maria grazia pia, infn genova low energy electromagnetic physics maria grazia pia infn genova...

40
Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Low Energy Electromagnetic Physics Physics Maria Grazia Pia INFN Genova [email protected] on behalf of the Low Energy Electromagnetic Working Group Geant4 User Workshop CERN, 11-15 November 2002 http://www.ge.infn.it/geant4/training/

Upload: scot-booth

Post on 13-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Low Energy Electromagnetic PhysicsLow Energy Electromagnetic PhysicsLow Energy Electromagnetic PhysicsLow Energy Electromagnetic Physics

Maria Grazia PiaINFN Genova

[email protected] behalf of the Low Energy Electromagnetic Working Group

Geant4 User WorkshopCERN, 11-15 November 2002

http://www.ge.infn.it/geant4/training/

Page 2: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Plan of the tutorialPlan of the tutorialPlan of the tutorialPlan of the tutorial

Lecture 1Lecture 1

Overview

Software process

OOAD

Physics – Electrons and photons

– Hadrons and ions

– Atomic relaxation

– Polarisation

Lecture 2Lecture 2

How to use LowE processes

Examples

Experimental applications

Outlook

Page 3: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

What isWhat isWhat isWhat isA package in the Geant4 electromagnetic packageA package in the Geant4 electromagnetic package– geant4/source/processes/electromagnetic/lowenergy/

A set of processes extending the coverage of electromagnetic A set of processes extending the coverage of electromagnetic interactions in Geant4 down to “interactions in Geant4 down to “low”low” energy energy– 250 eV (in principle even below this limit) for electrons and photons

– down to the approximately the ionisation potential of the interacting material for hadrons and ions

A set of processes based on detailed modelsA set of processes based on detailed models– shell structure of the atom

– precise angular distributions

Complementary to the “standard” electromagnetic packageComplementary to the “standard” electromagnetic package– will learn more on domains of application in the second lecture

Page 4: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Overview of physicsOverview of physicsOverview of physicsOverview of physics

Compton scattering

Rayleigh scattering

Photoelectric effect

Pair production

Bremsstrahlung

Ionisation

Polarised Compton

+ atomic relaxation– fluorescence

– Auger effect following photoelectric effect and

ionisation

In progress– Polarised conversion, photoelectric

– More precise angular distributions (Rayleigh, photoelectric, Bremsstrahlung etc.)

Foreseen– New models, based on different

physics approaches

– Processes for positrons

Development plan– Driven by user requirements

– Schedule compatible with available resources

Page 5: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

currentcurrent

statusstatus

Software ProcessSoftware ProcessSoftware ProcessSoftware Process

Public URDPublic URDFull traceability through UR/OOD/implementation/test

Testing suite and testing process

Public documentation of procedures

Defect analysis and prevention

etc.…

A rigorous approach to software engineering in support of a better quality of the software especially relevant in the physics domain of Geant4-

LowE EM several mission-critical applications (space, medical…)

A life-cycle model that is both iterative and incrementalSpiral approach

Huge effort invested into SPI started from level 1 (CMM) in very early stages: chaotic,

left to heroic improvisation

Collaboration-wide Geant4 software process, tailored to the WG projects

Page 6: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

User requirementsUser requirementsUser requirementsUser requirementsGEANT4 LOW ENERGY ELECTROMAGNETIC PHYSICS

GGEEAANNTT44 LLOOWW EENNEERRGGYY

EELLEECCTTRROOMMAAGGNNEETTIICC PPHHYYSSIICCSS

User Requirements Document Status: in CVS repository

Version: 2.4 Project: Geant4-LowE Reference: LowE-URD-V2.4 Created: 22 June 1999 Last modified: 26 March 2001 Prepared by: Petteri Nieminen (ESA) and Maria Grazia Pia (INFN)

User User RequirementsRequirements

Posted on the WG

web site

Elicitation through interviews and surveys useful to ensure that UR are complete and

there is wide agreement

Joint workshops with user groups

Use cases

Analysis of existing Monte Carlo codes

Study of past and current experiments

Direct requests from users to WG coordinators

Various methodologies adopted to Various methodologies adopted to capturecapture URsURs

Page 7: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Photons and Photons and electronselectronsPhotons and Photons and electronselectrons

Based on evaluated data libraries from LLNL:– EADL (Evaluated Atomic Data Library)

– EEDL (Evaluated Electrons Data Library)

– EPDL97 (Evaluated Photons Data Library) especially formatted for Geant4 distribution (courtesy of D. Cullen, LLNL)

Validity range: 250 eV - 100 GeV– The processes can be used down to 100 eV, with degraded accuracy

– In principle the validity range of the data libraries extends down to ~10 eV

Elements Z=1 to Z=100– Atomic relaxation: Z > 5 (transition data available in EADL)

different approach w.r.t. Geant4 standard e.m.standard e.m.

package

Page 8: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Calculation of cross sectionsCalculation of cross sectionsCalculation of cross sectionsCalculation of cross sections

12

1221

/log

/loglog/logloglog

EE

EEEEE

iii nE

1

E1 and E2 are the lower and higher energy for which data (1 and 2) are available

ni = atomic density of the ith element contributing to the material composition

Interpolation from the data libraries:

Mean free path for a process, at energy E:

Page 9: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

PhotonsPhotons

Page 10: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Compton scatteringCompton scatteringCompton scatteringCompton scattering

Energy distribution of the scattered photon according to the Klein-Nishina formula, multiplied by scattering functions F(q) from EPDL97 data library

The effect of scattering function becomes significant at low energies– suppresses forward scattering

Angular distribution of the scattered photon and the recoil electron also based on EPDL97

2

0

020

220 cos42

h

h

h

h

h

hr

4

1

d

dKlein-Nishina cross section:

Page 11: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Rayleigh scatteringRayleigh scatteringRayleigh scatteringRayleigh scattering

Angular distribution: F(E,q)=[1+cos2(q)]F2(q)– where F(q) is the energy-dependent form factor obtained from EPDL97

Improved angular distribution to be available in next Geant4 release, December 2002

Page 12: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Photoelectric effectPhotoelectric effectPhotoelectric effectPhotoelectric effect

Cross section– Integrated cross section (over the shells) from EPDL + interpolation

– Shell from which the electron is emitted selected according to the detailed cross sections of the EPDL library

Final state generation– Direction of emitted electron = direction of incident photon

Deexcitation via the atomic relaxation sub-process– Initial vacancy + following chain of vacancies created

Page 13: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

conversionconversion conversionconversion

The secondary e- and e+ energies are sampled using Bethe-Heitler cross sections with Coulomb correction

e- and e+ assumed to have symmetric angular distribution

Energy and polar angle sampled w.r.t. the incoming photon using Tsai differential cross section

Azimuthal angle generated isotropically

Choice of which particle in the pair is e- or e+ is made randomly

Page 14: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

0.01 0.1 1 10-18-16-14-12-10

-8-6-4-202468

1012141618

E = (NIST-G4EMStandard)/NIST E = (NIST-G4LowEn)/NIST

E (

%)

Photon Energy (MeV)

Photons: mass attenuation coefficientPhotons: mass attenuation coefficientPhotons: mass attenuation coefficientPhotons: mass attenuation coefficient

Comparison against NIST data

Tests by IST - Natl. Inst. for Cancer Research, Genova (F. Foppiano et al.)

This test will be introduced into the Test & Analysis project for a systematic verification

LowE accuracy ~ 1%

FeLowE

standard

Page 15: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Photon attenuation: Geant4 vs. NIST dataPhoton attenuation: Geant4 vs. NIST dataPhoton attenuation: Geant4 vs. NIST dataPhoton attenuation: Geant4 vs. NIST data

0.01 0.1 1 100.01

0.1

1

10

100

1000

Geant4 LowEn NIST

/ (

cm 2

/g)

in ir

on

Photon Energy (MeV)

0.01 0.1 1 10

0.1

1

10

Geant4 LowEn NIST

/

(cm

2 /g

) in

wat

er

Photon Energy (MeV)

0.01 0.1 1 10-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

Delta = (NIST-G4EMStand) / NIST Delta = (NIST-G4LowEn) / NIST

Del

ta (

%)

Photon Energy (MeV)

0.01 0.1 1

0.01

0.1

1

10

100

Geant4 LowEn NIST

/ (

cm 2

/ g

in le

ad

Photon energy (MeV)

0.01 0.1 1-10

-8

-6

-4

-2

0

2

4

6

8

10 E = (NIST - G4EM Standard)/NIST E = (NIST- G4LowEn)/NIST

E (

%)

Photon Energy (MeV)

water Fe Pb

0.01 0.1 1 10-18-16-14-12-10-8-6-4-202468

1012141618

E = (NIST-G4EMStandard)/NIST E = (NIST-G4LowEn)/NIST

E (

%)

Photon Energy (MeV)

accuracy within 1%

Low Energy EM Standard EM w.r.t. NIST data

Test and validation by IST - Natl. Inst. for Cancer Research, Genova

Page 16: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Photons: angular distributionsPhotons: angular distributionsPhotons: angular distributionsPhotons: angular distributions

Rayleigh scattering: Geant4-LowE and expected distribution

improved distributio

n in December 2002 release

Page 17: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Photons, evidence of shell Photons, evidence of shell effectseffectsPhotons, evidence of shell Photons, evidence of shell effectseffects

Photon transmission, 1 m Al

Photon transmission, 1 m Pb

Page 18: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

PolarisationPolarisationPolarisationPolarisation

250 eV -100 GeV

y

O z

x

h

h A

C

Polar angle

Azimuthal angle

Polarization vector

22

0

020

220 cossin2

h

h

h

h

h

hr

2

1

d

d

More details: talk on Geant4 Low Energy Electromagnetic Physics

Other polarised processes under development

Ncossin1sincossincos 22

coskcoscossin

N

1jcossinsin

N

1iN 2'

||

sinksinsinjcosN

1'

Cross section:

Scattered Photon Polarization

10 MeV

small

large

100 keV

small

large

1 MeV

small

large

Low Energy Low Energy Polarised Polarised ComptonCompton

Page 19: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

PolarisationPolarisationPolarisationPolarisation

Polarisation of a non-polarised photon beam, simulation and theory

theory

simulation

Ratio between intensity with perpendicular and parallel polarisation vector w.r.t. scattering plane, linearly polarised photons

500 million events

Page 20: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Electron BremsstrahlungElectron BremsstrahlungElectron BremsstrahlungElectron Bremsstrahlung

Parameterisation of EEDL data – 16 parameters for each atom

– At high energy the parameterisation reproduces the Bethe-Heitler formula

– Precision is ~ 1.5 %

Plans– Systematic verification over Z

and energy

Page 21: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Electron ionisationElectron ionisationElectron ionisationElectron ionisation

Parameterisation based on 5 parameters for each shell

Precision of parametrisation is better then 5% for 50 % of shells, less accurate for the remaining shells

Work in progress to improve the parameterisation and the performance

Page 22: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Electron ionisationElectron ionisationElectron ionisationElectron ionisation

New parameterisations of EEDL data library recently released– precision is now better than

5 % for ~ 50% of the shells, poorer for the 50% left

Plans– Systematic verification over

shell, Z and energy

– Need Test & Analysis Project for automated verification (all shells, 99 elements!)

Page 23: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Electrons: Electrons: rangerangeElectrons: Electrons: rangerange

Range in various simple and composite materials

Compared to NIST database

AlAl

Also Be, Fe, Au, Pb, Ur, air, water, bone, muscle, soft tissue

Page 24: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Electrons: dE/dxElectrons: dE/dxElectrons: dE/dxElectrons: dE/dx

Ionisation energy loss in various materials

Compared to Sandia database

More systematic verification planned (for publication)

Also Fe, Ur

Page 25: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Electrons, transmittedElectrons, transmittedElectrons, transmittedElectrons, transmitted20 keV electrons, 0.32 and 1.04 m Al

Page 26: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Hadrons and ionsHadrons and ionsHadrons and ionsHadrons and ions

Variety of models, depending on – energy range

– particle type

– charge

Composition of models across the energy range, with different approaches– analytical

– based on data reviews + parameterisations

Specialised models for fluctuations

Open to extension and evolution

Page 27: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Algorithms encapsulated in

objects

Physics models handled through abstract classes

Hadrons and ionsHadrons and ions

Interchangeable and transparent access to data sets

Transparency of physics, clearly exposed to users

Page 28: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Positive charged Positive charged hadronshadronsPositive charged Positive charged hadronshadrons

• Bethe-Bloch model of energy loss, E > 2 MeV• 5 parameterisation models, E < 2 MeV

based on Ziegler and ICRU reviews• 3 models of energy loss fluctuations

Chemical effectChemical effect for compounds Nuclear stoppingNuclear stopping power PIXE includedPIXE included (preliminary)

Stopping power Z dependence for various energiesZiegler and ICRU models

Ziegler and ICRU, Si

Nuclear stopping power

Ziegler and ICRU, Fe

Density correctionDensity correction for high energy Shell correctionShell correction term for intermediate energy Spin dependentSpin dependent term

Barkas Barkas and BlochBloch terms

Straggling

Page 29: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Bragg peak (with hadronic interactions)

The precision of the stopping power simulation for protons in the energy from 1 keV to 10 GeV is of the order of a few per cent

Page 30: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Positive charged ionsPositive charged ionsPositive charged ionsPositive charged ions

• Scaling:

• 0.01 < < 0.05 parameterisations, Bragg peak based on Ziegler and ICRU reviews

< 0.01: Free Electron Gas Model

ion

pp m

mTT ),()( 2

ppionion TSZTS

Effective charge model Nuclear stopping power

Deuterons

Page 31: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Models for antiprotonsModels for antiprotonsModels for antiprotonsModels for antiprotons

> 0.5 Bethe-Bloch formula

0.01 < < 0.5 Quantum harmonic oscillator model

< 0.01 Free electron gas mode

Proton

G4 Antiproton

Antiproton from Arista et. al

Antiproton exp. data

Proton

G4 Antiproton

Antiproton from Arista et. al

Antiproton exp. data

Page 32: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Atomic relaxationAtomic relaxation

Page 33: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

FluorescenceFluorescenceFluorescenceFluorescence

Scattered

photons

Fe lines

GaAs lines

Spectrum from a Mars-

simulant rock sample

Microscopic validation: against reference data

Experimental validation: test beam data, in collaboration with

ESA Science Payload Division

Page 34: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Auger effectAuger effectAuger effectAuger effect

New implementation, validation in progress

Auger electron emission from various materials

Sn, 3 keV photon beam,

electron lines w.r.t. published experimental results

Page 35: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Contribution from usersContribution from usersContribution from usersContribution from users

Many valuable contributions to the validation of LowE physics from users all over the world– excellent relationship with our user community

User comparisons with data usually involve the effect of several physics processes of the LowE package

A small sample in the next slides– no time to show all!

Page 36: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Homogeneous PhantomHomogeneous PhantomHomogeneous PhantomHomogeneous Phantom

10x10 cm215x15 cm2

10x10 cm2

Differences

15x15 cm2

Differences

Simulation of photon beams produced by a Siemens Mevatron KD2 clinical linear accelerator

Phase-space distributions interface with GEANT4 Validation against experimental data: depth dose and

profile curves

P. Rodrigues, A. Trindade, L.Peralta, J. Varela, LIP

LIP – Lisbon

Page 37: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

P. Rodrigues, A. Trindade, L.Peralta, J. Varela, LIP

preliminary

Dose Calculations with 12CDose Calculations with 12CDose Calculations with 12CDose Calculations with 12C

Bragg peak localization calculated with GEANT4 (stopping powers from ICRU49 and Ziegler85) and GEANT3 in a water phantom

Comparison with GSI data

Page 38: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

Uranium irradiated by electron beamUranium irradiated by electron beamUranium irradiated by electron beamUranium irradiated by electron beam

Fig 1. Depth-dose curve for a semi-infinite uranium slab irradiated by a 0.5 MeV

broad parallel electron beam 1Chibani O and Li X A, Med. Phys. 29 (5), May 2002

Jean-Francois Carrier, Louis Archambault, Rene Roy and Luc Beaulieu

Service de radio-oncologie, Hotel-Dieu de Quebec, Quebec, CanadaDepartement de physique, Universite Laval, Quebec, Canada

The following results will be published soon. They are part of a

general Geant4 low energy validation project.

Page 39: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

IonsIonsIonsIons

Independent validation at Univ. of Linz (H. Paul et al.)

Geant4-LowE reproduces the right side of the distribution precisely, but about 10-20% discrepancy is observed at lower energies

Page 40: Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova Maria.Grazia.Pia@cern.ch on behalf of the Low Energy Electromagnetic

Maria Grazia Pia, INFN Genova

To learn moreTo learn moreTo learn moreTo learn more

Geant4 Physics Reference Manual

Application Developer Guide

http://www.ge.infn.it/geant4/lowE

Next lecture: – How to use Geant4 LowE electromagnetic processes

– Where to find examples

– A selection of real-life applications