masayuki yamagami (univ. of aizu

26
Masayuki YAMAGAMI (Univ. of Aizu) Shape and independent-particle motion in nuclei; the basic ideas from microscopic collective models Part 2: Pairing correlations and the rotational spectrum Version 2.0 2016/8/25

Upload: others

Post on 17-Jan-2022

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Masayuki YAMAGAMI (Univ. of Aizu

MasayukiYAMAGAMI(Univ.ofAizu)

Shape and independent-particle motion in nuclei; the basic ideas from microscopic collective models

Part 2: Pairing correlations and the rotational spectrum

Version 2.02016/8/25

Page 2: Masayuki YAMAGAMI (Univ. of Aizu

Rotation of “deformed” statesPairing Quadrupole deformation

Symmetry-broken state BCS state HF stateBroken symmetry Number Spatial rotationDeformation parameter(Order parameter)

Δ = 𝐺 𝐵𝐶𝑆 𝑃( 𝐵𝐶𝑆 𝛽 = 𝐻𝐹 𝑟-𝑌-/ 𝐻𝐹

Classical treatment (Cranking model)

𝐻0 = 𝐻 − 𝜆𝑁 𝐻0 = 𝐻 − 𝜔𝐽

Rotational spectrum 𝑁 = 𝑁/, 𝑁/ ± 2, 𝑁/ ± 4,…

𝐸; − 𝐸;< ≈ℏ-

2ℑ@ABC𝑁-

𝐼 = 0, 2, 4, …𝐸G − 𝐸/ ≈

ℏ-

2ℑ 𝐼(𝐼 + 1)

Reaction for excitation Two-particle transfer Coulomb excitation,…

ΔΔ Δ

Rotation𝜙

Δ = 0 Δ ≠ 0

Page 3: Masayuki YAMAGAMI (Univ. of Aizu

Fermionic superfluidityCooper pairing:

two correlated fermions act like a boson

Attractive 𝑉@ABC

ExamplesSuperconductivity:

Cooper pairs of electrons

Ultra-cold Fermion gas:6Li, 40K atom pairs

Superfluid 3He:3He atom pairs

Vortex phase in 6Li superfluid fermi gas (Zwierlein et al, 2005)

Nuclear superfluidityNuclear matter (neutron stars)

Nuclei ← Finite system !

Page 4: Masayuki YAMAGAMI (Univ. of Aizu

Evidences of pairing correlations

n n

Attractive 𝑉@ABC

n nEnergy for breaking a pair

1) Even-Odd mass staggering 2) Moment of inertia (Superfluidity)

𝐸G − 𝐸/ =ℏ-

2ℑ 𝐼(𝐼 + 1)

Additional binding by pair creation

𝐸 ~2Δ

No pairing

with pairing

Page 5: Masayuki YAMAGAMI (Univ. of Aizu

Why “deformation” appears?

Answer (Mottelson,1960) Competition between two opposing coupling schemes

1) Aligned coupling scheme for deformed equilibrium shape 2) Pair coupling scheme for spherical equilibrium shape

Page 6: Masayuki YAMAGAMI (Univ. of Aizu

𝑁-particles in a degenerate 𝑗-shell [𝑁: even #] e.g., Two-particles in 𝑑R/--shell (pair degeneracy Ω = -UVW

- = 3 )

+ +

𝐻 = −𝐺𝑃(𝑃, 𝑃( = Y 𝑎U[( 𝑎U[\

(�

[^/

𝑚,𝑚\ = W-, −

W- 𝑚,𝑚\ = a

-, −a- 𝑚,𝑚\ = R

-, −R-

𝐻, 𝑃( = −𝐺 Ω − 𝑛 + 2 𝑃(

Model Hamiltonian

This is easily shown by equations of motion

𝐻𝑃(|0⟩ = −𝐺Ω𝑃(|0⟩, 𝐻 𝑃( -|0⟩ = −2𝐺 Ω − 1 𝑃( -|0⟩, …

Scattering of two particles:𝑗𝑚, 𝑗𝑚\ → 𝑗𝑚0, 𝑗𝑚\′

[𝑚\ is time-reversal state of 𝑚]

𝑛 = Y 𝑎U[( 𝑎U[

[^/

+ 𝑎U[\( 𝑎U[\

𝑁-particle state

|𝑁⟩ = 𝑃( ;/-|0⟩

Page 7: Masayuki YAMAGAMI (Univ. of Aizu

𝑎g(: (deformed) single-particle state𝑎g\(: time-reversal state of 𝑎g

(

𝐻 =Y𝜀g𝑎g(𝑎g

g

− 𝐺𝑃(𝑃,

𝑃( = Y 𝑎g(𝑎g\

(�

g^/

For 𝑁-particles, the wave-functions

𝑁-particles in non-degenerate levels [𝑁: even #]

|𝑁⟩ = 𝐴( ;/-|0⟩with𝐴( = Y 𝑐g; 𝑎g

(𝑎g\(

g^/

1) 𝑐g; : Variational parameters

2) Particle number 𝑁 is conserved, but not easy to work with

𝜈 �̅��̅�′

𝜈′

Page 8: Masayuki YAMAGAMI (Univ. of Aizu

BCS state (mean-field approximation)

|Φrst⟩ =u 𝑢g + 𝑣g𝑎g(𝑎g\

( |−⟩�

g^/

𝐴( = Y𝑣g𝑢g𝑎g(𝑎g\

(�

g^/

Particle number 𝑁 is NOT conserved!

BCS wave function

𝑣g- 𝑣g-

𝜀g 𝜀g

Uno

ccup

ied

leve

lsO

ccup

ied

leve

lsHF state BCS state|Φrst⟩ = 𝐶Y

1𝑁/2 !

;

|𝑁⟩

𝑣g-: Occupation probability of 𝜈, �̅�

𝑢g- + 𝑣g- = 1

|𝑁⟩ = 𝐴(;-|0⟩ with

If 𝑣B- = 1 ℎ𝑜𝑙𝑒 , 𝑣[- = 0(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒)

|Φrst⟩ =u𝑎B(𝑎�̅

(|−⟩�

B^/

= |𝐻𝐹⟩

Page 9: Masayuki YAMAGAMI (Univ. of Aizu

Quasiparticle state

|Φrst⟩ =u 𝑢g + 𝑣g𝑎g(𝑎g\

( |−⟩�

g^/

Quasiparticle state 𝛼g( (independent-particle state)

𝛼g |Φrst⟩ = 0

Determination of 𝑢g, 𝑣g

𝛼g( = 𝑢g𝑎g

( − 𝑣g𝑎g\ , 𝛼g\( = 𝑢g𝑎g\

( + 𝑣g𝑎g

𝛼g , 𝛼�( = 𝛿�g, 𝛼g , 𝛼� = 𝛼g

(, 𝛼�( = 0 ⟹𝑢g- + 𝑣g- = 1

for

Bogoliubov transformation

Here, 𝑢gand𝑣g are real numbers (This sets the gauge angle 𝜙 = 0)

Equations of motion for variation 𝛿𝛼g = 𝛿𝑢g𝑎g − 𝛿𝑣g𝑎g\(

⟹ Gap equation

Φrst 𝛿𝛼g , 𝐻0, 𝛼�( Φrst = 𝐸g Φrst 𝛿𝛼g , 𝛼�

( Φrst

Page 10: Masayuki YAMAGAMI (Univ. of Aizu

Quasiparticle energy and pairing gap

𝐻0 = 𝐻 − 𝜆𝑁� =Y 𝜀g − 𝜆 𝑎g(𝑎g

g

− 𝐺𝑃(𝑃

= Φrst 𝐻′ Φrst +Y𝐸g𝛼g(𝛼g

g

+ 𝑉C��B��A�

Quasiparticle energy 𝐸g = 𝜀g − 𝜆 - + Δ�

Pairing gap Δ = 𝐺 Φrst 𝑃( Φrst = 𝐺 ∑ 𝑢g𝑣g�g^/

Occupation probability 𝑣g- =W- 1 + ����

��, 𝑢g- = 1 − ����

��

𝜆 (Chemical potential) for Φrst 𝑁� Φrst = 𝑁 on average

Representation by quasiparticle states 𝛼g(

𝐻rst (mean-field part)

Page 11: Masayuki YAMAGAMI (Univ. of Aizu

Pairing-rotational spectrum (Sn isotopes)

𝐸 = −𝐵 𝑁 + 8.6𝑁 + 45 ≈ 0.10 𝑁 − 66 - MeV

“Excited state” = the ground states in the neighboring nuclei

Quadrupole deformation

Pairing rotation

Pairing rotation (𝑁�� ⇆ 𝑁 + 2 �� ⇆ 𝑁 + 4 �� …)

Two-neutron transfer(𝑁�� ⇆ 𝑁 + 2 �� ⇆ 𝑁 + 4 �� …)

Page 12: Masayuki YAMAGAMI (Univ. of Aizu

Rotation in gauge space

𝐻rst : 𝐻rst, 𝑁� ≠ 0 (violation of number conservation!)

BCS theory (mean-field approximation)

Rotated BCS state |Φrst 𝜙 ⟩ (gauge angle 𝜙)

𝐻 = 𝐻rst + 𝑉C��B��A�: 𝐻,𝑁� = 0n n

Φrst 𝜙 𝐻 Φrst 𝜙 = Φrst 𝐻 Φrst

|Φrst 𝜙 ⟩ = 𝑒�B;�-�|Φrst⟩ =u 𝑢g + 𝑒�B�𝑣g𝑎g

(𝑎g\( |−⟩

g^/

ΔΔ Δ

Rotation𝜙

Δ = 0 Δ ≠ 0

Continuous symmetry0 ≤ 𝜙 < 2𝜋

Page 13: Masayuki YAMAGAMI (Univ. of Aizu

Quadrupole deformation and Rotation

𝐻𝐹 Ω 𝐻 𝐻𝐹 Ω = 𝐻𝐹 𝐻 𝐻𝐹

𝐻�� : 𝐻��, 𝐽 ≠ 0 (violates the rotational symmetry)

HF model (mean-field approximation)

Rotated HF state |𝐻𝐹 Ω ⟩ by Euler angle Ω = 𝛼, 𝛽, 𝛾

𝐻 = 𝐻�� + 𝑉C��B��A�: 𝐻, 𝐽 = 0

𝑅 Ω = 𝑒�B£¤¥𝑒�B¦¤§𝑒�B¨¤¥

𝛽 𝛽 𝛽 RotationΩ = 𝛼, 𝛽, 𝛾

Page 14: Masayuki YAMAGAMI (Univ. of Aizu

Schematic model for “moment of inertia”𝑵-particles in a single 𝒋-shell

PairdegeneracyΩ = 2𝑗 + 1 /2

𝜀g = 0

BCS ground state energy at 𝑁 = Ω (half-filled, 𝑣g- = 1/2)

𝐸rst = Φrst 𝐻 − 𝜆𝑁 Φrst + 𝜆𝑁

= 𝜆𝑁 +𝐺4 𝑁

-

≡ 𝜆𝑁 +ℏ-

2ℑ@ABC𝑁-

𝑣g- =;

-UVW =;-´, 𝑢g- = 1 − ;

Occupation probabilities

Pairing gap

Δ = 𝐺Y𝑢g𝑣g

g^/

= 𝐺𝑁2Ω 1 −

𝑁2Ω

�×Ω =

𝐺2 𝑁 2Ω − 𝑁�

Page 15: Masayuki YAMAGAMI (Univ. of Aizu

Two-particle transfer reaction

Pairing gap Δ = 𝐺 Φrst 𝑃( Φrst 𝑃( = Y 𝑎g(𝑎g\

(�

g^/

Two-particle transfer matrix element

Two-particle transfer cross section (pairing rotational band)

𝜎C·¸~ Φrst 𝑃( Φrst-~

Δ𝐺

-~𝐴4 Δ ≈ W-

¹� MeV, 𝐺 ≈ -R¹ MeV

Two-particle transfer cross section (a two-quasiparticle state)

𝜎-º@~ 𝜈�̅� 𝑃( Φrst- = 𝑢g» ≈1

The ratio𝑅¼ =

𝜎C·¸𝜎-º@

≈𝐴4 ≈ 30 (𝑓𝑜𝑟𝑚𝑎𝑠𝑠𝑛𝑢𝑚𝑏𝑒𝑟𝐴 ≈ 120)

Φrst 𝑁� Φrst = 𝑁/ ⟹ |Φrst⟩ contains |𝑁/⟩,|𝑁/ + 2⟩, |𝑁/ − 2⟩,…

Φrst 𝑃( Φrst ⟹ Average of 𝑁/ + 2 𝑃( 𝑁/ , 𝑁/ 𝑃( 𝑁/ − 2 , …

Page 16: Masayuki YAMAGAMI (Univ. of Aizu

Number-projected wave function

|Φrst 𝜙 ⟩ =u 𝑢g + 𝑒�B�𝑣g𝑎g(𝑎g\

( |−⟩�

g^/

= u𝑢g

g^/

1 + 𝑒�B�|2⟩ +12! 𝑒

�-B�|4⟩ + ⋯+1

𝑁/2 ! 𝑒�B;-�|𝑁⟩ + ⋯

Here, 𝑁-particle state |𝑁⟩ = 𝐴( ;/-|−⟩with𝐴( = ∑ Á���𝑎g(𝑎g\

(�g^/

Number-projection operator 𝑃;

|𝑁⟩ = 𝑃;|Φrst 𝜙 ⟩~Â𝑑𝜙2𝜋

/𝑒VB

;-�|Φrst 𝜙 ⟩

Pairing rotational band 𝑁 ⟶ 𝑁 ± 2⟶ 𝑁 ± 4⟶ ⋯(Two-particle transfer reaction !)

Page 17: Masayuki YAMAGAMI (Univ. of Aizu

Pairing rotation and vibration in Sn isotopes

D. M. Brink and R. A. Broglia, Nuclear Superfluidity: Pairing in Finite Systems (Cambridge University Press, 2005)

Pairing rotation𝐸 ≈ 0.10 𝑁 − 66 - MeV

𝐸=−𝐵𝑁

+8.6𝑁

+45

+𝑬 𝒗

𝒊𝒃M

eVExperiment: 𝐼Ã = 0V states in two-particle transfer reactions (t,p) and (p,t)

0��V0��V

0��V

0ÁBÉV0��V

0��V 0��V 0��V0��V

0��V

0ÁBÉV 0ÁBÉV

0ÁBÉV0ÁBÉV

𝜎C·¸ 𝑡, 𝑝𝜎C·¸ 𝑝, 𝑡

Normalized to 𝜎C·¸(116Sn(gs)⟶ 118Sn(gs))

Pairing vibration= cross section

Page 18: Masayuki YAMAGAMI (Univ. of Aizu

Pairing correlations determine the limit of existence

This nuclear chart is taken from Wikimedia Commons, the free media repository

Three-body system11Li=9Li+n+n

Page 19: Masayuki YAMAGAMI (Univ. of Aizu

Pairing correlation in 11Li n

n9Li

Experiment: T. Nakamura, et al., PRL 96, 252502 (2006)

Soft E1 excitation

Two-particle density in 11Li

K.Hagino, H.Sagawa, Phys.Rev. C 72, 044321 (2005)

Di-neutron correlation is suggested !

[ ]fmr

r

𝐵 𝐸1 = 1.42 18 𝑒-𝑓𝑚-(𝐸C�� < 3𝑀𝑒𝑉)

𝜃W- = 48�WÌVW» degreecf. 𝜃W- Í·�ηCC��A¸B·Í = 90 degree

𝜃W-

Page 20: Masayuki YAMAGAMI (Univ. of Aizu

Divergence of nuclear radius(neutron-gas problem )

J.Dobaczewski, H.Flocard, J.Treiner, Nucl. Phys. A422, 103 (1984)

Pair scattering into continuum states

𝜆� < Δ

𝜌 𝑟 = Y 𝑣B- 𝜑B 𝑟 -�

É·�Í��¸A¸��

+  𝑑𝜀�ÍÉ·�Í��¸A¸��

𝑣�- 𝜑� 𝑟 -

ÒBÁ�C��ÍÎ�!

Breakdown of BCS theory in weakly-bound nuclei

𝜆�

How can we overcome this problem ?

Page 21: Masayuki YAMAGAMI (Univ. of Aizu

Hartree-Fock-Bogoliubov method Selfconsistency between HF state & pairing correlations

𝑎Ó |𝐻𝐹⟩ = 0, 𝑎Ó( =Y𝐷�Ó

𝑐�(

𝑎Ó(:HF single-particle state𝑐�(:Basis state (e.g., spherical state)𝐷�Ó: Variational parameters

𝛼Ó |𝐵𝐶𝑆⟩ = 0, 𝛼Ó( = 𝑢Ó𝑎Ó

( − 𝑣Ó𝑎Ó¼𝛼Ó( :Quasiparticlestate𝑎Ó(:HF single-particle state𝑢Ó, 𝑣Ó: Variational parameters

𝛼Ó |𝐻𝐹𝐵⟩ = 0, 𝛼Ó( =Y𝑢�Ó𝑎�

( − 𝑣�Ó𝑎�̅�

�𝛼Ó( :Quasiparticlestate𝑎�(:HF single-particle state𝑢�Ó, 𝑣�Ó: Variational parameters

Equations of motion for variation

ℎ Δ−Δ∗ −ℎ∗

𝑢𝑣 = 𝐸

𝑢𝑣

ℎ�Ó = 𝐻𝐹𝐵 𝑎� , 𝐻0, 𝑎Ó( 𝐻𝐹𝐵

Δ�Ó = − 𝐻𝐹𝐵 𝑎� , 𝐻0, 𝑎Ó 𝐻𝐹𝐵

HFB equation (matrix form)

𝛿𝛼Ó =Y𝛿𝑢�Ó𝑎� − 𝛿𝑣�Ó𝑎�̅(

HFB quasiparticle state

Two selfconsistent potentials① HF potential② Pairing potential

Page 22: Masayuki YAMAGAMI (Univ. of Aizu

Pairing anti-halo effectIdea: K. Bennaceur, J. Dobaczewski, M. Ploszajczak, Phys. Lett. 496B, 154 (2000)

Quasiparticle wave function (hole component)

𝑣B 𝑟 C→Ü𝑒𝑥𝑝 −𝛼B𝑟 /𝑟

HFB:𝛼B = ÞßℏÞ

�à��� ≥ Þß

ℏÞâ

� > 0

HF: 𝛼B = −ÞßℏÞ�à

�à,�→/0

M. Grasso, N. Sandulescu, Nguyen Van Giai, and R. J. Liotta, Phys. Rev. C64, 064321 (2001) M. Y., Phys. Rev. C72, 064308 (2005)

K. Hagino and H. Sagawa,Phys. Rev. C84, 011303 (2011)

𝑉ä� 𝑟 & Δ@ABC 𝑟

Ni

Page 23: Masayuki YAMAGAMI (Univ. of Aizu

l=3l=4l=5l=6

Di-neutron condensation

θO

M.Matsuo, K.Mizuyama, Y.Serizawa, Phys.Rev. C 71, 064326 (2005)

Di-neutron correlation

High-l orbits

Strong correlation in θ direction

𝜃~1/𝑙Contribution of non-resonant continuum states

Cooper pair size (2n-correlation density)

Page 24: Masayuki YAMAGAMI (Univ. of Aizu

Pairing rotation in Sn isotopesSkyrme-HFB+QRPA calculation : H. Shimoyama and M. Matsuo, Phys. Rev. C 88, 054308 (2013)

Pairing rotation Transition strength for 𝐴�� → (𝐴 + 2)��

θO𝜃~1/𝑙

Page 25: Masayuki YAMAGAMI (Univ. of Aizu

Di-neutron correlations & condensation (Concept!)

2nS

0

BCS

BEC~ ~

Cooperpair

Few-body Mean-field Equation of stateCluster collective moitons (astrophysics)

・・・

・・・

・・・

・・・

Mass number 𝐴 (Number of di-neutrons)

Drip-line

Stable nuclei

Page 26: Masayuki YAMAGAMI (Univ. of Aizu

Summary of part 2Pairing Quadrupole deformation

Symmetry-broken state BCS state HF stateBroken symmetry Number Spatial rotationDeformation parameter(Order parameter)

Δ = 𝐺 𝐵𝐶𝑆 𝑃( 𝐵𝐶𝑆 𝛽 = 𝐻𝐹 𝑟-𝑌-/ 𝐻𝐹

Classical treatment (Cranking model)

𝐻0 = 𝐻 − 𝜆𝑁 𝐻0 = 𝐻 − 𝜔𝐽

Rotational spectrum 𝑁 = 𝑁/, 𝑁/ ± 2, 𝑁/ ± 4,…

𝐸; − 𝐸;< ≈ℏ-

2ℑ@ABC𝑁-

𝐼 = 0, 2, 4, …𝐸G − 𝐸/ ≈

ℏ-

2ℑ 𝐼(𝐼 + 1)

Reaction for excitation Two-particle transfer Coulomb excitation,…

Core9Li

11Li=9Li+n+n

di-neutronWeakly-bound nuclei

Heavier-mass region

Di-neutron condensation?

Collective rotation?Surface vibration?

Two-neutron transfer?