masaaki umehara osaka university...[4] r. langevin, g. levitt and h. rosenberg, classes...

21
The Gauss-Bonnet type formulas for surfaces with singular points Masaaki Umehara Osaka University大), 大) した 1

Upload: others

Post on 30-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • The Gauss-Bonnet type formulasfor surfaces with singular points

    Masaaki Umehara (Osaka University)

    最近の筆者と

    •佐治健太郎氏(岐阜大),•山田光太郎氏(東工大)との共同研究に関連した内容.

    1

  • 2

    1. Gaussian curvature K

    Figure 1. (Surfaces of K < 0 and K > 0)

    Lp(r) =the length of the geod. circle of radius r at p

    K(p) = limr→0

    3

    π

    (2πr − Lp(r)

    r3

    ).

  • 3

    2. The Gauss-Bonnet formula (local version)

    ∫�ABC

    KdA = ∠A + ∠B + ∠C − π,

    ∠A + ∠B + ∠C < π (if K < 0),∠A + ∠B + ∠C > π (if K > 0).

  • 4

    3. The Gauss-Bonnet formula (global version)

    Polygonal division of closed surfaces.

    (The Gauss-Bonnet formula)

    (3.1)

    ∫M2

    KdA = 2πχ(M2),

    where

    χ(M2) = V − E + Fis the Euler number of the surface M2.

  • 5

    4. Parallel surfaces

    An immersion

    f = f (u, v) : (U ;u, v) → R3 (U ⊂ R2),the unit normal vector ν(u, v) :=

    fu(u, v) × fv(u, v)|fu(u, v) × fv(u, v)|.

    For each real number t,

    ft(u, v) = f (u, v) + tν(u, v)

    is called a parallel surface of f .

    p is a singular pt of ft ⇐⇒ (ft)u(p) × (ft)v(p) = 0.

    Figure 2. a cuspidal edge and a swallowtail

    Cuspidal edges and swallowtails are generic

    singular points appeared on parallel surfaces.

    fC = (u2, u3, v), fS = (3u

    4 + u2v, 4u3 + 2uv, v).

  • 6

    An ellipsoid:

    x2 +y2

    4+z2

    9= 1.

    Parallel surfaces of the ellipsoid are given as follows:

    Figure 3. the cases of t = 0 and t = 1.2

    Figure 4. the cases of t = 2 and t = 3.2

  • 7

    5. Singular curvature κs

    Figure 5. Surfaces of K < 0 and K > 0

    The image of cuspidal edges consists of regular curves

    in R3. We denote it by γ(s), where s is the arclength

    parameter.

    Figure 6. a (−)-cuspidal edge and a (+)-cuspidal edge

    the singular curvature κs(s) = ε(s)(geodesic curvature)

    = ε(s)| det(ν(s), γ′(s), γ′′(s))|, where

    ε(s) =

    ⎧⎨⎩1 (if the surface is bounded by a plane at γ(s)),−1 (otherwise).

  • 8

    6. Generic cuspidal edges

    A generic cuspidal edge:

    the osculating plane �= the tangent plane.In this case, K → ±∞ at the same time.Saji-Yamada-U. [7]

    K ≥ 0 =⇒ κs ≤ 0.-1

    -0.50

    0.51

    -1

    -0.5

    00.5

    1

    -2

    -1

    0

    1

    2

    1

    -0.5

    00.5

  • 9

    7. Gauss-Bonnet formula of surfaces

    with singularity

    M2; a compact oriented 2-manifold

    f : M2 → R3; a C∞-map         having only cuspidal edges and swalowtails

    ν : M2 → S2; the unit normal vector field.(U ;u, v); a (+)-oriented local coordinate M2.

    the area density function λ := det(fu, fv, ν)

    λ(p) = 0 ⇐⇒ p is a singular pointarea element dA := |λ|du ∧ dv,

    signed area element d := λdu ∧ dv.

  • 10

    8. Two Gauss-Bonnet formulas

    Figure 7. a positive swallowtail

    Formulas given by Kossowski(02)and Langevin-Levitt-Rosenberg(95)∫M2\Σf

    KdA + 2

    ∫Σf

    κsds = 2πχ(M2),

    2deg(ν) =1

    ∫M2\Σf

    KdÂ

    = χ(M+) − χ(M−) + #SW+ − #SW−,

    M+ := {p ∈M2 ; dAp = dÂp},M− := {p ∈M2 ; dAp = −dÂp}.

  • 11

    9. singular points of a map between 2-manifolds

    Maps between planes

    R2 � (u, v) �→ f (u, v) = (x(u, v), y(u, v)) ∈ R2,

    Singular points of f ⇐⇒ det(xu(u, v) xv(u, v)

    yu(u, v) yv(u, v)

    )= 0.

    Generic singular points

    a fold R2 � (u, v) �−→ (u2, v) ∈ R2,the singular set u = 0, f(0, v) = (0, v)

    a cusp R2 � (u, v) �−→ (uv + v3, u) ∈ R2,the singular set u = −3v2, f(−3v2, v) = (−2v3,−3v2)

    Figure 8. a fold and a cusp

  • 12

    f = f (u, v)

    Singular curves of cuspidal edges and folds

    Figure 9. a fold and a cuspidal edge

    Singular curves of swallowtails and cusps

    Figure 10. a cusp and a swallowtail

  • 13

    10. Singularities of Gauss maps

    M2:an oriented compact manifold.f : M2 → R3,an immersion.

    Singular points of ν : M2 → S2 ⇐⇒ Kf = 0.ft =

    1

    t(f + tν), t ∈ R.

    Then

    limt→∞ ft = ν,

    2deg(ν) = χ(Mt+) − χ(Mt−) + #SWt+ − #SWt−.In particular,

    2deg(ν) = χ(M2) = χ(Mt+) + χ(Mt−).

    Hence,

    2χ(Mt−) = #SWt+ − #SWt−.Taking the limit t→ ∞, we have that

    2χ(M∞− ) = #SW∞+ − #SW∞− .

  • 14

    The Gauss map ν satisfies

    2χ(M∞− ) = #SW∞+ − #SW∞− .If t → ∞, then the cuspidal edge collapses to a fold,and a swallowtail collapses to a cusp. In particular,

    #SW∞+ := #{(+)-cusps of ν},#SW∞− := #{(−)-cusps of ν}.

    Since dÂν = KfdAf , dAν = |Kf |dAf , it holds thatM∞− = {p ∈M2 ; Kf (p) < 0}.

    Thus (the Bleecker and Wilson formula [1])

    2χ({Kf < 0}) = #positive cusps − #negative cusps.

  • 15

    Figure 11. a symmetric torus and its perturbation

    A deformation of the rotationally symmetric torus

    fa(u, v) = (cos v(2 + ε(v) cosu),

    sin v(2 + ε(v) cosu), ε(v) sinu),

    where

    ε(v) := 1 + a cos v.

    a = 0 : the original torus

    a = 4/5: χ({K < 0}) = 1.

    Figure 12. A parallel surface of f 4/5

  • 16

    11. A similar application

    The following identity holds for ft : M2 → R3.∫

    M2\ΣftKtdAt + 2

    ∫Σft

    κsds = 2πχ(M2).

    Taking t→ ∞, we have that (Saji-Yamada-U. [10])1

    ∫{K 0 if ν

    ′′ points Im(ν),

    < 0 otherwise.

    To prove the formula, we apply

    KνdÂν = KdAν, KνAν = |Kf |dAf.

  • 17

    The intrinsic formulation of wave fronts (Saji-Yamada-U. [10])

    The definition (E, 〈 , 〉 , D, ϕ) of coherent tangent bundle on Mn:(1) E is a vector bundle of rank n over Mn,

    (2) E has a inner product 〈 , 〉,(3) D is a metric connection of (E, 〈 , 〉),(4) ϕ : TMn → E is a bundle homomorphism s.t.

    DXϕ(Y ) −DYϕ(X) = ϕ([X, Y ]),where X, Y are vector fields on Mn.

    The pull-back of the metric 〈 , 〉ds2ϕ := ϕ

    ∗ 〈 , 〉is called the first fundamental form of ϕ.

    p ∈Mn;ϕ-singular point ⇐⇒ Ker(ϕp : TpMn → Ep) �= {0}.

    coherent tangent bundle = generalized Riemannian manifold

    When (Mn, g) is a Riemannian manifold, then

    E = TMn, 〈, 〉 := g, D = ∇g, ϕ = id .

    If f : M 2 → R3 is a wave front, then

    E = ν⊥, 〈, 〉 := gR3, D = ∇T , ϕ = df, (ψ = dν).

  • 18

    M 2; a compact oriented 2-manifold,

    (E, 〈, 〉 , D, ϕ); an orientable coherent tangent bundle,∃μ ∈ Sec(E∗ ∧ E∗ \ {0})

    such that μ(e1, e2) = 1 for (+)-frame {e1, e2}.

    The intrinsic definition of the singular curvature

    κs := sgn(dλ(η(t)))μ(Dγ′ n(t), ϕ(γ

    ′))|ϕ(γ′)|3 ,

    where n(t) ∈ Eγ(t) is the unit vector perpendicular to ϕ(γ′) on E.(u, v);a (+)-local coordinate on M 2

    d = λdu ∧ dv, dA = |λ|du ∧ dv,

    λ := μ

    (ϕ(

    ∂u), ϕ(

    ∂v)

    ).

    (χE =)1

    ∫M2Kd = χ(M+) − χ(M−) + SW+ − SW−,∫

    M2KdA + 2

    ∫Σϕ

    κsdτ = 2πχ(M2).

    where

    Σϕ;ϕ-singular set,

    p ∈ Σϕ is non-degenerate ⇔ dλ(p) �= 0,p ∈ Σϕ;A2-pt (intrinsic cuspidal edge) ⇔ η � γ′(0) at p,p ∈ Σϕ;A3-pt (intrinsic swallowtail) ⇔ det(η, γ′) = 0 and det(η, γ′)′ = 0 at p.

  • 19

    Examples of coherent tangent bundle:

    (1) Wave fronts as a hypersurface of Riem. manifold,

    (2) Smooth maps between n-manifolds.

    Mn; an orientable manifold,(Nn, g); an orientable Riemannian manifold,f : Mn → (Nn, g); C∞-map,Ef := f

    ∗TNn, 〈 , 〉 := g|Ef ,D; induced connection.

    ϕ := df : TMn −→ Ef := f∗TNn,

    Figure 13. a fold and a cuspidal edge

    Figure 14. a cusp and a swallowtail

  • 20

    An application of the intrinsic G-B formula

    f : M2 → R3; a strictly convex surface,ξ : M2 → R3; the affine normal map.

    ∇XY = DXY + h(X,Y )ξ,DXξ = −α(X),

    where α : TM2 → TM2.We setM2− := {p ∈M2 ; det(αp) < 0},

    then (Saji-Yamada-U. [9])

    2χ(M2−) = #SW+(ξ) − #SW−(ξ).

  • References

    [1] D. Bleecker and L. Wilson, Stability of Gauss maps, Illinois J. of Math. 22 (1978) 279–289.

    [2] M. Kossowski, The Boy-Gauss-Bonnet theorems for C∞-singular surfaces with limiting tangent bundle, Annals of Global Analysis

    and Geometry 21 (2002), 19–29.

    [3] M. Kokubu, W. Rossman, K. Saji, M. Umehara and K. Yamada, Singularities of flat fronts in hyperbolic 3-space, Pacific J.

    Math. 221 (2005), 303–351.

    [4] R. Langevin, G. Levitt and H. Rosenberg, Classes d’homotopie de surfaces avec rebroussements et queues d’aronde dans R3,

    Canad. J. Math. 47 (1995), 544–572.

    [5] K. Saji, Criteria for singularities of smooth maps from the plane into the plane and their applications, preprint.

    [6] K. Saji, M. Umehara and K. Yamada, Behavior of corank one singular points on wave fronts, Kyushu Journal of Mathematics

    62 (2008), 259–280.

    [7] K. Saji, M. Umehara and K. Yamada, Geometry of fronts, Ann. of Math. 169 (2009), 491-529.

    [8] K. Saji, M. Umehara and K. Yamada, Ak singularities of wave fronts, Mathematical Proceedings of the Cambridge Philosophical

    Society, 146 (2009), 731-746.

    [9] K. Saji, M. Umehara and K. Yamada, Singularities of Blaschke normal maps of convex surfaces, C.R. Acad. Sxi. Paris. Ser. I

    348 (2010), 665-668.

    [10] K. Saji, M. Umehara and K. Yamada, The intrinsic duality on wave fronts, preprint, arXiv:0910.3456.

    [11] 梅原雅顕, 特異点をもつ曲線と曲面の幾何学,慶應大学数理科学セミナー・ノート 38 (2009). (書店マテマティカ Tel 03-3816-3724,fax: 03-3816-3717) から直接購入可.)

    [12] 梅原雅顕・山田光太郎, 曲線と曲面,—微分幾何的アプローチ—,裳華房 (2002).

    21