Lleida is the last one with only a few tenths over 2%, which is not very different from the results obtained with the omnidirectional antennas on Chapter 4.

The following graphs (Fig. 5.8 and 5.9) show the comparison between both cases, the one receiving with omnidirectional antennas in the roof (results in Chapter 4) and the last case with Yagi antennas. These results express in a numerical point of view the improvement obtained by changing the antennas. This is mainly reflected in an important rise in the number of pixels initially covered in the area of Lleida, which compared with the results obtained on Chapter 4, the number of pixels covered rises in almost a 13%. Meanwhile, the other two scenarios remain almost equal.

Page 69: MASTER THES IS

CHAPTER 5. RESULTS: IMPACT OF OTHER VARIABLES OVER THE OPTIMIZATION PROCESS 57

To conclude this section, the fact of placing Yagi antennas for fixed reception is better to improve the total number of pixels in which the minimum power required is exceeded. The interference is well attenuated as the reduction in gain from the primary lobe to the secondaries, but at the same time, the secondary lobes also attenuate other echoes that could improve the signal quality.

Fig. 5.8 Initial percentage of pixels covered

Fig. 5.9 Final percentage of pixels covered

05

101520253035404550

Barcelona Lleida Tarragona

Pixels covered (%)

Omni

Yagi

0

10

20

30

40

50

60

70

Barcelona Lleida Tarragona

Pixels covered (%)

Omni

Yagi

Page 70: MASTER THES IS

58 Planning optimization software tool for DVB-T and DVB-T2

5.1.3 Omnidirectional antennas: Mobile environment

Both DVB-T and DVB-T2 mention the possibility of having a portable environment, and the capability of giving TV service to users with the existing infrastructure for the fixed scenario. In this project, it has been studied the possibility of giving mobile coverage considering the same number of transmitters placed for the simulations in the fixed environment. Below these lines, there are pictured the initial level of signals that result having omnidirectional receivers at 1.5 m high (See Fig. 5.10, 5.11 and 5.12).

Fig. 5.10 Initial coverage in Tarragona in portable scenario with receiver type one

Fig. 5.11 Initial coverage in Lleida in portable scenario with receiver type one

Page 71: MASTER THES IS

CHAPTER 5. RESULTS: IMPACT OF OTHER VARIABLES OVER THE OPTIMIZATION PROCESS 59

Fig. 5.12 Initial coverage in Barcelona in portable scenario with receiver type one

Coverage regarding portable scenarios is much poorer than in the other cases. This lack of received power is due to the height of the receiver point and the lack of directivity. In fact, the optimization, as it can be seen in Fig. 5.13, 5.14, and 5.15 is not very noticeable, because the initial number of pixels to be improved is very poor.

Fig. 5.13 Final coverage in Tarragona in portable scenario with receiver type one

Page 72: MASTER THES IS

60 Planning optimization software tool for DVB-T and DVB-T2

Fig. 5.14 Final coverage in Lleida in portable scenario with receiver type one

Fig. 5.15 Final coverage in Barcelona in portable scenario with receiver type one

Page 73: MASTER THES IS

CHAPTER 5. RESULTS: IMPACT OF OTHER VARIABLES OVER THE OPTIMIZATION PROCESS 61

The algorithm optimizes as much as possible, but it is clear that in this case it is not enough with the modification of internal delays. The scenario which is improved the most is Tarragona with an increase of about a 17% which makes a final coverage of the 94% (over the pixels that accomplish the receiving power constraint).

The big problem that arises in this portable environment is that, with the existing infrastructure it turns difficult to assure a mobile coverage in all the three scenarios defined. As a matter of comparison, it is interesting to study the difference between the initial percentage of pixels in a scenario with Yagi antennas, intended to fixed reception, and a scenario with omnidirectional antennas just for portable reception, this is shown in Fig.5.16.

This graph represents the percentage of pixels among those that accomplish the minimum received power constraint. The difference in coverage regarding both scenarios is quite huge, and this is due to the antenna’s height but also because the Yagi antenna receives with an added gain.

However, in a real communication system, it could be possible that any user inside a city uses either a fixed or a portable device, with the coverage obtained this could be initially possible, as the main city centres are covered. In general, portable users can be located elsewhere, so it is important to assure at least coverage in the main roads, in the case users want to watch TV while doing a car journey. To make this possible is necessary to study the main roads and the number of users that are going to pass through, its population density.

Fig. 5.16 Percentage of pixels covered with at least the minimum power

0

20

40

60

80

100

Barcelona Lleida Tarragona

Pixels covered (%)

Omni

Yagi

Page 74: MASTER THES IS

62 Planning optimization software tool for DVB-T and DVB-T2

The region chosen to apply changes in order to improve the portable coverage is Lleida, the reason is that it is the poorest covered area, and it has plenty of space to add new transmitters. The idea is to add at least three transmitters to enhance the coverage in the main roads listed in Table 5.3.

The placement of the transmitters intends to minimize the cause of interferences in other transmitters already situated for fixed environments. Regarding the receivers layer, one pixel can hold both types of receiver, so the simulator takes into account any of the two possibilities. From this point it is possible to guess how much pixels obtain a portable service from these antennas.

Based upon several simulations done in Sirenet the transmitters were finally situated in a given position and with the characteristics listed in Table 5.4.The transmitted power is higher in order to be sure that enough useful signal arrives to the portable receivers.

Table 5.3 Main roads in Lleida region

Roads  Beginning  End Length IMD Vehicles/day  Vehicles/km 

Coord X  Coord Y  Coord X Coord Y

C‐13  302200  4610300  317825 4629050 25 8960 358,40 

N‐240  296550  4615825  322300 4598950 26 10784 414,77 

N‐230  298025  4630275  302200 4610300 20 4710 235,50 

A‐2  302200  4610300  324750 4611025 16 32564 2035,25 

AP‐2  322300  4598950  299100 4603900 20 12728 636,40 

AP‐2  313625  4596700  346450 4582250 30 14001 466,71 

AP‐2  279550  4593300  299100 4603900 23 12728 553,39 

A‐2  287125  4623250  296550 4615825 17 32564 1915,53 

C‐12  291350  4582375  294750 4567450 15 5.728 381,89 

C‐12  291350  4582375  299100 4603900 23 8509 369,96 

A‐2  324750  4611025  345250 4612600 19 31000 1631,58 

Table 5.4 Characteristics of the transmitters added

Transmitter Coord X  Coord Y  PARA  H 

Omni_1  293680  4591840  20  5 

Omni_2  338720  4610880  20  5 

Omni_3  282800  4612960  20  5 

Page 75: MASTER THES IS

CHAPTER 5. RESULTS: IMPACT OF OTHER VARIABLES OVER THE OPTIMIZATION PROCESS 63

Fig. 5.17 and 5.18 depicts the initial and final coverage obtained by these three transmitters, considering all the transmitters of the scenario on the simulation. Pixels coloured in blue correspond to those in which the useful signal comes from one of these transmitters and the CIR value is higher than 18dB’s. Thus, those points in were good coverage is available.

Thanks to the placement of these transmitters, the mobile coverage has increased. However, this can lead to strong interferences on the fixed network, and worsen the areas already optimized by the fact of adding new transmitters. The final coverage of the scenario is pictured on Fig. 5.19.

If this figure is compared with Fig. 5.6 (results having Yagi receiver antennas and only 13 transmitters over the scenario) the coverage has worsened in the most populated region, however, there’s more coverage along the roads (lines coloured in cyan). This means that due to the fact of placing a new transmitter the whole signal level of the scenario destabilizes, and needs more optimization. Indeed, in this scenario it is necessary to make more adjustments in terms of power and height of the antennas.

Fig. 5.19 Final coverage according to population

Fig. 5.18 Final coverage of omnidireccional TXs Fig. 5.17 Initial coverage of omnidireccional TXs

Page 76: MASTER THES IS

64

An imtranstrans

5.2

In thsimuthat cof chconfi

As it catchconsof thewereclassof op

5.2.

The comphavin(see simutype

Notewith allowoptim

Fig. 5

mportant isssmitter is adsmitters wer

Types o

his project tulations wercatches to thanging theigured to ca

can be apphes the thisequence, te GI (marke

e consideresification of ptimization a

1 Definit

scenarios pare this tyng also the

Tables 5.1ulation will s

two.

e that in all the same t

ws then, to mization pro

5.20 Type tw

0

Power (dBm)

sue to comdded, the wre adjusted

of receiv

two differenre done cothe first ech

e receivers atch the mo

preciated in rd echo in he two firsted in red). Ied construc

receivers iand final co

tion of the

that have ype of rece

e same rad1 and 5.2 suffer is the

the scenartype of rece

obtain a bocess.

wo receiver sc

10

ment abouthole set of again in or

vers

nt types of nsidering tyho arriving (type, this mst powerful

the exampthe time l

t echoes gen the case ctive as this done to overage.

e scenari

been set teivers are io characterespectively

e change o

rios every peiver, not hbetter analy

chema

20 30

Plann

t adding nedelays musder to coha

receivers wype one re(see Chaptemeans that

echo.

ple shown inine becaus

enerate inteof the first they were observe wh

os

to run the the same

eristics for by). Even thn the type

pixel that buaving at anysis on how

40

Time (µs)

ning optimization

ew transmittst be readjuabitate in the

were defineceiver, whier 4). This sfrom now o

n Fig. 5.20, se it is theerference betype of receinside the

hich gives b

simulationsthan the o

both, fixed hough, the of receiver

uilds the arny point anyw the type

50 60

G

n software tool f

ters is that,sted. In thise same netw

ed. Up to tch corresposection anaon, the laye

this second most pow

ecause theyeiver, thesee GI (see better perfo

s in order ones descrand portabonly modif

r, being in t

rea under tey mixture o

e of receive

70 8

Guard interva

for DVB-T and D

when evens scenario, work.

this momenonds to the

alyses the eer of receive

d type of recwerful one. y remain ou two first ecFig. 4.4).

rmance in t

to analyseribed previoble environmfication thathis case al

est is configof receivers.er affects i

80

al

DVB-T2

n one all 16

nt, all e one ffects ers is

ceiver As a

utside choes

This terms

e and ously, ments at this lways

gured . This n the

Page 77: MASTER THES IS

CHAPTER 5. RESULTS: IMPACT OF OTHER VARIABLES OVER THE OPTIMIZATION PROCESS 65

5.2.2 Yagi antenna: Fixed environment

The main goal of changing the type of receivers is to study the improvement in those pixels that still remain under the minimum value of CIR fixed at 18 dB.

In this section the initial CIR is not a matter of study as the important point is the total optimization. What it is important to mention regarding this issue, is that while the initial CIR changes due to the nature of the receivers, the number of pixels that exceed the minimum power remains equal than when using receivers type one.

The next figures (Fig. 5.21, 5.22 and 5.23) show the final coverage obtained taking into account the new configuration of receivers in Tarragona, Barcelona and Lleida, respectively. Note that these images can be compared with the ones obtained for a Yagi antenna, but with type one receiver (see section 4.1.2).

Fig. 5.21 Final coverage in Tarragona in fixed scenario with receiver type two

Fig. 5.22 Final coverage in Lleida in fixed scenario with receiver type two

Page 78: MASTER THES IS

66 Planning optimization software tool for DVB-T and DVB-T2

Fig. 5.23 Final coverage in Barcelona in fixed scenario with receiver type two

Following the results obtained, the optimization done in the same scenario with different receivers is worse than the one obtained in Fig. 5.5, 5.6 and 5.7. Again, Tarragona is the area in which the coverage is improved the most, higher than a 9%. But, the improvement percentage is just the half obtained with receivers type one. Meanwhile Barcelona and Lleida improve a few tenths over a 4%. Not only the improvement worsens from the results obtained before, the initial CIR is worse also. Fig. 5.24 shows in a numerical way the impact that has the fact of changing the receivers. In all the three cases the improvement is worse and also the final and initial CIR.

When a receiver type two catches one transmitter this will be the one which contributes with more power, so when the scenario is optimized, in all the cases the receiver will remain having the same serving transmitter, as the received power remains equal. When a receiver type one catches the transmitter that first arrives to it, means that when changing the delays, this serving transmitter can be easily substituted by another that, once changed the delays, now arrives earlier. This simple change in the receivers’ performance leads into less freedom when trying to minimize the total population uncovered. The only issue to be optimized in the case of an environment with a type two receiver, is the management of the interferences, changing the echoes, some that were out of the GI can now be a positive contribution.

Fig. 5.24 Comparison of final percentage of pixels covered in fixed scenario

0

10

20

30

40

50

60

70

Barcelona Lleida Tarragona

Pixels covered (%)

Receiver 1

Receiver 2

Page 79: MASTER THES IS

CHAPTER 5. RESULTS: IMPACT OF OTHER VARIABLES OVER THE OPTIMIZATION PROCESS 67

5.2.3 Omnidireccional antenna: Mobile environment

As explained before, the portable scenario has a lower number of pixels to be improved, for this reason the percentage of pixels covered obtained is lower, regardless the type of receiver. Again the number of pixels that exceed the sensitivity are the same than in the previous case, however the initial CIR is slightly lower. The following figures (Fig. 5.25, 5.26 and 5.27) show the result of the optimization in the three defined scenarios.

Fig. 5.25 Final coverage in Tarragona in portable scenario with receiver type two

Fig. 5.26 Final coverage in Lleida in portable scenario with receiver type two

Fig. 5.27 Final coverage in Barcelona in portable scenario with receiver type two

Page 80: MASTER THES IS

68 Planning optimization software tool for DVB-T and DVB-T2

The general behaviour in the three scenarios is maintained, as the optimization is quite poor due to the lack of pixels having better received power. Once again, the final coverage for this type of receivers is worse than with receivers type one (Fig. 5.13, 5.14 and 5.15). For instance, in the region of Barcelona, no more pixels are enhanced; the improvement in terms of quantity of pixels is zero, but the physical location of these points changes as it is taken into account the total population of each spot. Nevertheless, this does not happen in all the scenarios, in Tarragona, the most improved area, the number of pixels raises a 2% and in Lleida the improvement is only of 1%. Comparing then the values obtained in both cases, the results are shown in Fig. 5.28.

In almost all the cases the total number of pixels is higher when taking into account type one receivers. Once more, the reason has to do with the freedom when changing the serving transmitter.

To sum up, the fact of using an SFN technology gives the possibility of managing the delays in order to minimize the number of echoes that remain outside the GI. If this possibility is followed by the constraint that always the serving transmitter is going to be the one that gives more power, then the probability of having more echoes outside the time interval will increase, as it is possible to have pre-echoes as well. This increases the interference power, and consequently de CIR reduces below the thresholds.

Fig. 5.28 Comparison of final percentage of pixels covered in portable scenario

0

5

10

15

20

Barcelona Lleida Tarragona

Pixels covered (%)

Receiver 1

Receiver 2

Page 81: MASTER THES IS

CHAPTER 6. CONCLUSIONS 69

CHAPTER 6. CONCLUSIONS

This project has proposed a technique based on the simulated annealing methaheuristic with the final goal of optimizing existing DVB-T networks by means of reducing the self-interfered areas. The strategy has been validated by means of several software tools that helped to perform the input data for the simulator. Among all the tools used along the development of this project those with more relevance were:

Software optimization tool: fully programmed in the development of the project. Designed to compute the optimal solution based on the input data extracted from the previous tool.

Sirenet: useful to compute the coverage area. Google earth: useful to geo-reference results over a map.

In order to perform this optimization, previous adjustments were required in order to assure that SA was working at its maximum performance. As there are several parameters to adjust in this algorithm, the result of modifying some variables has a direct impact on the quality of the cost function and computational time.

Based upon the multitude of simulations done in this project it is possible to conclude that the interest of this method relies on several facts. First of all, it allows obtaining maximum performance of the existing network, as the static delay adjustment improves the SFN coverage by reducing the self-interfered areas. In general, a lack of coverage can be turned on the idea of installing a new transmitter, however, as it is shown in this project this is not always necessary. This software tool helps the operator to assess the decision of adding new transmitters, if once the optimization is done and with the existing nodes there is no good solution, then this idea can be considered. Once a new transmitter is installed in the network, this solution allows to automatically reconfigure the optimum delays in the target area. Besides, the fact of changing the transmitter’s offsets does not imply any economical effort, so it is an improvement that can be done with no extra investment.

There are several opened lines for further investigation. Levels of interference can be handled with this optimization tool, but the fact of adding more variables to the optimization may lead into better results of coverage improvement. As an example, if a power allocation algorithm is added, the program could be able to control even more the levels of interference. This software tool can be improved to simulate portable scenarios taking into account all the variables that involve this environment, as well as further improvement in the network to assure at least a 90% coverage in all the regions. Another improvement that can be applied to the program, is the fact of the coexistence of several receivers.

To conclude this project, it is important to mention that it was developed inside the FURIA project a national AVANZA project with the participation of the most representative companies and research teams of the audiovisual technologies at national level.

Page 82: MASTER THES IS
Page 83: MASTER THES IS

CHAPTER 7. REFERENCES 71

CHAPTER 7. REFERENCES

[1] M. García-Lozano, S. Ruiz-Boqué, F. Minerva, Static Delays Optimization to

Reduce Self-Interference in DVB-T Networks, 2010.

[2] FURIA Project. Official webpage of FURIA council. Available in

www.furiapse.com

[3] L. Nuaymi, WiMAX: Technology for broadband wireless access, John Wiley &

Sons, France, 2007.

[4] EBU-UER (ETSI) Technical report v.1.3.1, Digital Video Broadcasting (DVB);

Implementation guidelines for DVB terrestrial services; Transmission aspects,

2008-10.

[5] M. Duque-Ant´on, D. Kunz, and B. R¨uber, “Channel Assignment for Cellular

Radio Using Simulated Annealing,” IEEE Transactions on Vehicular

Technology, vol. 42, no. 1, pp. 14–21, Feb. 1993.

[6] D. Beckmann and U. Killat, “Frequency Planning with Respect to Interference

Minimization in Cellular Radio Networks,” COST 259, Vienna (Austria), Tech.

Rep. available as TD(99)032, Apr. 1999.

[7] S. Salcedo-Sanz, R. Santiago-Mozos, and C. Bouso˜no-Calz´on, “A Hybrid

Hopfiled Network- Simulated Annealing Approach for Frequency Assignment in

Satellite Communications Systems”, IEEE Transactions on Systems Man and

Cybernetics Part B. Cybernetics, vol. 34, no. 2, pp. 1108–1116, Apr. 2004.

[8] Ligeti and J. Zander, “Minimal Cost Coverage Planning for Single Frequency

Networks,” IEEE Transactions on Broadcasting, vol. 45, no. 1, pp. 78–87, Mar.

1999.

[9] M. Kamenetsky and M. Unbehaun, “Coverage Planning for Outdoor Wireless

LAN Systems,” in Proc. of IEEE International Zurich Seminar on Broadband

Communications, Zurich (Switzerland), Feb. 19–21, 2002.

[10] S. Menon and S. Gupta, “Assigning Cells to Swithces in Cellular Netowrks by

Incorporating a Pricing Mechanism into Simulated Annealing,” IEEE

Transactions on Systems Man and Cybernetics Part B. Cybernetics, vol. 34, no.

1, pp. 558–565, Feb. 2004.

[11] J. Harmatos, A. Sent´eis, and I. G´odor, “Planning of Tree- Topology UMTS

Terrestrial Access Networks,” in Proc. of IEEE International Symposium on

Personal, Indoor and Mobile Radio Communications (PIMRC 2000), London

(England), Sep. 18–21, 2000.

Page 84: MASTER THES IS

72 Planning optimization software tool for DVB-T and DVB-T2

[12] E. Aarts, J. Korst, Simulated Annealing and Boltzman Machines, John Wiley &

Sons, Chicester, 1989.

[13] P.J.M van Laarhoven, E.H.L Aarts, Simulated Annealing: Theory and

Applications, D.Reidel, Dordrecht, 1987.

[14] P. Moreno, G. Huecas, J. Sánchez, A. García (2007) Metaheuristica de

optimización combinatoria. Tecnología y desarrollo, volumen V, 25pp.

[15] Población. gencat datos. Generalitat de Catalunya. Available in http://www.gencat.cat/gencat_dades/cas/poblacio.htm

Page 85: MASTER THES IS

APPENDICES I

APPENDICES

A) Link budget for TDT systems

Band     Band V 

Receiving Condition    Fixed antenna (outdoor 10 m 

a.g.l) 

Frequency  f [MHz]  800 

Boltzmann Constant  k [J∙K‐1]  1,38E‐23 

Bandwidth  B [Hz]  7,60E+06 

Temperature  T0 [K]  290 

Thermal noise power  Pn,th [dBW]  ‐135,2 

Receiver noise figure  F [dB]  7 

Total noise power  Pn [dBW]  ‐128,2 

Minimum  carrier  to  noise  ratio  required  by system 

CNR [dB]  2  8  14  18  26 

Minimum receiver signal input power  Ps min [dBW]‐

126,2 

‐120,2 

‐114,2 

‐110,2 

‐102,2 

Receiver input impedance  Zi [Ω]  75 

Minimum equivalent receiver input voltage Us min [dBµV] 

13  19  25  29  37 

Feeder loss  Lf [dB]  5 

Wave length  λ [m]  0,4 

Effective  isotropic  antenna  aperture  (sup equival isotrop) 

Aa,iso [dB(m2)] 

‐19,5 

Antenna gain relative to half wave dipole  Ga [dBd]  12 

Antenna gain relative to isotropic  Ga [dBi]  14,15 

Effective  antenna  aperture  (superficie equivalente) 

Aa [dB(m2)]  ‐5,4 

Minimum  power  flux  density  at  receiving place 

φmin [dB(W/m2)] 

‐115,8 

‐109,8 

‐103,8 

‐99,8  ‐91,8

Minimum  equivalent  field  strength  at receiving place 

Emin [dB(µV/m)] 

30  36  42  46  54 

Margin for man made noise  Mman [dB]  0 

Pérdida debida a no estar a 10 m sobre suelo y exterior 

Lh [dB]  0 

Building penetration loss  Lb [dB]  0 

Page 86: MASTER THES IS

II Planning optimization software tool for DVB-T and DVB-T2

Location probability: 70 % 

Función k(p)  kp  0,52 

Desviación típica componente log‐normal  σ  [dB]  5,5 

Location  correction  factor  (Shadowing margin) 

MF [dB]  2,9 

Median power flux density at 10 m above ground level 

φmed [dB(W/m2)] 

‐112,9

‐106,9 

‐100,9 

‐96,9 

‐88,9

Median equivalent field strength at 10 m a.g.l. 

Emed [dB(µV/m)] 

33  39  45  49  57 

Location probability: 95 % 

Función k(p)  kp  1,64 

Desviación típica componente log‐normal  σ  [dB]  5,5 

Location  correction  factor  (Shadowing margin) 

MF [dB]  9,0 

Median power flux density at 10 m above ground level 

φmed [dB(W/m2)] 

‐106,8

‐100,8 

‐94,8 ‐

90,8 ‐

82,8

Median equivalent field strength at 10 m a.g.l. 

Emed [dB(µV/m)] 

39  45  51  55  63 

Band Frequency (MHz) 

Man Made Noise Margin (dB) 

Extra Loss for not 

being 10 m a.g.l. (dB) 

Receiving Condition 

Antenna Gain (dB) 

Antenna Gain Class A&B (dB) 

Building loss (dB) 

Feeder Loss (dB) 

Band I  65  6  10 

Fixed antenna 

(outdoor 10 m a.g.l) 

3  ‐2,2  8  1 

Band III  200  1  10 Portable Outdoor (Class A) 

7  ‐2,2  8  2 

Band IV  500  0  12 Portable 

Indoor (Class B) 

10  0  7  3 

Band V  800  0  12     12  0  7  5 

Page 87: MASTER THES IS

APPENDICES III

B) Population distribution in Catalonia

Municipality  Area  Population 

UTM‐X  UTM‐Y  (km2)  2009  Density 

Abella de la Conca  342450.00 4669650.00 78  183  2 

Abrera  408471.00 4596983.00 20  11521  576 

Àger  314700.00 4652600.00 161  575  4 

Agramunt  342100.00 4628075.00 80  5608  70 

Aguilar de Segarra  386250.00 4621900.00 43  257  6 

Agullana  487450.00 4693750.00 28  812  29 

Aiguafreda  438028.00 4624410.00 8  2464  308 

Aiguamúrcia  363150.00 4578725.00 73  906  12 

Aiguaviva  480450.00 4643100.00 14  714  51 

Aitona  287900.00 4596950.00 67  2398  36 

Alamús, els  311750.00 4609800.00 21  740  35 

Alàs i Cerc  377225.00 4690100.00 58  391  7 

Albagés, l'  311250.00 4591250.00 26  476  18 

Albanyà  477125.00 4683900.00 94  152  2 

Albatàrrec  300450.00 4605350.00 10  1872  187 

Albesa  305600.00 4625100.00 38  1613  42 

Albi, l'  327750.00 4587975.00 33  836  25 

Albinyana  373400.00 4567350.00 19  2275  120 

Albiol, l'  340050.00 4568675.00 20  405  20 

Albons  506700.00 4661850.00 11  687  62 

Alcanar  286800.00 4491400.00 47  10570  225 

Alcanó  301200.00 4595100.00 21  239  11 

Alcarràs  293725.00 4604525.00 114  7776  68 

Alcoletge  308075.00 4613400.00 17  2677  157 

Alcover  346875.00 4569725.00 46  5100  111 

Aldea, l'  298500.00 4513250.00 35  4063  116 

Aldover  289450.00 4528625.00 20  984  49 

Aleixar, l'  336300.00 4563150.00 26  898  35 

Alella  441226.00 4593975.00 10  9397  940 

Alfara de Carles  281025.00 4528200.00 64  400  6 

Alfarràs  298400.00 4634050.00 11  3155  287 

Alfés  301525.00 4599500.00 32  318  10 

Alforja  330350.00 4564300.00 38  1851  49 

Algerri  303950.00 4632225.00 54  469  9 

Alguaire  299225.00 4623575.00 50  3165  63 

Page 88: MASTER THES IS

IV Planning optimization software tool for DVB-T and DVB-T2

Alins  362050.00 4712275.00 183  297  2 

Alió  358325.00 4573025.00 7  384  55 

Almacelles  287125.00 4623250.00 49  6506  133 

Almatret  284450.00 4576100.00 57  397  7 

Almenar  298025.00 4630275.00 67  3669  55 

Almoster  341900.00 4562600.00 6  1357  226 

Alòs de Balaguer  330993.00 4642201.00 69  146  2 

Alp  408500.00 4692050.00 44  1735  39 

Alpens  425786.00 4663555.00 14  311  22 

Alpicat  296550.00 4615825.00 15  6058  404 

Alt Àneu  345125.00 4722050.00 218  434  2 

Altafulla  363800.00 4555925.00 7  4685  669 

Amer  467200.00 4651225.00 40  2304  58 

Ametlla de Mar, l'  314950.00 4528450.00 67  7592  113 

Ametlla del Vallès, l'  438668.00 4613334.00 14  7949  568 

Ampolla, l'  306850.00 4520650.00 36  3118  87 

Amposta  295650.00 4509450.00 138  21240  154 

Anglès  470075.00 4645250.00 16  5569  348 

Anglesola  340525.00 4613750.00 24  1351  56 

Arbeca  327025.00 4601175.00 58  2480  43 

Arboç, l'  383100.00 4569550.00 14  5441  389 

Arbolí  328200.00 4567850.00 21  112  5 

Arbúcies  459875.00 4629650.00 86  6595  77 

Arenys de Mar  462519.00 4603449.00 7  14627  2090 

Arenys de Munt  461697.00 4606889.00 21  8190  390 

Argelaguer  470600.00 4673750.00 13  445  34 

Argençola  370472.00 4606509.00 47  240  5 

Argentera, l'  324625.00 4556300.00 10  134  13 

Argentona  450180.00 4600628.00 25  11633  465 

Armentera, l'  506275.00 4669100.00 6  855  143 

Arnes  269375.00 4532600.00 43  488  11 

Arres  312800.00 4736350.00 12  68  6 

Arsèguel  383375.00 4689825.00 11  93  8 

Artés  413258.00 4628076.00 18  5433  302 

Artesa de Lleida  308525.00 4602900.00 24  1517  63 

Artesa de Segre  338150.00 4640200.00 176  3869  22 

Ascó  296100.00 4561775.00 74  1608  22 

Aspa  305800.00 4596600.00 10  251  25 

Avellanes i Santa Linya, les  314700.00 4642100.00 103  467  5 

Avià  402919.00 4659138.00 27  2206  82 

Page 89: MASTER THES IS

APPENDICES V

Avinyó  414672.00 4635324.00 63  2289  36 

Avinyonet de Puigventós  493025.00 4677700.00 12  1449  121 

Avinyonet del Penedès  397872.00 4579783.00 29  1690  58 

Badalona  437019.00 4588862.00 21  219547  10455 

Badia del Vallès  426300.00 4595800.00 1  13679  13679 

Bagà  406270.00 4678681.00 43  2362  55 

Baix Pallars  340600.00 4687725.00 129  413  3 

Balaguer  317825.00 4629050.00 57  16779  294 

Balenyà  436578.00 4629669.00 17  3743  220 

Balsareny  406785.00 4635503.00 37  3512  95 

Banyeres del Penedès  381275.00 4571025.00 12  2945  245 

Banyoles  480700.00 4663050.00 11  18327  1666 

Barbens  335025.00 4616125.00 8  892  112 

Barberà de la Conca  352025.00 4586075.00 27  539  20 

Barberà del Vallès  426944.00 4596449.00 8  31144  3893 

Barcelona  430743.00 4583711.00 101  1621537  16055 

Baronia de Rialb, la  350525.00 4644025.00 145  279  2 

Bàscara  492650.00 4667800.00 18  946  53 

Bassella  358855.00 4651965.00 70  252  4 

Batea  274275.00 4552900.00 128  2163  17 

Bausen  313450.00 4745200.00 18  63  4 

Begues  409836.00 4576374.00 50  6271  125 

Begur  517300.00 4644925.00 21  4258  203 

Belianes  334725.00 4603100.00 16  589  37 

Bellaguarda  310650.00 4578900.00 17  336  20 

Bellcaire d'Empordà  507950.00 4658750.00 13  664  51 

Bellcaire d'Urgell  325900.00 4625375.00 31  1284  41 

Bell‐lloc d'Urgell  315200.00 4611400.00 35  2447  70 

Bellmunt del Priorat  312700.00 4559575.00 9  354  39 

Bellmunt d'Urgell  329900.00 4626900.00 5  215  43 

Bellprat  369442.00 4597549.00 31  92  3 

Bellpuig  334500.00 4610250.00 35  4940  141 

Bellvei  380900.00 4566650.00 8  2005  251 

Bellver de Cerdanya  399325.00 4691875.00 98  2231  23 

Bellvís  319650.00 4618250.00 47  2481  53 

Benavent de Segrià  303150.00 4618900.00 7  1489  213 

Benifallet  291150.00 4539050.00 62  788  13 

Benissanet  301350.00 4547975.00 23  1250  54 

Berga  404657.00 4661908.00 23  17160  746 

Besalú  475225.00 4672300.00 5  2361  472 

Page 90: MASTER THES IS

VI Planning optimization software tool for DVB-T and DVB-T2

Bescanó  478500.00 4646175.00 36  4450  124 

Beuda  476150.00 4676350.00 36  163  5 

Bigues i Riells  435386.00 4614388.00 29  8401  290 

Biosca  363775.00 4633700.00 66  222  3 

Bisbal de Falset, la  309400.00 4572550.00 14  237  17 

Bisbal del Penedès, la  373450.00 4571200.00 33  3397  103 

Bisbal d'Empordà, la  503350.00 4645350.00 21  10385  495 

Biure  491450.00 4687525.00 10  243  24 

Blancafort  346325.00 4589200.00 14  438  31 

Blanes  482650.00 4613925.00 18  40047  2225 

Boadella i les Escaules  488225.00 4686575.00 11  241  22 

Bolvir  408050.00 4697050.00 10  378  38 

Bonastre  369325.00 4564625.00 25  657  26 

Bòrdes, Es  313450.00 4734425.00 21  238  11 

Bordils  492825.00 4654825.00 7  1732  247 

Borges Blanques, les  322300.00 4598950.00 62  6058  98 

Borges del Camp, les  334050.00 4559975.00 8  2115  264 

Borrassà  494000.00 4674750.00 9  665  74 

Borredà  417011.00 4665584.00 43  614  14 

Bossòst  311350.00 4739800.00 28  1219  44 

Bot  280175.00 4543250.00 35  698  20 

Botarell  331350.00 4555975.00 12  1047  87 

Bovera  302500.00 4577900.00 31  353  11 

Bràfim  361100.00 4570125.00 6  666  111 

Breda  463425.00 4622150.00 5  3784  757 

Bruc, el  398400.00 4604150.00 47  1904  41 

Brull, el  442448.00 4629878.00 41  252  6 

Brunyola  473925.00 4639425.00 37  373  10 

Cabacés  310200.00 4568900.00 31  345  11 

Cabanabona  351925.00 4634950.00 14  109  8 

Cabanelles  485200.00 4675575.00 56  236  4 

Cabanes  498100.00 4684325.00 15  932  62 

Cabanyes, les  390478.00 4581005.00 1  888  888 

Cabó  355500.00 4677950.00 80  95  1 

Cabra del Camp  356025.00 4584275.00 27  1116  41 

Cabrera d'Anoia  449570.00 4597495.00 17  1320  78 

Cabrera de Mar  391850.00 4592800.00 9  4408  490 

Cabrils  447375.00 4597600.00 7  6964  995 

Cadaqués  522850.00 4682125.00 26  2860  110 

Calaf  376408.00 4621358.00 9  3630  403 

Page 91: MASTER THES IS

APPENDICES VII

Calafell  380100.00 4562200.00 20  24265  1213 

Calders  415886.00 4627008.00 33  899  27 

Caldes de Malavella  484275.00 4631975.00 57  6710  118 

Caldes de Montbui  430658.00 4609352.00 37  16885  456 

Caldes d'Estrac  460711.00 4602364.00 1  2799  2799 

Calella  472014.00 4607306.00 8  18627  2328 

Calldetenes  440762.00 4641960.00 6  2391  399 

Callús  399056.00 4626531.00 13  1759  135 

Calonge  506350.00 4634500.00 34  10637  313 

Calonge de Segarra  373874.00 4624897.00 37  196  5 

Camarasa  323975.00 4638200.00 157  991  6 

Camarles  303575.00 4516250.00 25  3555  142 

Cambrils  336550.00 4548950.00 35  31720  906 

Camós  480750.00 4660300.00 16  692  43 

Campdevànol  431450.00 4675200.00 33  3505  106 

Campelles  429200.00 4683100.00 19  125  7 

Campins  455505.00 4619535.00 7  390  56 

Campllong  486050.00 4638200.00 9  423  47 

Camprodon  447800.00 4685025.00 103  2542  25 

Canejan  315275.00 4745550.00 48  104  2 

Canet d'Adri  478350.00 4653850.00 44  605  14 

Canet de Mar  465216.00 4604473.00 6  13548  2258 

Canovelles  440400.00 4607850.00 7  16023  2289 

Cànoves i Samalús  446377.00 4615621.00 29  2742  95 

Cantallops  493925.00 4696900.00 20  319  16 

Canyelles  393085.00 4571539.00 14  4104  293 

Capafonts  334925.00 4573650.00 13  119  9 

Capçanes  313775.00 4552450.00 22  415  19 

Capellades  390437.00 4598659.00 3  5525  1842 

Capmany  493525.00 4691525.00 26  593  23 

Capolat  396972.00 4659415.00 34  77  2 

Cardedeu  446656.00 4610070.00 12  16596  1383 

Cardona  390750.00 4641250.00 67  5187  77 

Carme  385024.00 4598891.00 12  832  69 

Caseres  269050.00 4546950.00 43  293  7 

Cassà de la Selva  489825.00 4637475.00 45  9537  212 

Casserres  404229.00 4652102.00 29  1590  55 

Castell de l'Areny  413032.00 4669710.00 24  75  3 

Castell de Mur  324550.00 4662400.00 62  173  3 

Castellar de la Ribera  368925.00 4653650.00 60  160  3 

Page 92: MASTER THES IS

VIII Planning optimization software tool for DVB-T and DVB-T2

Castellar de n'Hug  419099.00 4681886.00 47  198  4 

Castellar del Riu  393385.00 4665355.00 33  154  5 

Castellar del Vallès  424014.00 4607721.00 45  23002  511 

Castellbell i el Vilar  405500.00 4609500.00 28  3680  131 

Castellbisbal  415031.00 4592180.00 31  11977  386 

Castellcir  429325.00 4623700.00 34  628  18 

Castelldans  313625.00 4596700.00 65  1015  16 

Castelldefels  414300.00 4570300.00 13  62080  4775 

Castellet i la Gornal  382150.00 4568150.00 47  2222  47 

Castellfollit de la Roca  462925.00 4674450.00 1  1043  1043 

Castellfollit de Riubregós  370305.00 4626295.00 26  195  8 

Castellfollit del Boix  390600.00 4613712.00 59  426  7 

Castellgalí  403800.00 4614525.00 17  1918  113 

Castellnou de Bages  403508.00 4632297.00 29  1021  35 

Castellnou de Seana  331100.00 4612875.00 16  739  46 

Castelló de Farfanya  311400.00 4632400.00 53  572  11 

Castelló d'Empúries  506175.00 4678800.00 42  12111  288 

Castellolí  391782.00 4606199.00 25  506  20 

Castell‐Platja d'Aro  505665.00 4629715.00 22  10376  472 

Castellserà  332800.00 4623800.00 16  1131  71 

Castellterçol  427049.00 4622611.00 32  2375  74 

Castellvell del Camp  340475.00 4560750.00 5  2686  537 

Castellví de la Marca  384500.00 4576100.00 28  1661  59 

Castellví de Rosanes  408157.00 4589478.00 16  1719  107 

Catllar, el  359675.00 4559750.00 26  4079  157 

Cava  383455.00 4687075.00 42  50  1 

Cellera de Ter, la  468650.00 4646700.00 15  2186  146 

Celrà  490050.00 4652750.00 20  4513  226 

Centelles  435338.00 4627812.00 15  7209  481 

Cercs  405975.00 4666828.00 47  1334  28 

Cerdanyola del Vallès  428114.00 4593734.00 31  58747  1895 

Cervelló  412874.00 4583451.00 24  8393  350 

Cervera  356250.00 4614750.00 55  9328  170 

Cervià de les Garrigues  321325.00 4588375.00 34  846  25 

Cervià de Ter  492700.00 4657450.00 10  889  89 

Cistella  487575.00 4679800.00 26  238  9 

Ciutadilla  345025.00 4602900.00 17  226  13 

Clariana de Cardener  386497.00 4643443.00 41  152  4 

Cogul, el  307150.00 4593350.00 18  203  11 

Colera  512700.00 4694900.00 24  573  24 

Page 93: MASTER THES IS

APPENDICES IX

Coll de Nargó  361025.00 4670650.00 151  634  4 

Collbató  402475.00 4602781.00 18  4040  224 

Colldejou  322700.00 4552125.00 14  183  13 

Collsuspina  431577.00 4630980.00 15  351  23 

Colomers  499025.00 4659350.00 4  195  49 

Coma i la Pedra, la  383625.00 4670475.00 61  278  5 

Conca de Dalt  332775.00 4679100.00 166  410  2 

Conesa  357550.00 4597850.00 29  124  4 

Constantí  350125.00 4557550.00 31  6373  206 

Copons  376679.00 4610671.00 19  318  17 

Corbera de Llobregat  410700.00 4585600.00 18  13843  769 

Corbera d'Ebre  288050.00 4550550.00 53  1174  22 

Corbins  308300.00 4618225.00 21  1356  65 

Corçà  501500.00 4648650.00 16  1280  80 

Cornellà de Llobregat  422763.00 4579550.00 7  86519  12360 

Cornellà del Terri  484925.00 4659950.00 28  2176  78 

Cornudella de Montsant  324600.00 4570500.00 64  1015  16 

Creixell  369325.00 4558750.00 10  3219  322 

Crespià  483500.00 4670850.00 11  253  23 

Cruïlles, Monells i Sant Sadurní de l'Heura  499400.00 4645150.00 100  1272  13 

Cubelles  388810.00 4562912.00 13  13711  1055 

Cubells  330650.00 4635550.00 39  401  10 

Cunit  385625.00 4561850.00 10  12279  1228 

Darnius  486375.00 4690775.00 35  536  15 

Das  407050.00 4690750.00 15  227  15 

Deltebre  307700.00 4510350.00 107  11751  110 

Dosrius  450684.00 4605238.00 41  4937  120 

Duesaigües  326400.00 4557200.00 14  240  17 

Escala, l'  511150.00 4663875.00 16  10140  634 

Esparreguera  405802.00 4599324.00 27  21855  809 

Espinelves  451725.00 4635575.00 17  190  11 

Espluga Calba, l'  333550.00 4595825.00 22  429  20 

Espluga de Francolí, l'  341450.00 4584650.00 57  3982  70 

Esplugues de Llobregat  423562.00 4580967.00 5  46862  9372 

Espolla  500150.00 4693425.00 44  404  9 

Esponellà  483250.00 4669775.00 16  462  29 

Espot  343100.00 4715800.00 97  364  4 

Espunyola, l'  398300.00 4656575.00 35  260  7 

Estamariu  378475.00 4692500.00 21  115  5 

Page 94: MASTER THES IS

X Planning optimization software tool for DVB-T and DVB-T2

Estany, l'  426388.00 4635859.00 10  390  39 

Estaràs  365150.00 4617050.00 21  177  8 

Esterri d'Àneu  346200.00 4721450.00 8  965  121 

Esterri de Cardós  357500.00 4717200.00 17  75  4 

Falset  317175.00 4557350.00 32  2864  90 

Far d'Empordà, el  499700.00 4677925.00 9  537  60 

Farrera  358225.00 4707425.00 62  133  2 

Fatarella, la  288150.00 4560025.00 57  1128  20 

Febró, la  332970.00 4571687.00 16  46  3 

Figaró‐Montmany  439708.00 4619262.00 15  1057  70 

Fígols  404218.00 4670813.00 29  48  2 

Fígols i Alinyà  363100.00 4673825.00 102  284  3 

Figuera, la  309900.00 4565400.00 19  148  8 

Figueres  496900.00 4679450.00 19  43330  2281 

Figuerola del Camp  355025.00 4581700.00 23  341  15 

Flaçà  496325.00 4655375.00 7  1072  153 

Flix  294750.00 4567450.00 117  4098  35 

Floresta, la  326500.00 4597650.00 5  179  36 

Fogars de la Selva  473500.00 4621100.00 32  1513  47 

Fogars de Montclús  453800.00 4619800.00 40  465  12 

Foixà  499825.00 4654575.00 19  336  18 

Folgueroles  443181.00 4643663.00 10  2205  221 

Fondarella  322975.00 4611600.00 5  821  164 

Fonollosa  389429.00 4624516.00 52  1399  27 

Fontanals de Cerdanya  409600.00 4693300.00 29  451  16 

Fontanilles  508950.00 4651100.00 9  173  19 

Fontcoberta  482750.00 4665850.00 17  1251  74 

Font‐rubí  387350.00 4585750.00 37  1483  40 

Foradada  335200.00 4638250.00 29  189  7 

Forallac  504675.00 4645500.00 51  1737  34 

Forès  353050.00 4595325.00 16  43  3 

Fornells de la Selva  484500.00 4642700.00 12  2295  191 

Fortià  503300.00 4676975.00 11  639  58 

Franqueses del Vallès, les  441500.00 4607750.00 29  17660  609 

Freginals  290500.00 4505425.00 18  449  25 

Fuliola, la  335225.00 4620075.00 11  1239  113 

Fulleda  335100.00 4592250.00 16  113  7 

Gaià  410984.00 4641271.00 39  171  4 

Galera, la  285650.00 4506700.00 27  884  33 

Gallifa  426401.00 4616205.00 16  214  13 

Page 95: MASTER THES IS

APPENDICES XI

Gandesa  284850.00 4548050.00 71  3236  46 

Garcia  302875.00 4556800.00 52  602  12 

Garidells, els  353175.00 4563450.00 3  221  74 

Garriga, la  440705.00 4615035.00 19  14991  789 

Garrigàs  496275.00 4671425.00 20  395  20 

Garrigoles  502700.00 4661950.00 9  160  18 

Garriguella  504750.00 4688100.00 21  825  39 

Gavà  416614.00 4573330.00 31  45994  1484 

Gavet de la Conca  328200.00 4665750.00 91  307  3 

Gelida  405124.00 4588534.00 27  6801  252 

Ger  405025.00 4696275.00 33  450  14 

Gimenells i el Pla de la Font  282750.00 4614625.00 56  1182  21 

Ginestar  301200.00 4546300.00 16  1066  67 

Girona  485175.00 4648075.00 39  96188  2466 

Gironella  407559.00 4654542.00 7  5052  722 

Gisclareny  399985.00 4678455.00 36  34  1 

Godall  286125.00 4503750.00 34  841  25 

Golmés  327750.00 4611425.00 17  1693  100 

Gombrèn  425100.00 4677900.00 43  232  5 

Gósol  389650.00 4677100.00 56  219  4 

Granada, la  392992.00 4581654.00 7  1976  282 

Granadella, la  304800.00 4581025.00 89  765  9 

Granera  421775.00 4620300.00 24  77  3 

Granja d'Escarp, la  278850.00 4588850.00 39  984  25 

Granollers  440939.00 4606563.00 15  60658  4044 

Granyanella  352545.00 4614335.00 24  160  7 

Granyena de les Garrigues  303700.00 4589700.00 20  172  9 

Granyena de Segarra  353975.00 4609700.00 16  138  9 

Gratallops  313675.00 4562775.00 14  266  19 

Gualba  458800.00 4620150.00 23  1192  52 

Gualta  508675.00 4653150.00 9  380  42 

Guardiola de Berguedà  407633.00 4676434.00 62  1007  16 

Guiamets, els  311400.00 4552700.00 12  330  28 

Guils de Cerdanya  407875.00 4700400.00 22  479  22 

Guimerà  348800.00 4603225.00 26  334  13 

Guingueta d'Àneu, la  346850.00 4717550.00 108  372  3 

Guissona  357900.00 4627550.00 18  6145  341 

Guixers  389900.00 4665500.00 66  138  2 

Gurb  436500.00 4645350.00 52  2475  48 

Horta de Sant Joan  274150.00 4537400.00 119  1305  11 

Page 96: MASTER THES IS

XII Planning optimization software tool for DVB-T and DVB-T2

Hospitalet de Llobregat, l'  424992.00 4579383.00 12  257038  21420 

Hostalets de Pierola, els  397550.00 4598950.00 33  2612  79 

Hostalric  469750.00 4621875.00 3  3994  1331 

Igualada  384825.00 4604075.00 8  38918  4865 

Isona i Conca Dellà  338600.00 4664950.00 139  1163  8 

Isòvol  404475.00 4694775.00 11  289  26 

Ivars de Noguera  299750.00 4636150.00 27  363  13 

Ivars d'Urgell  332500.00 4616575.00 24  1741  73 

Ivorra  366750.00 4625850.00 15  136  9 

Jafre  500975.00 4658100.00 7  419  60 

Jonquera, la  489750.00 4696375.00 57  3174  56 

Jorba  379088.00 4606786.00 31  827  27 

Josa i Tuixén  381875.00 4676600.00 68  155  2 

Juià  492400.00 4651900.00 8  326  41 

Juncosa  314050.00 4582500.00 76  504  7 

Juneda  318700.00 4602675.00 47  3417  73 

Les  313025.00 4742500.00 23  979  43 

Linyola  325750.00 4619950.00 29  2836  98 

Llacuna, la  377616.00 4592444.00 52  925  18 

Lladó  484700.00 4677500.00 14  682  49 

Lladorre  356575.00 4720350.00 147  227  2 

Lladurs  376500.00 4656025.00 128  201  2 

Llagosta, la  432644.00 4596296.00 3  13820  4607 

Llagostera  491150.00 4630800.00 76  7764  102 

Llambilles  488425.00 4641225.00 15  678  45 

Llanars  446050.00 4685825.00 25  584  23 

Llançà  512550.00 4690500.00 28  5209  186 

Llardecans  295200.00 4583400.00 66  533  8 

Llavorsí  353025.00 4706575.00 69  374  5 

Lleida  302200.00 4610300.00 212  135919  641 

Llers  492850.00 4682775.00 21  1179  56 

Lles de Cerdanya  392025.00 4694150.00 103  271  3 

Lliçà d'Amunt  436699.00 4607061.00 22  14143  643 

Lliçà de Vall  436920.00 4604922.00 11  6290  572 

Llimiana  327750.00 4660400.00 42  168  4 

Llinars del Vallès  450207.00 4610046.00 28  9035  323 

Llívia  416250.00 4702050.00 13  1589  122 

Lloar, el  311425.00 4562050.00 7  117  17 

Llobera  373525.00 4645650.00 39  211  5 

Llorac  358925.00 4602125.00 23  108  5 

Page 97: MASTER THES IS

APPENDICES XIII

Llorenç del Penedès  378850.00 4571500.00 5  2185  437 

Lloret de Mar  487500.00 4616750.00 49  39363  803 

Llosses, les  427150.00 4667025.00 114  234  2 

Lluçà  423425.00 4657955.00 53  260  5 

Maçanet de Cabrenys  479575.00 4692950.00 68  729  11 

Maçanet de la Selva  477850.00 4625325.00 46  6871  149 

Madremanya  496575.00 4648900.00 14  238  17 

Maià de Montcal  478950.00 4674700.00 17  410  24 

Maials  291350.00 4582375.00 57  987  17 

Maldà  336500.00 4601975.00 31  261  8 

Malgrat de Mar  478580.00 4610460.00 9  18472  2052 

Malla  436597.00 4637722.00 11  255  23 

Manlleu  440663.00 4650218.00 17  20647  1215 

Manresa  402462.00 4620400.00 42  76558  1823 

Marçà  315625.00 4555350.00 16  649  41 

Margalef  312025.00 4572975.00 35  117  3 

Marganell  399643.00 4610812.00 14  308  22 

Martorell  410800.00 4592100.00 13  26681  2052 

Martorelles  436500.00 4597900.00 4  4922  1231 

Mas de Barberans  278175.00 4512750.00 79  663  8 

Masarac  497825.00 4688950.00 13  265  20 

Masdenverge  291550.00 4510350.00 15  1133  76 

Masies de Roda, les  443550.00 4649150.00 16  755  47 

Masies de Voltregà, les  436750.00 4652750.00 22  3232  147 

Masllorenç  367300.00 4570050.00 7  532  76 

Masnou, el  443053.00 4592454.00 3  22288  7429 

Masó, la  351150.00 4566550.00 4  298  75 

Maspujols  336250.00 4561050.00 4  663  166 

Masquefa  400977.00 4595333.00 17  8168  480 

Masroig, el  309750.00 4555450.00 16  566  35 

Massalcoreig  279550.00 4593300.00 14  593  42 

Massanes  471125.00 4624050.00 26  713  27 

Massoteres  359750.00 4628850.00 26  209  8 

Matadepera  418700.00 4606219.00 25  8616  345 

Mataró  453731.00 4599067.00 23  121722  5292 

Mediona  384150.00 4592950.00 48  2360  49 

Menàrguens  312475.00 4622475.00 20  854  43 

Meranges  400375.00 4700200.00 37  93  3 

Mieres  470300.00 4663950.00 26  344  13 

Milà, el  349900.00 4568050.00 4  178  45 

Page 98: MASTER THES IS

XIV Planning optimization software tool for DVB-T and DVB-T2

Miralcamp  323450.00 4608250.00 15  1440  96 

Miravet  298150.00 4545975.00 32  814  25 

Moià  425084.00 4629464.00 75  5710  76 

Molar, el  307650.00 4559675.00 23  302  13 

Molins de Rei  417974.00 4585246.00 16  24067  1504 

Mollerussa  324750.00 4611025.00 7  14319  2046 

Mollet de Peralada  500100.00 4689950.00 6  174  29 

Mollet del Vallès  434371.00 4598932.00 11  52484  4771 

Molló  451075.00 4688750.00 43  360  8 

Molsosa, la  379100.00 4627175.00 27  119  4 

Monistrol de Calders  418182.00 4623839.00 22  683  31 

Monistrol de Montserrat  403791.00 4607362.00 12  3029  252 

Montagut i Oix  466800.00 4675600.00 94  971  10 

Montblanc  346450.00 4582250.00 91  7305  80 

Montbrió del Camp  332500.00 4554225.00 11  2219  202 

Montcada i Reixac  432200.00 4593150.00 23  33453  1454 

Montclar  397757.00 4652754.00 22  112  5 

Montellà i Martinet  392650.00 4690850.00 55  661  12 

Montesquiu  434739.00 4662421.00 5  906  181 

Montferrer i Castellbò  370600.00 4689050.00 177  1089  6 

Montferri  363200.00 4569700.00 19  366  19 

Montgai  330750.00 4629775.00 29  727  25 

Montgat  440050.00 4591300.00 3  10270  3423 

Montmajor  395344.00 4652688.00 76  487  6 

Montmaneu  368145.00 4609598.00 14  192  14 

Montmell, el  370625.00 4575150.00 73  1431  20 

Montmeló  437449.00 4600603.00 4  8955  2239 

Montoliu de Lleida  299100.00 4603900.00 7  486  69 

Montoliu de Segarra  355950.00 4605900.00 29  193  7 

Montornès de Segarra  352650.00 4607200.00 12  108  9 

Montornès del Vallès  438849.00 4599497.00 10  15509  1551 

Mont‐ral  340800.00 4572600.00 35  171  5 

Mont‐ras  511950.00 4639550.00 12  1847  154 

Mont‐roig del Camp  328700.00 4550675.00 63  11847  188 

Montseny  449881.00 4623321.00 27  319  12 

Móra d'Ebre  302025.00 4551800.00 45  5695  127 

Móra la Nova  302725.00 4552550.00 16  3179  199 

Morell, el  350025.00 4561800.00 6  3285  548 

Morera de Montsant, la  319325.00 4570650.00 53  153  3 

Muntanyola  431939.00 4636821.00 40  570  14 

Page 99: MASTER THES IS

APPENDICES XV

Mura  414906.00 4617128.00 48  238  5 

Nalec  342925.00 4602825.00 9  95  11 

Naut Aran  328250.00 4730650.00 256  1740  7 

Navarcles  408972.00 4622906.00 6  5947  991 

Navàs  407121.00 4639604.00 81  6243  77 

Navata  488600.00 4674800.00 18  1128  63 

Navès  387400.00 4649875.00 145  266  2 

Nou de Berguedà, la  408000.00 4669000.00 25  159  6 

Nou de Gaià, la  363800.00 4560600.00 4  497  124 

Nulles  357300.00 4568025.00 11  418  38 

Odèn  366795.00 4666075.00 114  281  2 

Òdena  386831.00 4607143.00 53  3334  63 

Ogassa  440500.00 4679750.00 45  264  6 

Olèrdola  393120.00 4575252.00 30  3462  115 

Olesa de Bonesvalls  403848.00 4578822.00 31  1740  56 

Olesa de Montserrat  407801.00 4599851.00 17  23301  1371 

Oliana  360550.00 4658950.00 32  1976  62 

Oliola  348625.00 4637800.00 86  248  3 

Olius  380815.00 4647594.00 55  814  15 

Olivella  400563.00 4574040.00 39  3340  86 

Olost  425188.00 4648800.00 29  1217  42 

Olot  457825.00 4670325.00 29  33524  1156 

Oluges, les  360350.00 4617725.00 19  179  9 

Olvan  409500.00 4656866.00 36  903  25 

Omellons, els  329850.00 4596675.00 11  244  22 

Omells de na Gaia, els  339500.00 4596300.00 13  142  11 

Ordis  492450.00 4674225.00 9  372  41 

Organyà  362100.00 4674750.00 13  958  74 

Orís  437150.00 4656725.00 27  284  11 

Oristà  422228.00 4642955.00 68  585  9 

Orpí  383875.00 4598625.00 15  187  12 

Òrrius  446285.00 4600849.00 6  640  107 

Os de Balaguer  310800.00 4638150.00 136  985  7 

Osor  463275.00 4644050.00 52  354  7 

Ossó de Sió  347075.00 4624375.00 26  219  8 

Pacs del Penedès  388835.00 4580026.00 6  869  145 

Palafolls  479233.00 4613067.00 17  8584  505 

Palafrugell  513700.00 4640800.00 27  22365  828 

Palamós  510900.00 4633250.00 14  18161  1297 

Palau d'Anglesola, el  323750.00 4613350.00 12  2099  175 

Page 100: MASTER THES IS

XVI Planning optimization software tool for DVB-T and DVB-T2

Palau de Santa Eulàlia  497150.00 4669250.00 8  112  14 

Palau‐sator  509200.00 4648750.00 12  290  24 

Palau‐saverdera  512425.00 4684250.00 16  1451  91 

Palau‐solità i Plegamans  431850.00 4604500.00 15  14070  938 

Pallaresos, els  354975.00 4559900.00 5  3991  798 

Pallejà  416246.00 4586330.00 8  11134  1392 

Palma de Cervelló, la  413815.00 4585315.00 5  3057  611 

Palma d'Ebre, la 304625.00 4572950.00 37,9  413  11 

Palol de Revardit  483225.00 4657775.00 18  479  27 

Pals  512425.00 4646650.00 26  2799  108 

Papiol, el  417343.00 4587998.00 9  3900  433 

Pardines  435325.00 4684900.00 31  159  5 

Parets del Vallès  436200.00 4602800.00 9  17632  1959 

Parlavà  502675.00 4652500.00 6  394  66 

Passanant i Belltall  349675.00 4599575.00 27  159  6 

Pau  509725.00 4685100.00 11  578  53 

Paüls  281100.00 4533600.00 44  613  14 

Pedret i Marzà  505675.00 4684575.00 9  160  18 

Penelles  330950.00 4625050.00 26  546  21 

Pera, la  497950.00 4652300.00 12  443  37 

Perafita  426240.00 4654970.00 20  408  20 

Perafort  353800.00 4561600.00 10  1154  115 

Peralada  500875.00 4684200.00 44  1805  41 

Peramola  356775.00 4657900.00 56  379  7 

Perelló, el  307300.00 4527600.00 101  3235  32 

Piera  395650.00 4597492.00 57  14324  251 

Piles, les  361775.00 4596225.00 22  215  10 

Pineda de Mar  474260.00 4608445.00 11  26203  2382 

Pinell de Brai, el  291100.00 4543650.00 57  1130  20 

Pinell de Solsonès  369035.00 4645655.00 91  214  2 

Pinós  379025.00 4631775.00 104  308  3 

Pira  349900.00 4587500.00 8  510  64 

Pla de Santa Maria, el  357125.00 4580700.00 35  2309  66 

Pla del Penedès, el  392481.00 4586151.00 10  1041  104 

Planes d'Hostoles, les  461750.00 4656250.00 38  1756  46 

Planoles  426300.00 4685450.00 19  279  15 

Plans de Sió, els  350250.00 4625125.00 56  573  10 

Poal, el  321650.00 4616550.00 9  659  73 

Pobla de Cérvoles, la  325750.00 4581825.00 62  257  4 

Pobla de Claramunt, la  389907.00 4601135.00 19  2286  120 

Page 101: MASTER THES IS

APPENDICES XVII

Pobla de Lillet, la  415553.00 4677617.00 51  1312  26 

Pobla de Mafumet, la  350025.00 4561275.00 6  2403  401 

Pobla de Massaluca, la  278150.00 4562450.00 43  399  9 

Pobla de Montornès, la  367125.00 4559950.00 12  2852  238 

Pobla de Segur, la  332475.00 4679525.00 33  3237  98 

Poboleda  319550.00 4567200.00 14  371  27 

Polinyà  429824.00 4601033.00 9  7676  853 

Pont d'Armentera, el  363150.00 4582750.00 22  620  28 

Pont de Bar, el  385250.00 4692250.00 43  197  5 

Pont de Molins  494250.00 4684850.00 9  486  54 

Pont de Suert, el  314250.00 4697850.00 148  2570  17 

Pont de Vilomara i Rocafort, el 406225.00 4617250.00 27  3714  138 

Pontils  365500.00 4593250.00 68  147  2 

Pontons  376125.00 4586175.00 26  530  20 

Pontós  493250.00 4670650.00 14  238  17 

Ponts  349650.00 4642100.00 31  2803  90 

Porqueres  482518.00 4661985.00 34  4380  129 

Porrera  320300.00 4562075.00 29  480  17 

Port de la Selva, el  516975.00 4687550.00 42  1015  24 

Portbou  513100.00 4697300.00 9  1325  147 

Portella, la  303900.00 4623725.00 12  775  65 

Pradell de la Teixeta  321850.00 4558475.00 22  182  8 

Prades  331650.00 4575250.00 33  676  20 

Prat de Comte  281875.00 4540325.00 26  205  8 

Prat de Llobregat, el  424372.00 4575838.00 31  63418  2046 

Pratdip  321200.00 4546825.00 36  843  23 

Prats de Lluçanès  419748.00 4651432.00 14  2722  194 

Prats de Rei, els  378719.00 4618319.00 26  538  21 

Prats i Sansor  404525.00 4691300.00 7  237  34 

Preixana  336700.00 4608150.00 22  433  20 

Preixens  338150.00 4628950.00 29  506  17 

Premià de Dalt  445400.00 4595379.00 7  9944  1421 

Premià de Mar  446560.00 4593555.00 2  27399  13700 

Preses, les  455500.00 4666025.00 9  1731  192 

Prullans  396050.00 4692850.00 21  232  11 

Puigcerdà  411850.00 4698600.00 19  9022  475 

Puigdàlber 391467.00 4584663.00 0,4  508  1270 

Puiggròs  324025.00 4602225.00 10  309  31 

Puigpelat  357525.00 4571300.00 9  977  109 

Page 102: MASTER THES IS

XVIII Planning optimization software tool for DVB-T and DVB-T2

Puig‐reig  407245.00 4647524.00 46  4403  96 

Puigverd d'Agramunt  344050.00 4627025.00 17  278  16 

Puigverd de Lleida  311050.00 4601800.00 13  1391  107 

Pujalt  368709.00 4619694.00 31  203  7 

Quar, la  415800.00 4662150.00 38  61  2 

Quart  486900.00 4643150.00 38  2852  75 

Queralbs  431075.00 4689025.00 93  199  2 

Querol  366250.00 4587250.00 72  539  7 

Rabós  502375.00 4692100.00 45  217  5 

Rajadell  392490.00 4620556.00 46  496  11 

Rasquera  298150.00 4541975.00 51  955  19 

Regencós  514200.00 4644725.00 6  326  54 

Rellinars  409300.00 4611275.00 18  713  40 

Renau  358600.00 4565300.00 8  90  11 

Reus  341350.00 4557850.00 53  107118  2021 

Rialp  346650.00 4700975.00 63  656  10 

Riba, la  347575.00 4575850.00 8  722  90 

Riba‐roja d'Ebre  289600.00 4569800.00 99  1348  14 

Ribera d'Ondara  361975.00 4609975.00 54  445  8 

Ribera d'Urgellet  366800.00 4685950.00 107  954  9 

Ribes de Freser  431700.00 4684475.00 42  1976  47 

Riells i Viabrea  463300.00 4619575.00 27  3779  140 

Riera de Gaià, la  362575.00 4558675.00 9  1587  176 

Riner  381050.00 4644500.00 47  300  6 

Ripoll  433350.00 4672350.00 74  11057  149 

Ripollet  429689.00 4594701.00 4  37088  9272 

Riu de Cerdanya  403415.00 4689015.00 12  110  9 

Riudarenes  476550.00 4630250.00 48  2070  43 

Riudaura  451175.00 4671075.00 24  443  18 

Riudecanyes  328975.00 4555375.00 17  1083  64 

Riudecols  330300.00 4559650.00 19  1296  68 

Riudellots de la Selva  483950.00 4638200.00 13  1984  153 

Riudoms  336500.00 4556150.00 32  6436  201 

Riumors  503525.00 4675200.00 7  233  33 

Roca del Vallès, la  443962.00 4604511.00 37  10214  276 

Rocafort de Queralt  356650.00 4593400.00 8  278  35 

Roda de Barà  370500.00 4560700.00 17  6186  364 

Roda de Ter  442891.00 4648223.00 2  6015  3008 

Rodonyà  365900.00 4571350.00 8  508  64 

Roquetes  289500.00 4522050.00 137  8223  60 

Page 103: MASTER THES IS

APPENDICES XIX

Roses  514800.00 4679100.00 46  20197  439 

Rosselló  299950.00 4618750.00 10  2912  291 

Rourell, el  350725.00 4565300.00 2  380  190 

Rubí  419237.00 4593980.00 32  72987  2281 

Rubió  381022.00 4611514.00 48  202  4 

Rupià  500975.00 4652250.00 5  243  49 

Rupit i Pruit  455862.00 4652793.00 48  325  7 

Sabadell  425814.00 4599900.00 38  206493  5434 

Sagàs  414238.00 4656133.00 45  134  3 

Salàs de Pallars  329350.00 4675650.00 20  342  17 

Saldes  395873.00 4676245.00 66  348  5 

Sales de Llierca  471200.00 4676225.00 36  141  4 

Sallent  408419.00 4631036.00 65  7129  110 

Salomó  363850.00 4565725.00 12  501  42 

Salou  343250.00 4549100.00 15  26649  1777 

Salt  482450.00 4647150.00 7  29985  4284 

Sanaüja  359950.00 4637600.00 33  457  14 

Sant Adrià de Besòs  435510.00 4586514.00 4  33761  8440 

Sant Agustí de Lluçanès  427900.00 4659800.00 13  101  8 

Sant Andreu de la Barca  414554.00 4588963.00 6  26401  4400 

Sant Andreu de Llavaneres  456871.00 4602548.00 12  10181  848 

Sant Andreu Salou  485625.00 4635900.00 6  152  25 

Sant Aniol de Finestres  468195.00 4657875.00 48  327  7 

Sant Antoni de Vilamajor  450192.00 4613848.00 14  5444  389 

Sant Bartomeu del Grau  431397.00 4648507.00 34  957  28 

Sant Boi de Llobregat  419832.00 4577595.00 21  82428  3925 

Sant Boi de Lluçanès  429866.00 4656749.00 20  569  28 

Sant Carles de la Ràpita  296350.00 4499500.00 54  15511  287 

Sant Cebrià de Vallalta  466721.00 4607810.00 16  3309  207 

Sant Celoni  457714.00 4615494.00 65  16860  259 

Sant Climent de Llobregat  416199.00 4576779.00 11  3779  344 

Sant Climent Sescebes  498450.00 4690950.00 24  513  21 

Sant Cugat del Vallès  423467.00 4591732.00 48  79253  1651 

Sant Cugat Sesgarrigues  395805.00 4580164.00 6  932  155 

Sant Esteve de la Sarga  315100.00 4661275.00 93  143  2 

Sant Esteve de Palautordera  453062.00 4617208.00 11  2458  223 

Sant Esteve Sesrovires  406045.00 4594320.00 19  7202  379 

Sant Feliu de Buixalleu  465727.00 4626891.00 62  811  13 

Sant Feliu de Codines  430522.00 4615738.00 15  5702  380 

Sant Feliu de Guíxols  502475.00 4625875.00 16  21977  1374 

Page 104: MASTER THES IS

XX Planning optimization software tool for DVB-T and DVB-T2

Sant Feliu de Llobregat  420345.00 4581802.00 12  42919  3577 

Sant Feliu de Pallerols  459375.00 4658500.00 35  1397  40 

Sant Feliu Sasserra  419024.00 4644359.00 22  641  29 

Sant Ferriol  472750.00 4672025.00 42  216  5 

Sant Fost de Campsentelles  436197.00 4596658.00 13  8234  633 

Sant Fruitós de Bages  406417.00 4622955.00 22  7961  362 

Sant Gregori  478425.00 4649025.00 49  3167  65 

Sant Guim de Freixenet  368600.00 4612950.00 25  1126  45 

Sant Guim de la Plana  360825.00 4625025.00 12  191  16 

Sant Hilari Sacalm  459575.00 4636500.00 83  5763  69 

Sant Hipòlit de Voltregà  436983.00 4651965.00 1  3447  3447 

Sant Iscle de Vallalta  464208.00 4608195.00 18  1267  70 

Sant Jaume de Frontanyà  419560.00 4671208.00 21  29  1 

Sant Jaume de Llierca  467675.00 4673650.00 7  809  116 

Sant Jaume dels Domenys  379475.00 4573225.00 24  2388  100 

Sant Jaume d'Enveja  307300.00 4508800.00 61  3528  58 

Sant Joan de les Abadesses  441150.00 4676250.00 54  3556  66 

Sant Joan de Mollet  495300.00 4655025.00 3  517  172 

Sant Joan de Vilatorrada  400750.00 4622250.00 16  10779  674 

Sant Joan Despí  421214.00 4580050.00 6  32030  5338 

Sant Joan les Fonts  459875.00 4673750.00 32  2787  87 

Sant Jordi Desvalls  496250.00 4657900.00 12  649  54 

Sant Julià de Cerdanyola  408729.00 4675427.00 12  273  23 

Sant Julià de Ramis  488000.00 4653300.00 19  3233  170 

Sant Julià de Vilatorta  444082.00 4641639.00 16  2955  185 

Sant Julià del Llor i Bonmatí  472225.00 4623600.00 10  1276  128 

Sant Just Desvern  422930.00 4581611.00 8  15811  1976 

Sant Llorenç de la Muga  482750.00 4685575.00 32  213  7 

Sant Llorenç de Morunys  383625.00 4666125.00 4  1084  271 

Sant Llorenç d'Hortons  401927.00 4591567.00 20  2419  121 

Sant Llorenç Savall  421783.00 4614671.00 41  2402  59 

Sant Martí d'Albars  423450.00 4653500.00 15  113  8 

Sant Martí de Centelles  437800.00 4624000.00 26  1001  39 

Sant Martí de Llémena  470950.00 4654050.00 43  545  13 

Sant Martí de Riucorb  337900.00 4602950.00 35  697  20 

Sant Martí de Tous  376981.00 4602194.00 39  1160  30 

Sant Martí Sarroca  383954.00 4582667.00 35  3142  90 

Sant Martí Sesgueioles  374379.00 4617923.00 4  371  93 

Sant Martí Vell  494350.00 4652200.00 18  250  14 

Sant Mateu de Bages  394799.00 4628191.00 103  658  6 

Page 105: MASTER THES IS

APPENDICES XXI

Sant Miquel de Campmajor  473550.00 4665100.00 33  252  8 

Sant Miquel de Fluvià  499400.00 4669450.00 4  782  196 

Sant Mori  499350.00 4667100.00 8  180  23 

Sant Pau de Segúries  447775.00 4679250.00 9  717  80 

Sant Pere de Ribes  397269.00 4568755.00 41  28353  692 

Sant Pere de Riudebitlles  391801.00 4589791.00 5  2376  475 

Sant Pere de Torelló  441800.00 4658599.00 55  2389  43 

Sant Pere de Vilamajor  449240.00 4615034.00 35  4021  115 

Sant Pere Pescador  506850.00 4670850.00 18  2029  113 

Sant Pere Sallavinera  381548.00 4621690.00 22  171  8 

Sant Pol de Mar  468695.00 4605801.00 8  5102  638 

Sant Quintí de Mediona  388506.00 4591181.00 14  2167  155 

Sant Quirze de Besora  435531.00 4661534.00 8  2257  282 

Sant Quirze del Vallès  423430.00 4598522.00 14  18462  1319 

Sant Quirze Safaja  429672.00 4620170.00 26  645  25 

Sant Ramon  363825.00 4620825.00 19  563  30 

Sant Sadurní d'Anoia  398760.00 4586764.00 19  12237  644 

Sant Sadurní d'Osormort  448783.00 4639269.00 31  101  3 

Sant Salvador de Guardiola  397425.00 4615175.00 37  3082  83 

Sant Vicenç de Castellet  405472.00 4613719.00 17  8564  504 

Sant Vicenç de Montalt  459034.00 4603300.00 8  5627  703 

Sant Vicenç de Torelló  440006.00 4657369.00 7  1996  285 

Sant Vicenç dels Horts  417306.00 4583100.00 9  27701  3078 

Santa Bàrbara  288650.00 4510350.00 28  3955  141 

Santa Cecília de Voltregà  435679.00 4649476.00 9  190  21 

Santa Coloma de Cervelló  417700.00 4580250.00 7  7744  1106 

Santa Coloma de Farners  472125.00 4634800.00 71  11739  165 

Santa Coloma de Gramenet  434120.00 4589437.00 7  119717  17102 

Santa Coloma de Queralt  365225.00 4599325.00 34  3167  93 

Santa Cristina d'Aro  500100.00 4629200.00 68  5017  74 

Santa Eugènia de Berga  440633.00 4639166.00 7  2231  319 

Santa Eulàlia de Riuprimer  432802.00 4640405.00 14  1052  75 

Santa Eulàlia de Ronçana  435550.00 4611550.00 14  6802  486 

Santa Fe del Penedès  393123.00 4582488.00 3  389  130 

Santa Llogaia d'Àlguema  496150.00 4675875.00 2  335  168 

Santa Margarida de Montbui  384050.00 4603600.00 28  9834  351 

Santa Margarida i els Monjos  388258.00 4575485.00 17  6989  411 

Santa Maria de Besora  438739.00 4664428.00 25  163  7 

Santa Maria de Corcó  447802.00 4654116.00 62  2293  37 

Santa Maria de Martorelles  437850.00 4596900.00 5  850  170 

Page 106: MASTER THES IS

XXII Planning optimization software tool for DVB-T and DVB-T2

Santa Maria de Merlès  415448.00 4650478.00 52  163  3 

Santa Maria de Miralles  377150.00 4597500.00 25  130  5 

Santa Maria de Palautordera  453882.00 4616100.00 17  8823  519 

Santa Maria d'Oló  420134.00 4636422.00 66  1086  16 

Santa Oliva  378675.00 4568125.00 10  3240  324 

Santa Pau  464650.00 4666075.00 49  1610  33 

Santa Perpètua de Mogoda  431765.00 4598746.00 16  25048  1566 

Santa Susanna  475682.00 4609493.00 13  3251  250 

Santpedor  403642.00 4626664.00 17  6875  404 

Sarral  353750.00 4589800.00 52  1715  33 

Sarrià de Ter  485600.00 4651800.00 4  4468  1117 

Sarroca de Bellera  325600.00 4692100.00 88  133  2 

Sarroca de Lleida  296450.00 4592800.00 42  432  10 

Saus, Camallera i Llampaies  497100.00 4663650.00 11  768  70 

Savallà del Comtat  358300.00 4600675.00 15  71  5 

Secuita, la  355900.00 4563050.00 18  1522  85 

Selva de Mar, la  515500.00 4686025.00 7  226  32 

Selva del Camp, la  344050.00 4564500.00 35  5376  154 

Senan  340375.00 4592900.00 12  59  5 

Sénia, la  270200.00 4501975.00 108  6179  57 

Senterada  330150.00 4688075.00 34  145  4 

Sentiu de Sió, la  323900.00 4630450.00 30  496  17 

Sentmenat  428098.00 4606753.00 29  7870  271 

Serinyà  479200.00 4668875.00 17  1095  64 

Seròs  283850.00 4593650.00 86  1864  22 

Serra de Daró  506100.00 4653050.00 8  194  24 

Setcases  442575.00 4691850.00 49  173  4 

Seu d'Urgell, la  373400.00 4690800.00 15  13063  871 

Seva  440658.00 4632318.00 30  3370  112 

Sidamon  319500.00 4611100.00 8  756  95 

Sils  478800.00 4628650.00 30  5127  171 

Sitges  400439.00 4565891.00 44  27668  629 

Siurana  499600.00 4673175.00 11  206  19 

Sobremunt  431004.00 4654299.00 14  98  7 

Soleràs, el  306350.00 4587450.00 12  398  33 

Solivella  347950.00 4591150.00 21  685  33 

Solsona  377500.00 4650575.00 18  9233  513 

Sora  430638.00 4662824.00 32  180  6 

Soriguera  350300.00 4692700.00 106  370  3 

Sort  346225.00 4697350.00 105  2382  23 

Page 107: MASTER THES IS

APPENDICES XXIII

Soses  290425.00 4601200.00 30  1716  57 

Subirats  399500.00 4582150.00 56  3099  55 

Sudanell  297200.00 4603600.00 9  887  99 

Sunyer  299225.00 4599800.00 13  296  23 

Súria  396477.00 4632272.00 24  6438  268 

Susqueda  462575.00 4651650.00 51  130  3 

Tagamanent  439200.00 4621200.00 43  308  7 

Talamanca  415128.00 4621261.00 29  162  6 

Talarn  326675.00 4672750.00 28  397  14 

Talavera  361550.00 4604950.00 30  297  10 

Tallada d'Empordà, la  504625.00 4658825.00 17  420  25 

Taradell  440892.00 4636009.00 26  5964  229 

Tarragona  353250.00 4553350.00 65  140323  2159 

Tàrrega  345250.00 4612600.00 88  16539  188 

Tarrés  334650.00 4587800.00 13  108  8 

Tarroja de Segarra  356700.00 4621550.00 8  178  22 

Tavèrnoles  444285.00 4644847.00 19  302  16 

Tavertet  451932.00 4649650.00 32  158  5 

Teià  443587.00 4594332.00 7  6087  870 

Térmens  313800.00 4621050.00 28  1536  55 

Terrades  486825.00 4684425.00 21  301  14 

Terrassa  417894.00 4602110.00 70  210941  3013 

Tiana  439035.00 4592647.00 8  7590  949 

Tírvia  355750.00 4708675.00 9  143  16 

Tiurana  355504.00 4648785.00 16  85  5 

Tivenys  290575.00 4531675.00 54  959  18 

Tivissa  309550.00 4546075.00 209  1815  9 

Tona  436018.00 4633478.00 17  7955  468 

Torà  367500.00 4630300.00 93  1367  15 

Tordera  476693.00 4616603.00 84  15345  183 

Torelló  439191.00 4655576.00 13  13808  1062 

Torms, els  309500.00 4585200.00 14  174  12 

Tornabous  338225.00 4618650.00 24  857  36 

Torre de Cabdella, la  334100.00 4698800.00 165  811  5 

Torre de Claramunt, la  388279.00 4599054.00 15  3726  248 

Torre de Fontaubella, la  320825.00 4554950.00 7  147  21 

Torre de l'Espanyol, la  300975.00 4562950.00 28  678  24 

Torrebesses  299050.00 4589075.00 27  300  11 

Torredembarra  365700.00 4556225.00 9  15272  1697 

Torrefarrera  300900.00 4616450.00 23  3911  170 

Page 108: MASTER THES IS

XXIV Planning optimization software tool for DVB-T and DVB-T2

Torrefeta i Florejacs  356600.00 4624100.00 89  633  7 

Torregrossa  319100.00 4605600.00 41  2255  55 

Torrelameu  308900.00 4619750.00 11  685  62 

Torrelavit  393922.00 4589433.00 24  1372  57 

Torrelles de Foix  380499.00 4583031.00 37  2463  67 

Torrelles de Llobregat  414858.00 4579102.00 14  5430  388 

Torrent  510600.00 4644525.00 8  193  24 

Torres de Segre  292750.00 4601275.00 51  2052  40 

Torre‐serona  302875.00 4616300.00 6  358  60 

Torroella de Fluvià  503450.00 4669350.00 17  678  40 

Torroella de Montgrí  510650.00 4654650.00 66  11598  176 

Torroja del Priorat  316625.00 4564900.00 13  165  13 

Tortellà  469575.00 4675975.00 11  760  69 

Tortosa  291100.00 4520925.00 219  35143  160 

Toses  418975.00 4686150.00 58  160  3 

Tossa de Mar  494350.00 4618750.00 39  5948  153 

Tremp  326000.00 4670700.00 303  6228  21 

Ullà  509025.00 4655625.00 7  1076  154 

Ullastrell  412972.00 4597970.00 7  1864  266 

Ullastret  505775.00 4650025.00 11  239  22 

Ulldecona  284025.00 4497350.00 127  7236  57 

Ulldemolins  322375.00 4576850.00 38  481  13 

Ultramort  502950.00 4654050.00 4  196  49 

Urús  405550.00 4689550.00 17  201  12 

Vacarisses  409805.00 4607033.00 41  5872  143 

Vajol, la  483575.00 4694800.00 5  98  20 

Vall de Bianya, la  454900.00 4673550.00 94  1321  14 

Vall de Boí, la  319400.00 4708450.00 219  1090  5 

Vall de Cardós  354450.00 4714100.00 56  420  8 

Vall d'en Bas, la  455385.00 4663215.00 91  2780  31 

Vallbona d'Anoia  392275.00 4597381.00 6  1427  238 

Vallbona de les Monges  340700.00 4599025.00 34  251  7 

Vallcebre  402550.00 4673275.00 28  264  9 

Vallclara  331350.00 4582800.00 14  123  9 

Vallfogona de Balaguer  318400.00 4624750.00 27  1769  66 

Vallfogona de Ripollès  442500.00 4672050.00 39  221  6 

Vallfogona de Riucorb  353025.00 4602975.00 11  119  11 

Vallgorguina  459272.00 4610875.00 22  2465  112 

Vallirana  410718.00 4582355.00 24  14066  586 

Vall‐llobrega  510550.00 4636800.00 5  853  171 

Page 109: MASTER THES IS

APPENDICES XXV

Vallmoll  353350.00 4567450.00 17  1630  96 

Vallromanes  441793.00 4598257.00 11  2283  208 

Valls  353625.00 4572250.00 55  25092  456 

Valls d'Aguilar, les  363400.00 4683950.00 124  307  2 

Valls de Valira, les  373175.00 4693625.00 171  832  5 

Vandellòs  i  l'Hospitalet  de l'Infant  317725.00 4543400.00 103  5754  56 

Vansa i Fórnols, la  374850.00 4677025.00 106  213  2 

Veciana  374222.00 4612930.00 39  172  4 

Vendrell, el  377300.00 4564575.00 37  35821  968 

Ventalló  502316.27 4666566.33 25  780  31 

Verdú  345400.00 4608450.00 36  1025  28 

Verges  503950.00 4656850.00 10  1162  116 

Vespella de Gaià  362374.00 4653261.00 18  404  22 

Vic  438306.00 4642404.00 31  39844  1285 

Vidrà  443100.00 4663850.00 34  173  5 

Vidreres  481675.00 4626625.00 48  7430  155 

Vielha e Mijaran  319500.00 4730325.00 212  5710  27 

Vilabella  360200.00 4567775.00 18  799  44 

Vilabertran  498550.00 4681400.00 2  882  441 

Vilablareix  483100.00 4644850.00 6  2283  381 

Vilada  411676.00 4665728.00 22  520  24 

Viladamat  506300.00 4664800.00 12  466  39 

Viladasens  494350.00 4660550.00 16  217  14 

Viladecans  418026.00 4574555.00 20  63489  3174 

Viladecavalls  412922.00 4601192.00 20  7322  366 

Vilademuls  490900.00 4665375.00 62  786  13 

Viladrau  449450.00 4633250.00 51  1100  22 

Vilafant  494950.00 4677400.00 8  5416  677 

Vilafranca del Penedès  391354.00 4578122.00 20  38425  1921 

Vilagrassa  342350.00 4612675.00 20  455  23 

Vilajuïga  507850.00 4686200.00 13  1149  88 

Vilalba dels Arcs  282650.00 4555550.00 67  724  11 

Vilalba Sasserra  453550.00 4611500.00 6  636  106 

Vilaller  312450.00 4705400.00 59  715  12 

Vilallonga de Ter  443400.00 4686975.00 64  478  7 

Vilallonga del Camp  349675.00 4564950.00 9  1889  210 

Vilamacolum  504675.00 4671650.00 6  322  54 

Vilamalla  497625.00 4674150.00 9  1134  126 

Vilamaniscle  505675.00 4691675.00 5  169  34 

Page 110: MASTER THES IS

XXVI Planning optimization software tool for DVB-T and DVB-T2

Vilamòs  314025.00 4735500.00 15  174  12 

Vilanant  490950.00 4678300.00 17  356  21 

Vilanova de Bellpuig  330450.00 4609100.00 14  1170  84 

Vilanova de la Barca  310975.00 4617975.00 22  1273  58 

Vilanova de l'Aguda  355200.00 4641600.00 54  234  4 

Vilanova de Meià  336300.00 4651250.00 105  418  4 

Vilanova de Prades  329225.00 4579625.00 22  144  7 

Vilanova de Sau  449104.00 4644292.00 59  336  6 

Vilanova de Segrià  301975.00 4620750.00 9  845  94 

Vilanova del Camí  386449.00 4603302.00 10  12649  1265 

Vilanova del Vallès  440500.00 4600650.00 15  4654  310 

Vilanova d'Escornalbou  326875.00 4553525.00 17  559  33 

Vilanova i la Geltrú  393250.00 4564500.00 34  65890  1938 

Vilaplana  335250.00 4566100.00 23  614  27 

Vila‐rodona  362675.00 4574775.00 33  1260  38 

Vila‐sacra  501550.00 4679450.00 6  598  100 

Vila‐sana  327675.00 4614575.00 19  696  37 

Vila‐seca  344400.00 4552850.00 22  20866  948 

Vilassar de Dalt  446648.00 4596553.00 9  8672  964 

Vilassar de Mar  449323.00 4595034.00 4  19482  4871 

Vilaür  496450.00 4665875.00 5  140  28 

Vilaverd  347600.00 4577725.00 13  494  38 

Vilella Alta, la  314050.00 4566350.00 5  114  23 

Vilella Baixa, la  312550.00 4565875.00 6  206  34 

Vilobí del Penedès  388178.00 4582965.00 9  1112  124 

Vilobí d'Onyar  478700.00 4637600.00 33  2956  90 

Vilopriu  499550.00 4661700.00 16  221  14 

Vilosell, el  328450.00 4583600.00 19  200  11 

Vimbodí i Poblet  337100.00 4585250.00 66  1077  16 

Vinaixa  330900.00 4588500.00 38  607  16 

Vinebre  297900.00 4562200.00 26  483  19 

Vinyols i els Arcs  335450.00 4553500.00 11  1829  166 

Viver i Serrateix  399078.00 4644950.00 67  186  3 

Xerta  288750.00 4531750.00 32  1300  41