magnetism chapters 20-22

49
MAGNETISM CHAPTERS 20-22

Upload: drake-olsen

Post on 01-Jan-2016

40 views

Category:

Documents


0 download

DESCRIPTION

Magnetism Chapters 20-22. Chapter 20 magnetism. Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields The Force on an Electric Current in a Magnetic Field The Force on Electric Charges Moving in Magnetic Fields Magnetic Field Due to a Long, Straight Wire - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Magnetism Chapters 20-22

MAGNETISMCHAPTERS 20-22

Page 2: Magnetism Chapters 20-22

1. Magnets and Magnetic Fields

2. Electric Currents Produce Magnetic Fields

3. The Force on an Electric Current in a Magnetic Field

4. The Force on Electric Charges Moving in Magnetic Fields

5. Magnetic Field Due to a Long, Straight Wire

6. Force Between Two Parallel Wires

7. Electromagnets

CHAPTER 20MAGNETISM

Page 3: Magnetism Chapters 20-22

Magnets are dipoles, meaning they have two ends, or poles, called north and south.

Like poles repel; unlike poles attract.

MAGNETISM

Page 4: Magnetism Chapters 20-22

If you cut a magnet in half, you don ’t get a magnet with only north pole or only a south pole – you get two smaller magnets with both poles.

MAGNETISM

Page 5: Magnetism Chapters 20-22

Magnetic fields can be visualized using magnetic field lines, which are always closed loops.

Notice that the magnetic field goes from NORTH to SOUTH.

MAGNETIC FIELDS

Page 6: Magnetism Chapters 20-22

A uniform magnetic field is constant in magnitude and direction.

The field between these two wide poles is nearly uniform.

UNIFORM MAGNETIC FIELD

Page 7: Magnetism Chapters 20-22

Symbol: B

Unit of B: the tesla, T.

1 T = 1 N/A·m.

Another unit sometimes used: the gauss (G).1 G = 10-4 T

MAGNETIC FIELD

Notation for vectors going into or coming out of a page:

Page 8: Magnetism Chapters 20-22

This experiment shows that an electric current produces a magnetic field.

Use Right Hand Rule #1 to determine the direction of the magnetic field lines.1. Point thumb in the

direction of current.2. Curl your fingers,

they show the direction of the magnetic field.

MAGNETIC FIELDS

Page 9: Magnetism Chapters 20-22

Example:

Remember: How do you show a vector going into or coming out of the page?

PRACTICE RIGHT-HAND RULE #1

Try this one:A. What is the

direction of the magnetic field produced by the current-carrying wire below?

B. Draw it.

I

Page 10: Magnetism Chapters 20-22

A magnet exerts a force on a current-carrying wire. (First observed by Oersted.)The direction of the force is not in the direction of either pole – it is perpendicular to the direction of the current and perpendicular to the direction of the magnetic field.

The direction can easily be found by using another right-hand rule.

FORCE ON AN ELECTRIC CURRENT IN A MAGNETIC FIELD

Page 11: Magnetism Chapters 20-22

1. Using your right-hand: point your index finger in the direction of the conventional current.

2. Point your middle finger in the direction of the magnetic field, B.

3. Your thumb now points in the direction of the magnetic force, Fmagnetic.

RIGHT-HAND RULE #2

NB

S

I

Page 12: Magnetism Chapters 20-22

PRACTICE - RIGHT-HAND RULE #2

Find the direction of the magnetic force on a current-carrying wire due to the magnetic field B.

N S

I

N S

I

BB

Page 13: Magnetism Chapters 20-22

The magnitude of the force on a wire in a magnetic field depends on: the current (I) the length of the wire (l)

the magnetic field (B) its orientation (θ)

If the direction of I is perpendicular to B, then θ = 90˚ and sin θ = 1.

If I is parallel to B, then θ = 0˚ and sin θ = 0. So, this means the force is zero when I is parallel to B.

FORCE ON AN ELECTRIC CURRENT IN A MAGNETIC FIELD

Page 14: Magnetism Chapters 20-22

Because the magnetic force is the cross-product of velocity and magnetic field, only the component of velocity perpendicular to the field matters for the magnetic force.

WHAT IF THE VELOCITY OF THE CHARGED PARTICLE ISN'T

PERPENDICULAR TO B?

B

I

Page 15: Magnetism Chapters 20-22

Concept Questions

p. 576 #2-4, 6

Practice Problems

See Examples 20-1 and 20-2 on p.559.

p.577 # 1-3

ASSIGNMENT

“If you’re considered a chick magnet, you should be careful about which way you face because you could easily become a chick repellent.” ~Demitri Martin

Page 16: Magnetism Chapters 20-22

Magnetic fields are similar to electric fields,

produced only by moving charges (a single moving charge or a current)

Magnetic fields create a force only on moving charges

The direction for the electric force is along the line drawn from one charge to another, the direction of the magnetic force is perpendicular to both B and I or v.

MAGNETIC FIELDS VS. ELECTRIC FIELDS

Page 17: Magnetism Chapters 20-22

The magnitude of the force on a moving charge is related to the force on a current:

The force is greatest when the particle moves perpendicular to B (θ = 90°)

Once again, the direction is given by a right-hand rule.

The rule is for positive particles. Notice the difference

between positive and negative particles.

Use the opposite of the RHR for negative particles (or left hand).

FORCE ON AN ELECTRIC CHARGE MOVING IN A MAGNETIC FIELD

Page 18: Magnetism Chapters 20-22

If a charged particle, in this case an electron, is moving perpendicular to a uniform magnetic field, its path will be circular.

FORCE ON AN ELECTRIC CHARGE MOVING IN A MAGNETIC FIELD

Page 19: Magnetism Chapters 20-22

Example 1:

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

Example 2:

WHICH WAY WILL THE PARTICLE MOVE?

+q

F

BB

-q

F X

Page 20: Magnetism Chapters 20-22

The strength of the magnetic fi eld at a point around the wire is directly proportional to the current in the wire and inversely proportional to its distance from the wire:

Where: B = magnetic field (T) I = current (A) r = distance of point in field from wire

(m)

MAGNETIC FIELD DUE TO A LONG STRAIGHT WIRE

The constant μ0 is called the

permeability of free space (or vacuum

permeability).

It has the value:

Page 21: Magnetism Chapters 20-22

The magnetic field produced at the position of wire 2 due to the current in wire 1 is:

So, the force this field exerts on a length l2 of wire 2 is:

Remember F=IlB?

FORCE BETWEEN TWO PARALLEL WIRES

Page 22: Magnetism Chapters 20-22

What about the direction?

a) Parallel currents exert an attractive force on each other

b) Antiparallel currents exert a repulsive force on each other

FORCES BETWEEN TWO PARALLEL WIRES

Page 23: Magnetism Chapters 20-22

The Magnetic Field of the Earth is also a magnetic dipole!By the way, technically the north magnetic pole is located in southern hemisphere and the south magnetic pole is located in the northern hemisphere.

WHAT ELSE IS MAGNETIC?

Page 24: Magnetism Chapters 20-22

Concept Questionsp.576#8 - 10

Practice Problemsp.578#10 - 14

ASSIGNMENT

Page 25: Magnetism Chapters 20-22

A magnet has 2 poles: north and south We can imagine that a magnetic fi eld surrounds every

magnet The SI unit for magnetic fi eld B is the tesla, T Electric currents produce magnetic fi elds A magnetic fi eld exerts a force on an electric current

F = IlBsinθ A magnetic fi eld exerts a force on a charge q moving with

velocity v F = qvBsinθ

The magnitude of the magnetic fi eld produced by a current I in a long straight wire, at distance r from the wire is B = μ0I / 2πr

Two currents exert a force on each other via the magnetic fi eld each produces Parallel currents in the same direction attract each other Parallel currents in opposite directions repel

SUMMARY OF CHAPTER 20

Page 26: Magnetism Chapters 20-22

1. Induced EMF

2. Faraday’s Law of Induction

3. Lenz’s Law

4. EMF induced in a Moving Conductor

5. Changing Magnetic Flux Produces an Electric Field

CHAPTER 21ELECTROMAGNETIC INDUCTION

Page 27: Magnetism Chapters 20-22

A long coil of wire consisting of many loops of wire is called a solenoid.

The magnetic field of a solenoid can be fairly large because it is the sum of the fields due to the current in each loop.

SOLENOIDS

l

INB 0

Page 28: Magnetism Chapters 20-22

If a piece of iron is inserted in the solenoid, the magnetic field greatly increases because the iron becomes a magnet.

Such electromagnets have many practical applications.

ELECTROMAGNETS

Page 29: Magnetism Chapters 20-22

An electric motor takes advantage of the torque on a current loop, to change electrical energy to mechanical energy.

APPLICATIONS OF ELECTROMAGNETS

Page 30: Magnetism Chapters 20-22

Loudspeakers use the principle that a magnet exerts a force on a current-carrying wire to convert electrical signals into mechanical vibrations, producing sound.

APPLICATIONS OF ELECTROMAGNETS

Page 31: Magnetism Chapters 20-22

In chapter 20 we learned two ways in which electricity and magnetism are related.1. An electric current

produces a magnetic field.

2. A magnetic field exerts a force on an electric current or a moving electric charge.

Scientists began to wonder… If an electric current can produce a magnetic field, can a magnetic field induce an electric current?

Two scientists independently determined that it can.

Michael Faraday (English)

Joseph Henry (American)

REMINDERS FROM CHAPTER 20

Page 32: Magnetism Chapters 20-22

Faraday concluded that although a constant magnetic field produces no current in a conductor, a changing magnetic field does.

This is called induced current.

So, a changing magnetic field induces an emf – this is called electromagnetic induction.

INDUCED EMF

Page 33: Magnetism Chapters 20-22

This figure shows that:a) if a magnet is moved quickly into a coil of wire, a current

is induced in a wire b) if the magnet is quickly removed, a current is induced in

the opposite direction.c) If the magnet and coil are held steady, no current is

induced.

INDUCED EMF

Page 34: Magnetism Chapters 20-22

For a loop to “feel” the changing magnetic field, some of the field lines need to pass through it.

The amount of magnetic field lines that pass through the loop is called the magnetic flux.

Magnetic flux (ΦB):

B, magnetic field (T) A, the loop’s area (m2) θ, the loop’s angle (°)

Unit of magnetic flux: Weber (Symbol: Wb)

1 Wb = 1 T·m2

FARADAY’S LAW OF INDUCTION

Page 35: Magnetism Chapters 20-22

FYI: The magnetic flux is proportional to the total number of lines passing through the loop.

θ is the angle between B and a line drawn perpendicular to the face of the loop.

FARADAY’S LAW OF INDUCTION

See how the angle effects the flux.

Page 36: Magnetism Chapters 20-22

Magnetic flux will change if the area of the loop changes:

FARADAY’S LAW OF INDUCTION

Page 37: Magnetism Chapters 20-22

Magnetic flux will change if the angle between the loop and the field changes:

FARADAY’S LAW OF INDUCTION

Page 38: Magnetism Chapters 20-22

Concept Questions

p.609 #2+3

Practice Problems

p. 610 #7

ASSIGNMENT

90’s Flowchart

Page 39: Magnetism Chapters 20-22

Faraday’s Law of Induction is one of the basic laws of electromagnetism.

It states that the size of the induced emf is proportional to the rate of change of flux through

the coil’s face.

Faraday’s law of induction for 1 loop:

Faraday’s law of induction for N loops:

FARADAY'S LAW OF INDUCTION

Page 40: Magnetism Chapters 20-22

So, we now have 2 magnetic fields:1. The original changing magnetic field (or flux)

that induced the current2. The magnetic field that the current then produces The second field opposes the change in the first.

Lenz’s law states that an electric current induced by a changing magnetic field will flow such that it will create its own magnetic field that opposes the magnetic field that created it.

LENZ’S LAW

Page 41: Magnetism Chapters 20-22

When the magnet is moved in a metal that conducts electricity, like copper, the magnet create currents in the metal.

The electric currents in the metal create a magnetic force in the opposite direction of the moving magnet.

LENZ’S LAW EXAMPLE

Page 42: Magnetism Chapters 20-22

LENZ’S LAW

So the minus sign in the previous equation (from Faraday’s Law of Induction) is from Lenz’s Law. It gives the direction of the induced emf.

A current produced by an induced emf moves in a direction so that the magnetic field it produces tends to restore the changed field (systems don’t like change).

Page 43: Magnetism Chapters 20-22

Concept Question:p.609

#1

Practice Problems:p.610

#1, 4, 5, 11a

ASSIGNMENT

Page 44: Magnetism Chapters 20-22

Lenz’s Law is used to determine the direction of the conventional current induced in a loop due to a change in magnetic flux inside the loop.

The steps on the next slide will make it really easy for you to determine the direction of an induced current – just be sure to remember there are two different magnetic fields.

LENZ’S LAW

Page 45: Magnetism Chapters 20-22

1. Determine whether the magnetic flux is increasing, decreasing, or unchanged.

2. The magnetic field due to the induced current: points in the opposite direction to the original field if

the flux is increasing

points in in the same direction if it is decreasing

is zero if the flux is not changing.

3. Once you know the direction of the magnetic field, use the right-hand rule to determine the direction of the current.

4. Remember that the original field and the field due to the induced current are different.

PROBLEM SOLVING USING LENZ’S LAW

Page 46: Magnetism Chapters 20-22

Pulling the loop to the right out of a magnetic field which points out of a page.

1. If you pull the loop from a B-field to no B-field, the B-flux decreases.

2. If the B-flux decreases, the new magnetic field inside of the loop will be in the same direction as the original B-field.

3. Use the right hand rule for loops to determine the current.

If the field inside the loop is pointing out. The current must be counter-clockwise.

EXAMPLE #1DIRECTION OF INDUCED CURRENT?

Page 47: Magnetism Chapters 20-22

1. Use RHR to determine the direction of the B-fi eld from straight wire.

It’s going into the page where the loop is located

2. Is B-fl ux increasing or decreasing?

Increasing if current in wire is increasing.

So the new magnetic field inside the loop will be in the opposite direction. (out of the page)

3. Use the RHR again to determine the induced current in the loop.

It must be counter-clockwise.

EXAMPLE #2DIRECTION OF INDUCED CURRENT?

I increasing

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

Page 48: Magnetism Chapters 20-22

Assume that a uniform magnetic field is perpendicular to the area bounded by the U-shaped conductor and the movable rod resting on it.

If the rod is made to move at a speed v, in a time t it travels a distance ∆x (=v∆t).

Therefore the area of the loop increases by an amount ∆A (= l∆x)

So, the induced emf has a mgnitude:

E = Blv

EMF INDUCED IN A MOVING CONDUCTOR

Page 49: Magnetism Chapters 20-22

Concept Questionsp.609#4-6

Practice Problemsp.610#9-10, 11b, 17

ASSIGNMENT