martin e. pessah colin mcnally · martin e. pessah colin mcnally nbia workshop on protoplanetary...

32
Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially Local Models for Astrophysical Disks [arXiv:1406.4864]

Upload: others

Post on 24-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

Martin E. Pessah Colin McNally

NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014

Niels Bohr Institute

Vertically Global, Radially Local Models for Astrophysical Disks

[arXiv:1406.4864]

Page 2: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

Local Models of Astrophysical Disks

Essence of the local approximation: expand the equations of motion around a point corotating with the disk

Beckwith, Armitage and Simon, 2011

Page 3: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

•Write down equations of motion

•Find an equilibrium solution

•Expand the equations around fiducial point

•Define boundary conditions

•Solve problems!

Deriving Local Disks Models

Page 4: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

Equations for an ideal MHD Fluid@⇢

@t+r · (⇢v) = 0

continuity

@v

@t+ (v ·r)v = ⌦2

Fr � 2⌦F ⇥ v �r�� rP

⇢+

1

⇢J ⇥B

momentum

@B

@t+ (v ·r)B = (B ·r)v �B (r · v) induction

@e

@t+r · (ev) = �P (r · v) energy

Page 5: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

The Local Approximation

V (x) ' V0 + S0 xV (r) = r⌦(r)

V (x) ' r0

⌦0 +

d⌦

dr

����0

(r � r0)

x

y

r0 r

Page 6: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

V (r) = r⌦(r)�

⌦2(r) ⌘ 1

r

@�

@r=

GM

r31

⇢h

@P (⇢h)

@z= �@�

@z

⌦(x) ⌘ ⌦0 +@⌦(r)

@r

����r=r0

x

S0 ⌘ r0@⌦(r)

@r

����r=r0

V (x) ⌘ V0 + S0x•2. Taylor expand in r

w ⌘ v � V (x)y•3. Define departures

•1. Bulk disk flow

Vertically Local & Radially Local

Page 7: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

Isothermal, thin disks pressure support is negligible and angular frequency is height-independent

w ⌘ v � S0xy D0 ⌘ @t + S0x@y

(D0 +w ·r)w = �2⌦0z ⇥w � S0wx

y

� rP

⇢� @�0(z)

@zz +

1

⇢J ⇥B

(D0 +w ·r)B = S0Bx

y + (B ·r)w �B (r ·w)

Standard Shearing Box - Model

Page 8: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

Shearing Periodic Boundaries

DSSB0 ⌘ @t + xS0@y y

0 = y � xS0 t

f(x0, y

0, z

0, t

0) = f(x0 + L

x

, y

0, z

0, t

0)

f(x, y, z, t) = f(x+ L

x

, y + S0Lx

t, z, t)

DSSB0 = @0

t

x

y

y + S0Lx

t

SSB

Page 9: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

@�

@z' 0

@�

@z' z⌦2

0

from J. Simon’s website

The Standard Shearing Box (SSB)

Page 10: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

Pros:•Offers a controlled environment

•Can study small-scale turbulent dynamics

Cons:•Unable to address any global disc dynamics

•Framework valid for isothermal, thin disks

The Standard Shearing Box (SSB)

Page 11: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

What if we care about z ~ R?

M82

�(r, z) =�GMpr2 + z2

A. Tchekhovskoy

@�

@z= z⌦2

0

✓1 +

z2

r20

◆�3/2

Page 12: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

Beyond Vertically Local Models

•Non-trivial thermal structure implies

•Thick disks have pressure support

d⌦

dz6= 0

rP 6= 0

•Isothermal disks are barotropic P = P (⇢)

•Barotropic fluids rotate on cylinders d⌦

dz= 0

Page 13: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

•1. Bulk disk flow V (r, z) = r [⌦(r, z)� ⌦F] �

1

⇢h

@P (⇢h, eh)

@z= �@�

@z⌦2(r, z) ⌘ 1

r

@�

@r+

1

r⇢h

@P (⇢h, eh)

@r

•3. Define departures w ⌘ v � [V0(z) + S0(z)x] y

•2. Taylor expand in r

⌦(x, z) ⌘ ⌦0(z) +@⌦(r, z)

@r

����r=r0

x S0(z) ⌘ r0@⌦(r, z)

@r

����r=r0

V (x, z) ⌘ V0(z) + S0(z)x

Vertically Global & Radially Local

Page 14: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

What is New?

•Rotation rate depends on z •Shear rate depends on z

McNally & MEP, 2014

⌦(r) ' ⌦0 +@⌦(r)

@r

����r0

x⌦(r, z) ' ⌦0(z) +@⌦(r, z)

@r

����r0

x

Page 15: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

•4. Taylor-expand background equilibrium in r

Vertically Global & Radially Local

⇢h(r, z) = ⇢h0(z) + O

✓x

r0

◆eh(r, z) = eh0(z) + O

✓x

r0

rP (⇢h, eh)

⇢h=

rP (⇢h0, eh0)

⇢h0+O

✓x

r0

◆1

⇢h0

@P (⇢h0, eh0)

@z= �@�0(z)

@z

This eliminates radial gradients, which is necessary for domains with shearing-periodic boundaries

Page 16: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

0.95 1.05

x

0.0

0.2

0.4

0.6

0.8

1.0

z

Global

0.95 1.05

x

VGSB

0.95 1.05

x

SSB

�1.08

�1.07

�1.06

�1.05

�1.04

�1.03

�1.02

�1.01

�1.00

�0.99

log(

T)

Temperature

0.95 1.05

x

0.0

0.2

0.4

0.6

0.8

1.0

z

Global

0.95 1.05

x

VGSB

0.95 1.05

x

SSB

�20.0

�17.5

�15.0

�12.5

�10.0

�7.5

�5.0

�2.5

0.0

log(

⇢)

Density

0.95 1.05

x

0.0

0.2

0.4

0.6

0.8

1.0

z

Global

0.95 1.05

x

VGSB

0.95 1.05

x

SSB

0.80

0.84

0.88

0.92

0.96

1.00

1.04

Angular Frequency

McNally & MEP, 2014

Vertically Global & Radially Local

Page 17: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

w ⌘ v � [V0(z) + S0(z)x] y

Vertically Global, Radially Local

D0 ⌘ @t + [V0(z) + S0(z)x] @y

(D0 +w ·r)w + w

z

@V (x, z)

@z

y =

� 2⌦0(z)z ⇥w � S0(z)wx

y � rP

� @�0(z)

@z

z +1

J ⇥B

momentum

induction(D0 +w ·r)B �B

z

@V (x, z)

@z

y =

S0(z)Bx

y + (B ·r)w �B (r ·w)

Not-consistent with shearing-periodic boundaries!

Page 18: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

D0 ⌘ @t + [V0(z) + S0(z)x] @y

Shearing Periodic Boundaries(z)

y

0 = y � [V0(z) + S0(z)x] t

f(x, y, z, t) = f(x+ L

x

, y + S0(z)Lx

t, z, t)

f(x0, y

0, z

0, t

0) = f(x0 + L

x

, y

0, z

0, t

0)

D0 = @0t

x

y

y + S0(z)Lx

t@zV (x, z) = @zV0(z) + x @zS0(z)

@zV (x, z) ' @zV0(z)

For this to work we only need the approx.

VGSB

Page 19: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

Vertically Global Shearing Box

w ⌘ v � [V0(z) + S0(z)x] y D0 ⌘ @t + [V0(z) + S0(z)x] @y

(D0 +w ·r)w + wz

@V0(z)

@zy =

� 2⌦0(z)z ⇥w � S0(z)wx

y � rP

⇢� @�0(z)

@zz +

1

⇢J ⇥B

momentum

(D0 +w ·r)B �Bz

@V0(z)

@zy =

S0(z)Bx

y + (B ·r)w �B (r ·w)

induction

Amenable to shearing-periodic boundary conditions !!

Page 20: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

Conserved Fluid Properties

[@t + v ·r](r · (r⇥ v)) = 0

� =

Iv · dl

•Kelvin’s circulation theorem

@t(r⇥ v) = r⇥ [v ⇥ (r⇥ v)]

[@t + v ·r]� = 0

•Alfven’s frozen-in theorem

@tB = r⇥ [v ⇥ (r⇥B)]

[@t + v ·r](r ·B) = 0

�B =

ZB · dS

[@t + v ·r]�B = 0

Page 21: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

•Alfven’s frozen-in theorem

•Kelvin’s circulation theorem

Conserved Fluid Properties in VGSB

(D0 +w ·r)� =

Z

S

r⇥

✓xwz

@S0(z)

@z

y

◆�+ . . .

(D0 +w ·r) (r ·B) = �x

@S0(z)

@z

@Bz

@y

(D0 +w ·r)� = 0 (D0 +w ·r)�B = 0

•If barotropic or axisymmetric

Page 22: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

•Hydrodynamic Disk Instabilities

•Disk Convection

•Disk Coronae and Thick Disks

•Disk Winds

•Interstellar Medium and Galactic Disks

When Will It Matter?

Page 23: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

Disk Winds

Suzuki & Inutsuka 2009

@�

@z' z⌦2

0

makes it hard to launch winds

Usual assumption

Some works have used

without considering changes in rotation rate

@�

@z= z⌦2

0

✓1 +

z2

r20

◆�3/2

Page 24: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

Spherical Temperature Disk Structure

T (r, z) ⌘ T0r0p

r2 + z2

⇢(r, z) = ⇢0

✓rp

r2 + z2

◆⌫ p

r2 + z2

r0

!1�µ

⌦(r, z) =p⌫cs0r

pr2 + z2

r0

!�1/2

⌫ + µ =v2K0

c2s0

r

z

Suzuki & Inutsuka, 2013

Page 25: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

�1

0

1

Bx

and

By

�1

0

1

Bx

and

By

�1

0

1

Bx

and

By

�1

0

1

Bx

and

By

�1

0

1

Bx

and

By

�2 0 2

z/Hs

�1

0

1

Bx

and

By

�2 0 2

z/Hs

�1

0

1

Bx

and

By

�1

0

1

wx

and

wy

�1

0

1

wx

and

wy

�1

0

1

wx

and

wy

�1

0

1

wx

and

wy

�1

0

1

wx

and

wy

�2 0 2

z/Hs

�1

0

1

wx

and

wy

�2 0 2

z/Hs

�1

0

1

wx

and

wy

Magnetorotational Instability (MRI)

McNally & MEP, 2014

Growth Rates Velocity Field Magnetic FieldSSB SSBVGSB VGSB

so far MRI only studied in isothermal disks!

Page 26: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

T (r) ⌘ T0

✓r

r0

◆q

⇢(r, z) = ⇢0

✓r

r0

◆p

exp

"�v2K

c2s

1� 1p

1 + (z/r)2

!#

⌦(r, z) = ⌦K

vuut1 + (p+ q)c2sv2K

+ q

1� 1p

1 + (z/r)2

!

Cylindrical Temperature Disk Structure

r

z

Nelson, Gressel, & Umurhan 2013

Page 27: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

•Thin, isothermal hydro disks seem to be stable, but there are several instabilities that feed off vertical shear (GSF in 60’s!)

•These could be important in low-ionization protoplanetary disks

0.00 0.05 0.10 0.15 0.20 0.25

|�i|/⌦0(0)

0.00

0.05

0.10

0.15

0.20

|�r|/

⌦0(0

)

Vertical Shear Instability (VSI)

McNally & MEP, 2014

VGSB

Nelson, Gressel, & Umurhan 2013

Page 28: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

Unstable Modes In Hydro Disks

�0.01

0.00

0.01

Surf

ace

⇧f

�0.1

0.0

0.1

wx

�0.5

0.0

0.5

wy

�0.5

0.0

0.5

wz

�0.02

0.00

0.02

Cor

ruga

tion

�0.05

0.00

0.05

�0.5

0.0

0.5

�0.2

0.0

�6 �3 0 3 6

z/Hc

0.00

0.01

0.02

Bre

athi

ng

�6 �3 0 3 6

z/Hc

�0.05

0.00

0.05

�6 �3 0 3 6

z/Hc

�1.0

�0.5

0.0

�6 �3 0 3 6

z/Hc

�0.2

0.0

0.2

McNally & MEP, 2014

Page 29: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

Hydrodynamic Disk Instabilities

Nelson, Gressel, & Umurhan 2013

Page 30: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

A First Implementation of the VGSB

McNally & MEP, 2014q = �1.5 p = �1.0 c = 0.05 vK

Page 31: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

McNally & MEP, 2014

A First Implementation of the VGSB

q = �1.5 p = �1.0 c = 0.05 vK

Page 32: Martin E. Pessah Colin McNally · Martin E. Pessah Colin McNally NBIA Workshop on Protoplanetary Disks, Copenhagen, Aug 4 - 8, 2014 Niels Bohr Institute Vertically Global, Radially

Thank you!