making better transistors: beyond yet another new

32
Making better transistors: beyond yet another new materials system Mark Rodwell, University of California, Santa Barbara Dagstul Worshop, Feb 6-11, 2017.

Upload: others

Post on 21-Mar-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Making better transistors:

beyond yet another new materials system

Mark Rodwell, University of California, Santa Barbara

Dagstul Worshop, Feb 6-11, 2017.

What does VLSI need ?

Small transistors: plentiful, cheap

Small transistors→ short wiressmall delay CVDD /Ilow switching energy CVDD

2/2

Low supply voltageslow energy CVDD

2/2

Large on-currentssmall delay CVDD /I

0 0.1 0.2 0.3 0.4 0.510

-1

100

101

102

103

Vgs

60mV/decade

0 0.1 0.2 0.3 0.4 0.50

200

400

600

800

1000

Vgs

I d, A

mp

s/m

ete

r

Low leakage currentthermal: Ioff > Ion*exp(-qVDD/kT)want low VDD yet low Ioff.

Ion

Transistor Research

Make the switch smaller (scaling)

Make it from different materials

Change its shape

Change its internal operation:

bandgap engineering

Change what we do with it.

We can't make MOSFETs much smaller

Tunneling: can't make gate insulator any thinner

→ smaller devices have poor electrostatic control, don't turn off

Tunneling: can't make channel much shorter

→ smaller devices have high source-drain tunneling, don't turn off

Expensive lithography: EUV, multiple patterning

New Materials: III-V semiconductors ?

S. Lee et al., VLSI Symp. 2014

10 100

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

S. Lee, VLSI 2014

J. Lin, IEDM 2013

T. Kim, IEDM 2013

Intel, IEDM 2009

J. Gu, IEDM 2012

D. Kim, IEDM 2012

I on (

mA

/m

)

Gate Length (nm)

VDS

= 0.5 V

Ioff

=100 nA/m

Vertical Spacer

N+ S/D

Lg~25 nm

record for III-V

= best UTB SOI silicon

New Materials: 2-D semiconductors ?

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.01 0.1 1

no

rma

lized

drive

cu

rre

nt K

1

m*/mo

g=2isotropic

EET=1.0 nm

0.6 nm

0.4 nm

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.01 0.1 1

no

rma

lized

drive

cu

rre

nt,

K1

normalized effective mass m*/mo

EET=1.0 nm

0.6 nm0.4 nm g=6

isotropic

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.01 0.1 1

no

rma

lized

drive

cu

rre

nt,

K1

normalized longitudinal transport mass mL/m

o

EET=1.0 nm

0.6 nm0.4 nm

EET=Tox

SiO2/

ox+T

channel

SiO2/2

channel

g=1transverse mass

=2.6*mo

Silic

on

Mo

S 2P

ho

sph

ore

ne

2/32/1

||

2/1

,

2/12/1

2/3

)/()/(1

)/( where

, V 1m

mA84

oequivodos

o

thgs

mmmgcc

mmgK

VVKJ

Does 1-atom-thick channel help ?2D or 3D: the gate oxide won't scalethe oxide sets a minimum gate length1-atom-thick channels don't help much

If oxides won't scale, we must make finswith 2D, can we make fins ?later, will need to make nanowires...

Ballistic drive currents don't win eitherhigh m*, and/or high DOSmobility sufficient for ballistic ?

When it gets crowded, build vertically

2-D integration:wire length # gates1/2

Los Angeles: sprawl Manhattan: dense

3-D integration:wire length #gates1/3

LA is interconnect-limited

1) Chip stacking (skip)2) 3D transistors: corrugation (change the shape)

Corrugated surface→ more surface per die area

Corrugated surface→ more current per unit area

Cohen-Elias et al., UCSB2013 DRC

J .J. Gu et al., 2012 DRC,Purdue2012 IEDM

Corrugation: same current, less voltage, less CV2

0 0.1 0.2 0.3 0.4 0.5

10-1

100

101

102

103

Vgs

60mV/decade

I d,

Am

ps p

er

me

ter

of

FE

T f

oo

tprin

t w

idth

0 0.1 0.2 0.3 0.4 0.5

10-1

100

101

102

103

104

Vgs

I d,

Am

ps p

er

me

ter

of

FE

T f

ootp

rin

t w

idth

0 0.1 0.2 0.3 0.4 0.5

10-1

100

101

102

103

104

Vgs

10:1

corrugation

I d,

Am

ps p

er

me

ter

of

FE

T f

ootp

rin

t w

idth

Forming tall fins by sidewall regrowth (ugly)

Cohen-Elias et al., 2013 DRC

Confined Epitaxial Lateral Overgrowth

Semiconductor regrowth into hollow glass boxes formed on wafer surfaceSemiconductor thicknesses controlled by ALD layer thickness: atomic precision

L. Czornomaz et. al, (IBM)2015 & 2016 VLSI Symposia

CELO: Can we grow 3-D structures ?

With a few process tricks,can we make growth templates for 3-D structures ?

Fixing source-drain tunneling by increasing mass ?

Source-drain tunneling leakage:

)(*2 where),2exp( 1

thgoff qVmLI

2/1*constant gg LmL

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.01 0.1 1

no

rma

lized

drive

cu

rre

nt K

1

m*/mo

g=2

EET=1.0 nm

0.6 nm

0.4 nm

g=1

EET=Tox

SiO2/

ox+T

channel

SiO2/2

channel

Fix by increasing effective mass ?

This will decrease the on-current:

?

!

long gate→ big

shorter gate→ smaller

less current

wider→ more current

big again !

(also increases transit time)

Fixing source-drain tunneling by corrugation

Transport distance > gate footprint lengthOnly small capacitance increase

CY Huang et al, 2015 DRC

Fixing source-drain tunneling by corrugation ?

CELO growth over ridge

3D structure

transport length >> footprint

improves electrostatics...like finFET

improves S/D tunneling...unlike finFET

Gate oxide is SiOxNy , not HfO2 → thinner @ given leakageHow to reduce gate footprint below ~5nm ?

Changing the band structure: tunnel FETs

TFET: bandgap of p-type source truncates source thermal distribution:

-1.5

-1

-0.5

0

0.5

1

1.5

2

5 10 15 20 25

En

erg

y, eV

position, nm10

-310

-210

-110

0

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Transmission

En

erg

y(e

V)

Problem: 4-6nm tunnel barriers→ ~3% tunneling probability→ very low current.

[110] gives more on-current than [100]

high confinement masslow transport mass

low confinement masshigh transport mass

P. Long et al., EDL 3/2016

valen

ce b

and

Add more Heterojunctions: much more current.

Added heterojunctions→ greater built-in potential→greater field→ thinner barrier→ higher tunneling probability (~80%)→ 30:1 more current.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 5 10 15 20

Ene

rgy, e

V

Position, nm

Efs

6 nmtunnelbarrier

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 5 10 15 20

Ene

rgy, eV

Position, nmw

idegap

sourc

e

gra

de

wid

egap

channel

gra

de

GaS

b

InA

s

1.1nmtunnelbarrier

Source HJ: S. Brocard, et al., EDL, 2/2014; Channel HJ: P. Long et al., EDL 3/2016

3HJ still have higher ON/OFF ratio than GaAsSb/InAs

3HJ 516A/m

GaAsSb/InAs 75A/m

3HJ still have higher ON/OFF ratio than GaAsSb/InAs when acoustic and non-polar

optical phonon scattering are considered.

P. Long, J. Huang,

M. Povolotski: Purdue, Unpublished

Changing the function: ferroFETs ?

This won't work need tri-state driver

why not this ? or this ?

or an input switch.

Multiple Supplies for Low-Power Logic

-0.4 -0.2 0 0.2 0.4

Driver

10-1

100

101

102

103

Vgs

low

high

I on,

Am

ps/m

ete

r

-0.8 -0.6 -0.4 -0.2 0

Receiver

& Logic

Vgs

low

high

-0.8 -0.6 -0.4 -0.2 0

Logic

Vgs

low

high

Given 200 mV swingson long interconnects,

Line receivers provide0.1 mA/m outputwith 0.1 A/m leakage

Line drivers, and logic gates provide3 mA/m outputwith 0.1 A/m leakage

Is cost in added die area acceptable ?

(backup slides follow)

Record III-V MOS

S. Lee et al., VLSI 2014

10 100

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

S. Lee, VLSI 2014

J. Lin, IEDM 2013

T. Kim, IEDM 2013

Intel, IEDM 2009

J. Gu, IEDM 2012

D. Kim, IEDM 2012

I on (

mA

/m

)

Gate Length (nm)

VDS

= 0.5 V

Ioff

=100 nA/m

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.510

-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

gm (

mS

/m

)

Cu

rren

t D

en

sit

y (

mA

/m

)

Gate Bias (V)

0.0

0.5

1.0

1.5

2.0

2.5

3.0L

g = 25 nm

SS~ 72 mV/dec.

SS~ 77 mV/dec.

Ion= 500 A/m at Ioff

=100 nA/m

and VD=0.5V

Vertical Spacer

N+ S/D

Lg~25 nm

recordfor III-V

= best UTB SOI silicon

Vertical FETs ????

Can have a smaller footprint.

No clue how to make it !

III-V nanowire growth: much too big

3D→shorter wires→less capacitance→less CV2

All three have same drive current, same gate width

Tall fin, "4-D": smaller footprint→ shorter wires

Minimum Dielectric Thickness & Gate Leakage

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

eV

fro

m v

acu

um

leve

l

Si

InGaAs HfO2

TiO2

Ec

Ev

r ~20

r ~40

barrier

1

barrier *2 where),2exp(y Probabiliton Transmissi EmTP

→ 0.5-0.7nm minimum EOTconstrains on-currentelectrostatics degrades with scaling→ fins, nanowires

High-r materials have lower barriers

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.01 0.1 1

no

rma

lized

drive

cu

rre

nt K

1

m*/mo

g=2

EET=1.0 nm

0.6 nm

0.4 nm

g=1

EET=Tox

SiO2/

ox+T

channel

SiO2/2

channel

Thin dielectrics are leaky

Quick check: scaling limits

finFET: 5 nm physical gate length.Channel: <100> Si, 0.5, 1, or 2nm thick dielectric: r=12.7, 0.5 or 0.7 nm EOT

60

65

70

75

80

0 0.5 1 1.5 2 2.5

Dielectric: 0.5 nm EOT

su

bth

resh

old

sw

ing

, m

V/d

eca

de

body thickness, nm

thermionic+

tunneling

thermionic

only

5nm gate length

<100> Si finFET

0 0.5 1 1.5 2 2.5

Dielectric: 0.7nm EOT

body thickness, nm

thermionic+

tunneling

thermionic

only

NEMO ballistic simulations

Given EOT limits, ~1.5-2nm body is acceptable.

Source-drain tunneling often dominates leakage.

simulation

TEM images of Lg~12 nm devices

N+InGaAs

InP spacer

InAlAs

Barrier

Lg~12nm

~ 8nm

29

tch~ 2.5 nm

(1.5/1 nm InGaAs/InAs)

Top View

Ni

Cross-setion

N+InP

ID-VG and ID-VD curves of 12nm Lg FETs

30

0.0 0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

gm (m

S/

m)I D

(m

A/

m)

VGS

(V)

0.0

0.4

0.8

1.2

1.6

2.0

2.4V

DS = 0.1 to 0.7 V,

0.2 V increment

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.0

0.5

1.0

1.5

I D (

mA

/m

)

VDS

(V)

Ron

= 302 Ohm-m

at VGS

= 1.0 V

VGS

= -0.2 V to 1.2 V

0.2 V increment

-0.2 0.0 0.2 0.4 0.6 0.810

-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

SS ~ 107.5 mV

at VDS

=0.5 V

SS ~ 98.6 mV

at VDS

=0.1 V

VDS

= 0.1 to 0.7 V

0.2 V increment

I D,

|IG| (m

A/

m)

VGS

(V)

Ioff~1.3 nA/μm Ion~1.1 mA/μm

Ion/Ioff > 8.3∙105

Lg-12nm

InP HBTs: 1.07 THz @200nm, ?? @ 130nm

?

Rode et al., IEEE TED, Aug. 2015

130nm /1.1 THz InP HBT: ICs to 670 GHz614 GHz fundamentalVCO

340 GHz dynamic frequency divider

Vout

VEE VBB

Vtune

Vout

VEE VBB

Vtune

620 GHz, 20 dB gain amplifierM Seo, TSCIMS 2013

also: 670GHz amplifierJ. Hacker , TSCIMS 2013 (not shown)

M. Seo, TSC / UCSB

M. Seo, UCSB/TSCIMS 2010

204 GHz static frequency divider(ECL master-slave latch)

Z. Griffith, TSCCSIC 2010

300 GHz fundamentalPLLM. Seo, TSCIMS 2011

220 GHz 180 mWpower amplifier T. Reed, UCSBCSICS 2013

600 GHz IntegratedTransmitterPLL + MixerM. Seo TSC

Integrated 300/350GHz Receivers:LNA/Mixer/VCO

M. Seo TSC

81 GHz 470 mWpower amplifier H-C Park UCSBIMS 2014