ma6351-transforms and partial differential …

73
MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS SUBJECT NOTES VIDYARTHIPLUS - ANNA UNIVERSITY ONLINE STUDENTS COMMUNITY WWW.VIDYARTHIPLUS.COM www.Vidyarthiplus.com www.Vidyarthiplus.com

Upload: others

Post on 20-Nov-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

MA6351-TRANSFORMS AND PARTIAL

DIFFERENTIAL EQUATIONS

SUBJECT NOTES

VIDYARTHIPLUS - ANNA UNIVERSITY ONLINE STUDENTS COMMUNITYWWW.VIDYARTHIPLUS.COM

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 2: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e2

Basic Formulae

DIFFERENTIATION &INTEGRATION FORMULAE

0 Function

( )y f x

Differentiation

dy

dx

1 nx 1nnx

2 log x 1

x

3 sin x cos x

4 cos x sin x

5 axe a xe

6 C (constant) 0

7 tan x 2sec x

8 sec x sec tanx x

9 cot x 2cos ec x

10 cos ecx cos cotecx x

11 x 1

2 x

12 1sin x 2

1

1 x

13 1cos x 2

1

1 x

14 1tan x 2

1

1 x

15 1sec x 2

1

1x x

16 1cosec x 2

1

1x x

17 1cot x 2

1

1 x

18 xa logxa a

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 3: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e3

19. If y uv , then dy du dv

v udx dx dx

20. If u

yv

, then2

du dvv u

dy dx dx

dx v

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 4: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e4

1

2

1

2 2

2 2

1.1

2. , &

cos3. sin cos & sin

sin4. cos sin & cos

5. tan log sec log cos

6. sec tan

17. tan

18. log

2

nn

ax axx x ax ax

xx dx

n

e ee dx e e dx e dx

a a

axxdx x axdx

a

axxdx x axdx

a

xdx x x

xdx x

dx xdx

x a a a

dx x adx

x a a x

1

2 2

1

2 2

1

2 2

22 2 2 2 1

22 2 2 2 1

22 2 2 2 1

2 2

2 2

9. sin

10. sinh

11. cosh

12. sin2 2

13. sinh2 2

14. cosh2 2

15. log

216. log

a

dx xdx

aa x

dx xdx

aa x

dx xdx

ax a

x a xa x dx a x

a

x a xa x dx a x

a

x a xx a dx x a

a

dxx

x

xdxx a

x a

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 5: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e5

3

2

3

2

17. log log

18.3

19.3

120. 2

xdx x x x

a xa x dx

a xa x dx

dx xx

21. 2 2

cos cos sinax

ax ee bxdx a bx b bx

a b

22.2 2

sin sin cosax

ax ee bxdx a bx b bx

a b

23.1 2 3........udv uv u v u v u v´ ´´ ´´´

24.0

( ) 2 ( )

a a

a

f x dx f x dx when f(x) is even

25. ( ) 0

a

a

f x dx when f(x) is odd

26. 2 2

0

cosax ae bxdx

a b

27. 2 2

0

sinax be bxdx

a b

TRIGNOMETRY FORMULA

1. sin2 2sin cosA A A

2 2

2

2

2.cos 2 cos sin

1 2sin

2cos 1

A A A

A

A

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 6: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e6

3. 2 1 cos 2cos

2

xx & 2 1 cos 2

sin2

xx

4. sin( ) sin cos cos sin

sin( ) sin cos cos sin

cos( ) cos cos sin sin

cos( ) cos cos sin sin

A B A B A B

A B A B A B

A B A B A B

A B A B A B

15.sin cos sin( ) sin( )

2

1cos sin sin( ) sin( )

2

1cos cos cos( ) cos( )

2

1sin sin cos( ) cos( )

2

A B A B A B

A B A B A B

A B A B A B

A B A B A B

3

3

16. sin 3sin sin 3

4

1cos 3cos cos3

4

A A A

A A A

2 2

2 2

7.sin 2sin cos2 2

cos cos sin2 2

1 2sin 1 cos 2sin2 2

A AA

A AA

A AA

LOGRATHEMIC FORMULA

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 7: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e7

log

log log log

log log log

log log

log 1 0

log 0

log 1

n

a

a

a

x

mn m n

mm n

n

m n m

a

e x

UNIT - 1

PARTIAL DIFFRENTIAL EQUATIONS

PARTIAL DIFFERENTIAL EQUTIONS

Notations

zp

x

zq

y

2

2

zr

x

2 zs

x y

2

2

zt

y

Formation PDE by Eliminating arbitrary functions

Suppose we are given f(u,v) = 0

Then it can be written as u = g(v) or v = g(u)

LAGRANGE’S LINEAR EQUATION

(Method of Multipliers)

General form

Pp + Qq = R

Subsidiary Equation

dx dy dz

P Q R

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 8: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e8

dx dy dz x my nz

P Q R P mQ nR

Where ( , m ,n) are the Lagrangian Multipliers

Choose , m, n such that P + mQ + nR = 0

Then dx + m dy + n dz = 0

On Integration we get a solution u = a

Similarly, We can find another solution v = a for another multiplier

The solution is (u, v) = 0

TYPE –2 (Clairut’s form)

General form

Z = px + qy + f(p,q) (1)

Complete integral

Put p = a & q = b in (1), We get (2) Which is the Complete integral

Singular Integral

Diff (2) Partially w.r.t a We get (3)

Diff (2) Partially w.r.t b We get (4)

Using (3) & (4) Find a & b and sub in (2) we get Singular Integral

REDUCIBLE FORM

F(xm

p ,ynq) = 0 (1) (or)

F( xm

p, ynq, z)=0 (1)

F( zkp, z

kq)=0

If 1& 1m n then

X = x1-m

& Y = y1-n

xm

p = P(1-m) & yn q = Q(1-n)

Using the above in (1)we get

F(P,Q) = 0 (or) F(P,Q,z) = 0

If 1k then Z = zk+1

1

k Qz q

k

Using the above in (1) We get

F(P,Q) = 0

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 9: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e9

If m=1 & n=1 then

X= logx & Y= logy

xp = P & yq = Q

Using the above in (1) we get

F(P,Q) (or) F(P, Q, z) = 0

If k =-1 then Z = log z

p

Pz

& q

Qz

Using the above in (1)

we get

F(P,Q) = 0

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 10: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e10

STANDARD TYPES

TYPE –1

TYPE –3(a)

TYPE –3(b)

TYPE –3(c)

TYPE –4

General form

F(p,q) = 0 (1)

General form

F(x,p,q) = 0 (1)

General form

F(y,p,q) = 0

(1)

General form

F(z,p,q) = 0

(1)

General form

F(x,y,p,q) = 0

(1)

Complete

Integral Put p = a and q =

b in (1)

Find b in terms

of a

Then sub b in

z = ax + by + c

we get (2)

which is the

Complete

Integral

Complete

Integral

Put q = a in (1)

Then, find p and

sub in

dz = p dx + q dy

Integrating ,

We get (2)

which is the

Complete

integral

Complete

Integral

Put p = a in (1)

Then, find q and

sub in dz = p dx

+ q dy

Integrating ,

We get (2)

which is the

Complete

integral

Complete

Integral

Put q = ap in (1)

Then, find p and

sub in

dz = p dx + q dy

Integrating,

We get (2) which

is the

Complete

integral

Complete

Integral

(1) Can be written

as,

f(x,p) =f(y,q) = a

Then, find p and q

sub in

dz = p dx + qD y

Integrating,

We get (2) which

is the

Complete integral

Singular

Integral

Diff (2) partially

w.r.t cWe get,0

=1 (absurdThere

is no Singular

Integral

Singular

Integral

Diff (2) partially

w.r.t cWe get,0

=1 (absurdThere

is no Singular

Integral

Singular

Integral

Diff (2) partially

w.r.t cWe get,0

=1 (absurdThere

is no Singular

Integral

Singular

Integral

Diff (2) partially

w.r.t cWe get,0

=1 (absurdThere

is no Singular

Integral

Singular Integral

Diff (2) partially

w.r.t cWe get,0

=1 (absurd

There is no

Singular Integral

General

Integral

Put c = (a) in

(2)We get

(3)Diff (3)

partially w.r.t

aWe get

(4)Eliminating a

from (3) and (4)

we get General

Integral

General

Integral

Put c = (a) in

(2)We get

(3)Diff (3)

partially w.r.t

aWe get

(4)Eliminating a

rom (3) and (4)

we get General

Integral

General

Integral

Put c = (a) in

(2)We get (3)

Diff (3) partially

w.r.t aWe get (4)

Eliminating a

from (3) and (4)

we get General

Integral

General

Integral

Put c = (a) in

(2)We get

(3)Diff (3)

partially w.r.t

aWe get

(4)Eliminating a

from (3) and (4)

we get General

Integral

General Integral

Put c = (a) in

(2)We get (3)

Diff (3) partially

w.r.t aWe get

(4)Eliminating a

from (3) and (4)

we get General

Integral

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 11: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e11

HOMOGENEOUS LINEAR EQUATION

General form

33 2 2( ) ( , )aD bD D cDD dD z f x y (1)

To Find Complementary Function

Auxiliary Equation

Put D = m & D = 1 in (1)

Solving we get the roots m1

, m2

, m3

Case (1)

If the roots are distinct then

C.F. = 1 1 2 2 3 3( ) ( ) ( )y m x y m x y m x

Case (2)

If the roots are same then

C.F. = 2

1 2 3( ) ( ) ( )y mx x y mx x y mx

Case (3)

If the two roots are same and one is distinct, then

C.F = 1 2 3 3( ) ( ) ( )y mx x y mx y m x

Function PI =

1

1( , )

( , )F x y

F D D

F(x,y) = eax+by

Put D = a & D1

= b

F(x,y)= sin(ax+by)(or)

Cos (ax+by)

Put

22 2 2( ), ( )& ( )D a DD ab D b

F(x,y) = xr

ys

PI=

1

( , ) r sF D D x y

Expand and operating D & D

on xr

ys

F(x,y) = eax+by

f(x,y) Put D = D+a & D = D +b

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 12: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e12

Particular Integral

F(x,y)=ex+y

cosh(x+y) F(x ,y)=2 21

2

x ye e

F(x,y)=ex+y

sinh(x+y) F(x, y) =2 21

2

x ye e

F(x,y)=sin x cos y

1( , ) sin( ) sin( )

2F x y x y x y

F(x,y)= cos x sin y

1( , ) sin( ) sin( )

2F x y x y x y

F(x,y)= cos x cos y

1( , ) s( ) s( )

2F x y co x y co x y

F(x,y)= sin x sin y

1( , ) cos( ) cos( )

2F x y x y x y

Note:

D represents differentiation with respect to ‘x ‘

D represents differentiation with respect to ‘y ‘

1

D

represents integration with respect to ‘x ‘

1

D

represents integration with respect to ‘y ‘

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 13: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e13

PARTIAL DIFFRENTIAL EQUATIONS

1. Eliminate the arbitrary constants a & b from

z = (x2

+ a)(y2

+ b)

Answer:

z = (x2

+ a)(y2

+ b)

Diff partially w.r.to x & y here &z z

p qx y

p = 2x(y2

+ b) ; q = (x2

+ a) 2y

(y2

+ b) = p/2x ; (x2

+ a) = q/2y

z = (p/2x)(q/2y)

4xyz = pq

2. Form the PDE by eliminating the arbitrary function from z = f(xy)

Answer:

z = f(xy)

Diff partially w.r.to x & y here &z z

p qx y

p = ( ).f xy y q = ( ).f xy x

p/q = y/x px – qy = 0

3. Form the PDE by eliminating the constants a and b from z = axn

+ byn

Answer:

z = axn

+ byn

Diff. w .r. t. x and y here &z z

p qx y

p = naxn-1

; q = nbyn-1

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 14: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e14

1 1

1 1

;n n

n n

n n

p qa b

nx ny

p qz x y

nx ny

nz px qy

4. Eliminate the arbitrary function f from xy

z fz

and form the PDE

Answer:

xy

z fz

Diff. w .r. t. and y here &z z

p qx y

2

2

.

.

.

xy z xpp f y

z z

xy z yqq f x

z z

p y z xp

q x z yq

0

pxz pqxy qyz pqxy

px qy

5. Find the complete integral of p + q =pq

Answer:

Put p = a, q = b

p + q =pq a+b=ab

b – ab = -a

1 1

a ab

a a

The complete integral is z= ax+

1

a

ay +c

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 15: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e15

6. Find the solution of 1p q

Answer:

z = ax+by+c ----(1) is the required solution

given 1p q -----(2)

put p=a, q = b in (2)

2

2

1 1 (1 )

(1 )

a b b a b a

z a x a y c

7. Find the General solution of p tanx + q tany = tanz.

Answer:

1 2

1 2

tan tan tan

cot cot cot

cot cot cot cot

logsin logsin log logsin logsin log

sin sin

sin sin

sin sin, 0

sin sin

dx dy dz

x y z

x dx y dy z dz

take x dx y dy y dy zdz

x y c y z c

x yc c

y z

x y

y z

8. Eliminate the arbitrary function f from 2 2z f x y and form the PDE.

Answer:

2 2z f x y

2 2 2 22 ; ( 2 )

20

2

p f x y x q f x y y

p xpy qx

q y

9. Find the equation of the plane whose centre lie on the z-axis

Answer:

General form of the sphere equation is

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 16: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e16

22 2 2x y z c r (1)

Where ‘r’ is a constant. From (1)

2x+2(z-c) p=0 (2)

2y +2(z-c) q = 0 (3)

From (2) and (3)

x y

p q

That is py -qx =0 which is a required PDE.

10. Eliminate the arbitrary constants 2 2z ax by a b and form the PDE.

Answer:

2 2z ax by a b

2 2

;p a q b

z px qy p q

11. Find the singular integral of z px qy pq

Answer:

The complete solution is z ax by ab

0 ; 0

;

( ) ( ) ( . )

0

z zx b y a

a b

b x a y

z y x x y y x

xy xy xy

xy

xy z

12. Find the general solution of px+qy=z

Answer:

The auxiliary equation is

dx dy dz

x y z

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 17: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e17

From

dx dy

x y Integrating we get log x = log y + log c

on simplifying 1

xc

y.

2

dy dz yc

y z z

Therefore , 0

x y

y z is general solution.

13. Find the general solution of px2

+qy2

=z2

Answer:

The auxiliary equation is 2 2 2

dx dy dz

x y z

From 2 2

dx dy

x y Integrating we get 1

1 1c

y x

Also 2 2

dy dz

y z Integrating we get 2

1 1c

z y

Therefore 1 1 1 1

, 0y x z y

is general solution.

14. Solve 2 22 3 0D DD D z

Answer:

Auxiliary equation is

2 2 3 0m m

3 1 0m m

1, 3m m

The solution is 1 2 3z f y x f y x

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 18: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e18

15. Solve 2 24 3 x yD DD D z e

Answer:

Auxiliary equation is 2 4 3 0m m

3 1 0m m

1, 3m m

The CF is 1 2 3CF f y x f y x

2 2

1

4 3

x yPI eD DD D

Put 1, 1D D Denominator =0.

2 4

x yxPI e

D D

2

x yxe

Z=CF + PI

1 2 3z f y x f y x

2

x yxe

16. Solve. 2 23 4 x yD DD D z e

Answer:

Auxiliary equation is 2 3 4 0m m

4 1 0m m

C.F is = f1

(y + 4x) + f2

(y - x)

2 2

1 1 1

3 4 1 3 4 6

x y x y x yPI e e eD DD D

17. Find P.I 2 2 24 4 x yD DD D z e

Answer:

2

2 2

1

4 4

x yPI eD DD D

Put 2, 1D D

2

2

1

2

x yPI eD D

2

2

1

2 2

x ye

2

16

x ye

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 19: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e19

18. Find P.I 2 2 26D DD D z x y

Answer:

2

22

2

1

61

PI x yD D

DD D

2

2

11

Dx y

D D

32

2

1

3

xx y

D

4 5

12 60

x y x

19. Find P.I

2 2

2sin

z zx y

x x y

Answer:

2

1PI Sin x y

D DD Put

2 1, (1)( 1) 1D DD

1

1 1Sin x y

2

Sin x y

20. Solve 3 33 2 0D DD D Z

Answer:

Auxiliary equation is 3 3 2 0m m

21 2 0m m m

1 2 1 0m m m

1,1 2m m

The Solution is 1 2 3 2CF f y x x f y x f y x

FOR PRACTICE:

1. Eliminating arbitrary constants

2 2 2

2 2 21

x y z

a b c

2. Solve

2

2sin

zy

x

3. Find the complete the solution of p. d .e 2 2 4 0p q pq

4. Form p.d.e eliminating arbitrary function from 2 ,

2

xz xy

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 20: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e20

5. Find the singular soln of 2 2 1z px qy p q

1. (i) Solve 2 2 2x y z p y z x q z x y

(ii) Solve 2 2 2 2 2 2x z y p y x z q z y x

2. (i) Solve z z

mz ny nx lz ly mxx y

(ii) Solve 3 4 4 2 2 3z y p x z q y x

3. (i) Solve 2 2 2 2 2x y z p xyq xz

(ii) Solve 2 2 2 2 2 0y z x p xyq zx

4. (i) Solve y z p z x q x y

(ii) Solve y z p z x q x y

5. Solve 2 2 3 23 2 sin(3 2 )x yD DD D e x y

6. Solve 2 2

2cos cos 2

z zx y

x x y

7. Solve 2 26 cosD DD D z y x

8. Solve 2 2 630 x yD DD D z xy e

9. Solve 2 26 5 sinhxD DD D z e y xy

10. Solve 2 2 24 4 x yD DD D z e

11. Solve 3 2 2 3 2 cos( )x yD D D DD D z e x y

12. Solve (i) 2 21z px qy p q

(ii) 2 2z px qy p q

13. Solve 2 2 21z p q

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 21: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e21

14. Solve 2 2 2 2( ) 1z p x q

15. Solve (i) 2 2 2 2( )z p q x y

(ii) 2 2 2 2 2( )z p q x y

UNIT - 2

FOURIER SERIES

0

1

( ) cos sin2

n n

n

af x a nx b nx

(0,2 ) ( - , )

Even (or) Half range

Fourier co sine series

Odd (or) Half range

Fourier sine series

Neither even nor odd

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 22: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e22

2

0

0

1( )a f x dx

0

0

2( )a f x dx

0 0a 0

1( )a f x dx

2

0

1( )cosna f x nxdx

0

2( )cosna f x nxdx

0na 1( )cosna f x nxdx

2

0

1( )snb f x innxdx

bn=0

0

2( )snb f x innxdx

1( )snb f x innxdx

0

1

( ) cos sin2

n n

n

a n x n xf x a b

(0,2 ) ( - , )

Even (or) Half range

Fourier cosine series

Odd (or) Half range

Fourier sine series

Neither even nor odd

2

0

0

1( )a f x dx

0

0

2( )a f x dx

0 0a 0

1( )a f x dx

2

0

1( )cosn

n xa f x dx

0

2( )cosn

n xa f x dx

0na 1( )cosn

n xa f x dx

2

0

1( )sn

n xb f x in dx

bn=0

0

2( )sn

n xb f x in dx

1( )sn

n xb f x in dx

Even and odd function:

Even function:

f(-x)=f(x)

eg : cosx,x2

, , , sin , cosx x x are even functions

Odd function:

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 23: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e23

f(-x)=-f(x)

eg : sinx,x3 ,sinhx, tanx are odd functions

For deduction

In the interval (0,2 ) if x = 0 or x = 2 then

f(0) = f(2 ) = (0) (2 )

2

f f

In the interval (0,2 ) if x = 0 or x = 2 then

f(0) = f(2 ) = (0) (2 )

2

f f

In the interval (- , ) if x = - or x = then

f(- ) = f( ) = ( ) ( )

2

f f

In the interval (- , ) if x = - or x = then

f(- ) = f( ) = ( ) ( )

2

f f

HARMONIC ANALYSIS

f(x)= 0

2

a + a1 cosx +b1sinx + a2cos2x + b2sin2x ……… for form

0 2y

an

1

cos2

y xa

n, 2

cos 22

y xa

n 1

sin2

y xb

n, 2

sin 22

y xb

n

f(x)= 0

2

a + a1 cos

x

+b1

xsin

+ a2

2cos

x

+ b2

2 xsin

………( form)

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 24: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e24

0 2y

an

1

cos

2

xy

an

2

2cos

2

xy

an

1

sin

2

xy

bn

,2

2sin

2

xy

bn

1. Define R.M.S value.

If let f(x) be a function defined in the interval (a, b), then the R.M.S value of

f(x) is defined by

21( )

b

a

y f x dxb a

2. State Parseval’s Theorem.

Let f(x) be periodic function with period 2l defined in the interval (c, c+2l).

2 22 2 2

1

1 1( )

2 4 2

c l

on n

nc

af x dx a b

lWhere , &o n na a b are Fourier constants

3. Define periodic function with example.

If a function f(x) satisfies the condition that f(x + T) = f(x), then we say f(x) is a periodic

function with the period T.

Example:-

i) Sinx, cosx are periodic function with period 2

ii) tanx is are periodic function with period

4. State Dirichlets condition.

(i) f(x) is single valued periodic and well defined except possibly at a

Finite number of points.

(ii) f (x) has at most a finite number of finite discontinuous and no infinite

Discontinuous.

(iii) f (x) has at most a finite number of maxima and minima.

5. State Euler’s formula.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 25: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e25

Answer:

( , 2 )

cos sin2

on n

In c c l

af x a nx b nx

2

2

2

1( )

1( )cos

1( )sin

c l

o

c

c l

n

c

c l

n

c

where a f x dx

a f x nxdx

b f x nxdx

6. Write Fourier constant formula for f(x) in the interval (0,2 )

Answer:

2

0

2

0

2

0

1( )

1( )cos

1( )sin

o

n

n

a f x dx

a f x nxdx

b f x nxdx

7. In the Fourier expansion of

f(x) =

21 , 0

21 ,0

xx

xx

in (-π , π ), find the value of nb

Since f(-x)=f(x) then f(x) is an even function. Hence nb = 0

8. If f(x) = x3

in –π < x < π, find the constant term of its Fourier series.

Answer:

Given f(x) = x3

f(-x) = (- x)3

= - x3

= - f(x)

Hence f(x) is an odd function

The required constant term of the Fourier series = ao

= 0

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 26: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e26

9. What are the constant term a0

and the coefficient of cosnx in the Fourier

Expansion f(x) = x – x3

in –π < x < π

Answer:

Given f(x) = x – x3

f(-x) = -x - (- x)3

= - [x - x3

] = - f(x)

Hence f(x) is an odd function

The required constant term of the Fourier series = 0a = 0

10. Find the value of a0

for f(x) = 1+x+x2

in ( 0 ,2 )

Answer:

2

0

1( )oa f x dx

22 2 32

0 0

2 3 2

1 1(1 )

2 3

1 4 8 82 2 2

2 3 3

x xx x dx x

11. (i)Find bn

in the expansion of x2

as a Fourier series in ( , )

(ii)Find bn

in the expansion of xsinx a Fourier series in ( , )

Answer:

(i) Given f(x) = x2

f(-x) = x2

= f(x)

Hence f(x) is an even function

In the Fourier series nb = 0

(ii) Given f(x) = xsinx f(-x) = (-x)sin(-x)

= xsinx = f(x)

Hence f(x) is an even function

In the Fourier series nb = 0

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 27: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e27

12. Obtain the sine series for

0 / 2

/ 2

x x lf x

l x l x l

Given

0 / 2

/ 2

x x lf x

l x l x l

Answer:

Given

0 / 2

/ 2

x x lf x

l x l x l

Fourier sine series is sinn

nxf x b

l

0

2

0 2

2

2 2

2 2

0 2

2( )sin

2sin ( )sin

cos sin cos sin2

(1) ( ) ( 1)

l

n

l l

l

l l

l

nxb f x dx

l l

nx nxx dx l x dx

l l l

nx nx nx nx

l l l llx l l l x ll n n n n

2 2 2 2

2 2 2 2

2

2 2 2 2

2 cos 2 sin 2 cos 2 sin 2

2 2

2 2 sin 2 4 sin 2

l n l n l nl l n

l n n n n

l n l n

l n n

Fourier series is 2 21

4 sin 2sin

n

l n n xf x

n l

13. If f(x) is odd function in ,l l . What are the value of a0

&an

Answer:

If f(x) is an odd function, ao

= 0, an

= 0

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 28: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e28

14. In the Expansion f(x) = |x| as a Fourier series in (- . ) find the value of a0

Answer:

Given f(x) = |x|

f(-x) = |-x|

= |x| = f(x)

Hence f(x) is an even function

2 2

0 0

2 2 2

2 2o

xa xdx

15. Find half range cosine series of f(x) = x, in 0 x

Answer:

2 2

0 0

2 2 2

2 2o

xa xdx

2

0 0

1

2 1 cos sinsin (1)

1 11 cos0 0

n

n n

nx nxa x nxdx x

n n

n

n n n

Fourier series is

0

1

0

cos2

1cos

2

on

n

n

n

af x a nx

nxn

16. Find the RMS value of f(x) = x2

, 0 1x

Answer:

Given f(x) = x2

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 29: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e29

R.M.S value

2 122 2

0 0

15

0

1 1( )

1 2

22

5 5

l

y f x dx x dxl

x

17. Find the half range sine series of ( )f x x in (0, )

Answer:

0

2( )sinnb f x nxdx

2

0 0

1

2 2 cos sinsin (1)

2 ( 1) 2( 1)n n

nx nxx nxdx x

n n

n n

Half range Fourier sine series is

1

0

2( 1)sin

n

n

f x nxn

18. Find the value of a0

in the cosine series of ( )f x x in (0, 5)

Answer:

55 2 2

0 0

2 2 2 55

5 5 2 5 2o

xa xdx

19. Define odd and even function with example.

Answer:

(i) If ( ) ( )f x f x then the function is an even function.

eg : cosx ,x2 , , sin , cosx x x are even functions

(ii) If ( ) ( )f x f x then the function is an odd function.

eg : sinx,x3 ,sinhx, tanx are odd functions

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 30: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e30

20. Write the first two harmonic.

Answer:

1 1 2 2cos sin cos 2 sin 22

o

The first twoharmonics are

af x a x b x a x b x

FOURIER SERIES

1. Expand

(0, )( )

2 ( ,2 )

xf x

x as Fourier series

and hence deduce that

2

2 2 2

1 1 1.........

1 3 5 8

2. Find the Fourier series for f(x) = x2

in (- . ) and also prove that

(i)

2

2 2 2

1 1 1.........

1 2 3 6 (ii)

2

2 2 2

1 1 1.........

1 2 3 12

3. (i) Expand f(x) = | cosx | as Fourier series in (- . ).

(ii) Find cosine series for f(x) = x in (0, ) use Parsevals identity to

Show that

4

4 4 4

1 1 1.........

1 2 3 90

4. (i) Expand f(x) = xsinx as a Fourier series in (0,2 )

(ii) Expand f(x) = |x| as a Fourier series in (- . ) and deduce to

2

2 2 2

1 1 1.........

1 3 5 8

5. If

0 , ( ,0)( )

sin , (0, )f x

x Find the Fourier series and hence deduce that

1 1 1 2

.........1.3 3.5 5.7 4

6. (i) Find the Fourier series up to second harmonic

X 0 1 2 3 4 5

Y 9 18 24 28 26 20

(ii)Find the Fourier series up to third harmonic

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 31: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e31

X 0 π/3 2π/3 π 4π/3 5π/3 2π

F(x) 10 14 19 17 15 12 10

7. (i) Find the Fourier expansion of 2( ) ( )f x x in (0,2 ) and

Hence deduce that

2

2 2 2

1 1 1.........

1 2 3 6

(ii). Find a Fourier series to represent

2( ) 2f x x x with period 3

in the range (0,3)

(ii) Find the Fourier series of xf x e in ( , ) .

(ii) Find the Fourier series for

1 (0, )

2 ( ,2 )

inf x

in

and hence show that

2

2 2 2

1 1 1.........

1 3 5 8

8. (i) Find the the half range sine series for f x x x in the interval (0, ) and deduce

that 3 3 3

1 1 1....

1 3 5

(ii) Obtain the half range cosine series for 2

1f x x in (0,1)

and also deduce that

2

2 2 2

1 1 1.........

1 2 3 6

9. (i) Find the Fourier series for f(x) = x2

in (- . ) and also prove that

4

4 4

1 11 .........

1 2 90 (use P.I)

(ii) Find the Fourier series for f(x) = x in (- . ) and also prove that

4

4 4

1 11 .........

1 3 96 (use P.I)

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 32: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e32

10(i)Obtain the sine series for

,02

,2

lcx x

f xl

c l x x l

(ii). Find the Fourier series for the function

,02

2 ,2

lkx x

f xl

k l x x l

11.(i).Find the Fourier series for the function 21 ( , )f x x x in and also

deduce that

2

2 2 2

1 1 1.........

1 2 3 6

(ii) Find the Fourier expansion of

f(x) =

21 , 0

21 ,0

xx

xx

in (-π , π ), and also deduce that 2

2 2 2

1 1 1.........

1 3 5 8

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 33: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e33

UNIT - 3

APPLICATIONS OF P.D.E

S.

N

O

ONE DIMENSIONAL WAVE EQUATION

VELOCITY MODEL INITIAL POSITION MODEL

1 STEP-1

One Dimensional wave equation

is

2 22

2 21

y ya

t x

STEP-1

One Dimensional wave equation

is

2 22

2 21

y ya

t x

2 STEP-2

Boundary conditions

1. y(0,t) = 0 for 0t

2. y( , t) = 0 for 0t

3. y(x,0) = 0 for 0 < x <

4. 0t

y

t= f(x) for 0 < x <

STEP-2

Boundary conditions

1. y(0,t) = 0 for 0t

2. y( , t) = 0 for 0t

3. 0t

y

t = 0 for 0 < x <

4. y(x,0) = f(x) for 0 < x <

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 34: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e34

3 STEP-3

The possible solutions are

y(x,t) = (A ex + B e

- x) (C e

at + D e

- at)

y(x,t) = (A cos x + B sin x )( C cos at + D sin

at)

y(x,t) = (Ax + B) ( Ct + D)

STEP-3

The possible solutions are

y(x,t) = (A ex + B e

- x) (C e

at + D e

- at)

y(x,t) = (A cos x + B sin x )( C cos at + D

sin at)

y(x,t) = (Ax + B) ( Ct + D)

4 STEP-4

The suitable solution for the given

boundary condition is

y(x,t) = (Acos x+B sin x )(Ccos at+D sin at)

(2)

STEP-4

The suitable solution for the given

boundary condition is

y(x,t) = (Acos x+B sin x )(Ccos at+D sin at)

(2)

5 STEP-5

Using Boundary condition 1

y(0,t) = 0

Then (2) becomes,

y(0,t) = (A cos 0 +B sin 0 ) ( C cos at + Dsin at) =0

(A) ( C cos at + D sin at)=0

A = 0

Using A = 0 in (2)

y(x,t) = ( B sin x) ( C cos at + D sin at) (3)

STEP-5

Using Boundary condition 1

y(0,t) = 0

Then (2) becomes,

y(0,t) = (A cos 0 +B sin 0 ) ( C cos at + D sin at)

=0

(A) ( C cos at + D sin at)=0

A = 0

Using A = 0 in (2)

y(x,t) = ( B sin x) ( C cos at + D sin at) (3)

6

STEP-6

Using Boundary condition 2

y( ,t) = 0

Then (3) becomes,

y( ,t) = (B sin ) ( C cos at + D sin at)=0

(B sin ) ( C cos at + D sin at)=0

= n

Then (3) becomes,

( , ) sin( ) cos( ) sin( )n x n at n at

y x t B C D

(4)

STEP-6

Using Boundary condition 2

y( ,t) = 0

Then (3) becomes,

y( ,t) = (B sin ) ( C cos at + D sin at)=0

(B sin ) ( C cos at + D sin at)=0

= n

Then (3) becomes,

( , ) sin( ) cos( ) sin( )n x n at n at

y x t B C D

(4)

7 STEP-7

Using Boundary condition 3

y(x,0) = 0

Then (4) becomes,

STEP-7

Using Boundary condition 3

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 35: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e35

( , ) sin( ) cos0 sin 0n x

y x t B C D

=0

sin( ) 0n x

B C

C = 0

Then (4) becomes,

( , ) sin( ) sin( )n x n at

y x t B D

The most general solution is

1

( , ) sin( )sin( )n

n

n x n aty x t B

(5)

0t

y

t= 0Then (4) becomes,

Differentiating (5) partially w.r.to ‘t’ and put t =0

0

sin( ) sin( ) cos( )t

y n x n at n at n aB C D

t

sin( ) 0n x n a

B D

D = 0

Then (4) becomes,

( , ) sin( ) cos( )n x n at

y x t B C

The most general solution is

1

( , ) sin( ) cos( )n

n

n x n aty x t B

(5)

8 STEP-8

Differentiating (5) partially w.r.to ‘t’

1

sin( ) cos( )n

n

y n x n at n aB

t

Using Boundary condition (4),

0t

y

t= f(x)

1

( ) sin( )n

n

n x n af x B

This is the Half Range Fourier Sine Series.

0

2( )sin( )n

n a n xB f x

0

2( )sin( )n

n xB f x dx

n a

STEP-8

Using Boundary condition (4),

y(x,0) = f(x)

1

( ,0) sin( )cos(0)n

n

n xy x B

1

( ) sin( )n

n

n xf x B

This is the Half Range Fourier Sine Series.

0

2( )sin( )n

n xB f x

9 STEP-9

The required solution is

1

( , ) sin( )sin( )n

n

n x n aty x t B

Where

0

2( )sin( )n

n xB f x dx

n a

STEP-9

The required solution is

1

( , ) sin( )sin( )n

n

n x n aty x t B

Where

0

2( )sin( )n

n xB f x dx

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 36: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e36

ONE DIMENSIONAL HEAT EQUATION

TWO DIMENSIONAL HEAT FLOW EQUATION

1 The one dimensional heat equation is

22

2

u u

t x

The two Dimensional equation is

2 2

2 20

u u

x y

2 Boundary conditions

1.u(0,t) = 0 for 0t

2.u( ,t) = 0 for 0t

3.u(x,t) = f(x) for 0<x<

Boundary conditions

1.u(0,y) = 0 for 0<y<

2.u( ,y) = 0 for 0<y<

3.u(x, ) = 0 for 0<x<

4.u(x,0) = f(x) for 0<x<

3 The possible solutions are 2 2

2 2

( , ) ( )

( , ) ( cos sin )

( , ) ( )

x x t

t

u x t Ae Be Ce

u x t A x B x Ce

u x t Ax B C

The possible solutions are

( , ) ( )( cos sin )

( , ) ( cos sin )( )

( , ) ( )( )

x x

y y

u x y Ae Be C y D y

u x y A x B x Ce De

u x y Ax B Cy D

4, The most suitable solution is 2 2

( , ) ( cos sin ) tu x t A x B x Ce (2)

The most suitable solution is

( , ) ( cos sin )( )y yu x y A x B x Ce De (2)

5 Using boundary condition 1

u(0,t) = 0 2 2

(0, ) ( cos0 sin0) tu t A B Ce =0

2 2

( ) tA Ce =0

A = 0

Then (2) becomes 2 2

( , ) ( sin ) tu x t B x Ce (3)

Using boundary condition 1

u(0,y) = 0

(0, ) ( cos0 sin 0)( )y yu y A B Ce De

(0, ) ( )( )y yu y A Ce Be

A = 0

Then (2) becomes

( , ) ( sin )( )y yu x y B x Ce De (3)

6 Using boundary condition 2

u(l,t) = 0 2 2

( , ) ( sin ) tu t B Ce =0

2 2

( sin ) 0tB Ce

n

Then (3) becomes 2 2 2

2

( , ) sin( )

n tn x

u x t B Ce

The most general solution is 2 2 2

2

1

( , ) sin( )

n t

n

n

n xu x t B e

(4)

Using boundary condition 2

u(l,t) = 0

( , ) ( sin )( )y yu y B Ce De

0 ( sin )( )y yB Ce De

n

Then (3) becomes

( , ) ( sin )( )n y n y

n xu x y B Ce De

(4)

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 37: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e37

7 Using Boundary condition 3

u(x,0) = f(x)

1

( ,0) sin( )n

n

n xu x B

1

( ) sin( )n

n

n xf x B

This the Half range Fourier sine series

0

2( )sin( )n

n xB f x dx

Using Boundary condition 3

u(x, ) =0

( , ) ( sin )( )n x

u x B Ce De

0 ( sin )( 0)n x

B C D

C=0

then (3) becomes

( , ) ( sin )( )n y

n xu x y B De

The most general solution is

1

( , ) sin( )n y

n

n

n xu x y B e

(5

8 The required solution is 2 2 2

2

1

( , ) sin( )

n t

n

n

n xu x t B e

Where

0

2( )sin( )n

n xB f x dx

Using Boundary condition 4 y(x,0) = f(x)

0

1

( ,0) sin( )n

n

n xu x B e

1

( ) sin( )n

n

n xf x B

This the Half range Fourier sine series

0

2( )sin( )n

n xB f x dx

The required solution is

1

( , ) sin( )n y

n

n

n xu x y B e

Where

0

2( )sin( )n

n xB f x dx

QUESTION WITH ANSWER

1. Classify the Partial Differential Equation i)

2 2

2 2

u u

x y

Answer:

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 38: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e38

2 2

2 2

u u

x y here A=1,B=0,&C=-1

B2

- 4AC=0-4(1)(-1)=4>0

The Partial Differential Equation is hyperbolic

2. Classify the Partial Differential Equation

2u u uxy

x y y x

Answer:

2u u uxy

x y y x here A=0,B=1,&C=0

B2

-4AC=1-4(0)(0)=1>0

The Partial Differential Equation is hyperbolic

3. Classify the following second order Partial Differential equation

2 22 2

2 2

u u u u

x y y x

Answer:

2 22 2

2 2

u u u u

x y y x here A=1,B=0,&C=1

B2

-4AC=0-4(1)(1)=-4<0 The Partial Differential Equation is Elliptic

4. Classify the following second order Partial Differential equation

2 2 2

2 24 4 6 8 0

u u u u u

x x y y x y

Answer:

2 2 2

2 24 4 6 8 0

u u u u u

x x y y x y

here A= 4,B =4, & C = 1

B2

-4AC =16 -4(4)(1) = 0

The Partial Differential Equation is Parabolic

5. Classify the following second order Partial Differential equation

i) 2 22 2 3 0xx xy yy xy u xyu x u u u

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 39: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e39

ii) 2 2 2 7 0xx yy x yy u u u u

Answer:

i) Parabolic ii) Hyperbolic (If y = 0)

iii)Elliptic (If y may be +ve or –ve)

6. In the wave equation

2 22

2 2

y yc

t x what does c

2

stands for?

Answer:

2 22

2 2

y yc

t x

here 2 T

am

T-Tension and m- Mass

7. In one dimensional heat equation ut

= α2

uxx

what does α2

stands for?

Answer:-

22

2

u u

t x

2

=k

c is called diffusivity of the substance

Where k – Thermal conductivity

- Density

c – Specific heat

8. State any two laws which are assumed to derive one dimensional heat equation

Answer:

i) Heat flows from higher to lower temp

ii) The rate at which heat flows across any area is proportional to the area

and to the temperature gradient normal to the curve. This constant of

proportionality is known as the conductivity of the material. It is known as

Fourier law of heat conduction

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 40: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e40

9. A tightly stretched string of length 2 is fastened at both ends. The midpoint of the

string is displaced to a distance ‘b’ and released from rest in this position. Write the

initial conditions.

Answer:

(i) y(0 , t) = 0

(ii) y(2 ,t) = 0

(iii)

0

0t

y

t

(iv) y(x , 0 ) =

0

(2 ) 2

bx x

bx x

10. What are the possible solutions of one dimensional Wave equation?

The possible solutions are

Answer:

y(x,t) = (A ex

+ B e- x

) (C eat

+ D e- at

)

y(x,t) = (A cos x + B sin x )( C cos at + D sin at)

y(x,t) = (Ax + B) ( Ct + D)

11. What are the possible solutions of one dimensional head flow equation?

Answer:

The possible solutions are

2 2

2 2

( , ) ( )

( , ) ( cos sin )

( , ) ( )

x x t

t

u x t Ae Be Ce

u x t A x B x Ce

u x t Ax B C

12. State Fourier law of heat conduction

Answer:

uQ kA

x

(the rate at which heat flows across an area A at a distance from one end of a bar is

proportional to temperature gradient)

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 41: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e41

Q=Quantity of heat flowing

k – Thermal conductivity

A=area of cross section ;u

x=Temperature gradient

13. What are the possible solutions of two dimensional head flow equation?

Answer:

The possible solutions are

( , ) ( )( cos sin )

( , ) ( cos sin )( )

( , ) ( )( )

x x

y y

u x y Ae Be C y D y

u x y A x B x Ce De

u x y Ax B Cy D

14. The steady state temperature distribution is considered in a square plate with sides x

= 0 , y = 0 , x = a and y = a. The edge y = 0 is kept at a constant temperature T and the

three edges are insulated. The same state is continued subsequently. Express the

problem mathematically.

Answer:

U(0,y) = 0 , U(a,y) = 0 ,U(x,a) = 0, U(x,0) = T

15. An insulated rod of length 60cm has its ends A and B maintained 20°C and

80°C respectively. Find the steady state solution of the rod

Answer:

Here a=20°C & b=80°C

In Steady state condition The Temperature ( , )b a x

u x t al

80 2020

60

x

( , ) 20u x t x

16. Write the D’Alembert’s solution of the one dimensional wave equation?

Answer:

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 42: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e42

1 1( )

2 2

x at

x at

y x at x at v da

here x f x g x

v x ax f ag

17. What are the boundary conditions of one dimensional Wave equation?

Answer:

Boundary conditions

1. y(0,t) = 0 for 0t

2. y( , t) = 0 for 0t

3. y(x,0) = 0 for 0 < x <

4.

0t

y

t= f(x) for 0 < x <

18. What are the boundary conditions of one dimensional heat equation?

Answer:

Boundary conditions

1.u(0,t) = 0 for 0t

2.u( ,t) = 0 for 0t

3.u(x,t) = f(x) for 0<x<

19. What are the boundary conditions of one dimensional heat equation?

Answer:

Boundary conditions

1.u(0,y) = 0 for 0<y<

2.u( ,y) = 0 for 0<y<

3.u(x, ) = 0 for 0<x<

4.u(x,0) = f(x) for 0<x<

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 43: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e43

20.T he ends A and B has 30cm long have their temperatures 30c and 80c until steady

state prevails. If the temperature A is raised to40c and Reduced to 60C, find the

transient state temperature

Answer:

Here a=30°C & b=80°C

In Steady state condition The Temperature ( , )b a x

u x t al

Here a=40°C & b=60°C

60 40 240 40

30 3t

xu x

PART-B QUESTION BANK APPLICATIONS OF PDE

1. A tightly stretched string with fixed end points x = 0 and x = l is initially at rest in its

equilibrium position. If it is set vibrating giving each point a velocity 3x (l-x). Find the

displacement.

2. A string is stretched and fastened to two points and apart. Motion is started by displacing

the string into the form y = K(lx-x2

) from which it is released at time t = 0. Find the

displacement at any point of the string.

3. A taut string of length 2l is fastened at both ends. The midpoint of string is taken to a

height b and then released from rest in that position. Find the displacement of the string.

4. A tightly stretched string with fixed end points x = 0 and x = l is initially at rest in its

position given by y(x, 0) =3

0 sinx

yl

. If it is released from rest find the displacement.

5. A string is stretched between two fixed points at a distance 2l apart and points of the

string are given initial velocities where

0 < x < 1

(2 ) 0 < x < 1

cx

lV

cl x

l

Find the

displacement.

6. Derive all possible solution of one dimensional wave equation. Derive all possible solution

of one dimensional heat equation. Derive all possible solution of two dimensional heat

equations.

7. A rod 30 cm long has its end A and B kept at 20o

C and 80o

C, respectively until steady state

condition prevails. The temperature at each end is then reduced to 0o

C and kept so. Find

the resulting temperature u(x, t) taking x = 0.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 44: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e44

8. A bar 10 cm long , with insulated sides has its end A & B kept at 20o

C and 40o

C respectively

until the steady state condition prevails. The temperature at A is suddenly raised to 50o

C

and B is lowered to 10o

C. Find the subsequent temperature function u(x , t).

9. A rectangular plate with insulated surface is 8 cm wide so long compared to its width that

it may be considered as an infinite plate. If the temperature along short edge y = 0 is u (

x ,0) = 100sin8

x 0 < x < 1. While two edges x = 0 and x = 8 as well as the other short

edges are kept at 0o

C. Find the steady state temperature.

10. A rectangular plate with insulated surface is10 cm wide so long compared to its width that

it may be considered as an infinite plate. If the temperature along short edge y = 0 is given

by

20 0 x 5

20(10 ) 5 x 10

xu

x and all other three edges are kept at 0

o

C. Find the steady

state temperature at any point of the plate.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 45: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e45

Unit - 4

FOURIER TRANSFORMS

FORMULAE

1. Fourier Transform of f(x) is isx

-

1[ ( )] f(x)e

2F f x dx

2. The inversion formula -isx

-

1( ) ( )e

2f x F s ds

3. Fourier cosine Transform Fc

[f(x)] = Fc

(s) =

0

2( )cosf x sxdx

4. Inversion formula f(x) =

0

2( )coscF s sxds

5. Fourier sine Transform (FST) Fs

[f(x)] = Fs

(s) =

0

2( )sinf x sxdx

6. Inversion formula f(x) =

0

2( )sinsF s sxds

7. Parseval’s Identity

2

2( ) ( )f x dx F s ds

8. Gamma function 1

0

1, 1 &

2

n xn x e dx n n n

9. 2 2

0

cosax ae bxdx

a b

10 2 2

0

sinax be bxdx

a b

11. 0

sin

2

axdx

x

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 46: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e46

12. 2 2

0

&2

x xe dx e dx

13. cos & sin2 2

iax iax iax iaxe e e eax ax

ORKING RULE TO FIND THE FOURIER TRANSFORM

Step1: Write the FT formula.

Step2: Substitute given f(x) with their limits.

Step3: Expand isxe as cos sx + isin sx and use Even & odd property

Step4: Integrate by using Bernoulli’s formula then we get F(s)

WORKING RULE TO FIND THE INVERSE FOURIER TRANSFORM

Step1: Write the Inverse FT formula

Step2: Sub f(x) & F(s) with limit , in the formula

Step3: Expand isxe as cos sx -isin sx and equate real part

Step4: Simplify we get result

WORKING RULE FOR PARSEVAL’S IDENTITY

If F(s) is the Fourier transform of f(x) then

2

2( ) ( )f x dx F s ds is known as Parseval’s identity.

Step1: Sub f(x) & F(s) With their limits in the above formula

Step2: Simplify we get result

WORKING RULE TO FIND FCT

Step1: Write the FCT formula & Sub f(x) with its limit in the formula

Step2: Simplify, we get ( )C

F S

WORKING RULE TO FIND INVERSE FCT

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 47: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e47

Step1: Write the inverse FCT formula & Sub ( )C

F S with its limit in the formula

Step2: Simplify, we get f(x)

WORKING RULE TO FIND FST

Step1: Write the FST formula & Sub f(x) with its limit in the formula

Step2: Simplify, we get ( )SF S

WORKING RULE TO FIND INVERSE FCT

Step1: Write the inverse FST formula & Sub ( )sF S with limit in the formula

Step2: Simplify, we get f(x)

WORKING RULE FOR f(x) = axe

Step:1 First we follow the above FCT & FST working rule and then we get this

result

Fc

(e-ax

) = 2 2

2 a

a s F

s

(e-ax

) = 2 2

2 s

a s

By Inversion formula, By Inversion formula,

2 2

0

cos

2

axsxds e

a s a

2 2

0

sin2

axssxds e

a s

TYPE-I : If problems of the form i)2 2

x

x a ii)

2 2

1

x a , then use Inversion formula

TYPE-II: If problems of the form i)

2

22 2

0

xdx

x a ii)

22 2

0

dx

x a, then use Parseval’s Identity

TYPE-III

2 2 2 2

0

dx

x a x b , then use

0 0

( ) ( ) ( ) ( )C Cf x g x dx F f x F g x dx

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 48: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e48

UNIT - 4

FOURIER TRANSFORM

1. State Fourier Integral Theorem.

Answer:

If ( )f x is piece wise continuously differentiable and absolutely on , then,

( )1( )

2

i x t sf x f t e dt ds.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 49: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e49

2. StateandproveModulation

theorem.

1cos

2F f x ax F s a F s a

Proof:

( ) ( )

1cos cos

2

1

22

1 1 1 1

2 22 2

1 1

2 2

1cos

2

isx

iax iaxisx

i s a x i s a x

F f x ax f x ax e dx

e ef x e dx

f x e dx f x e dx

F s a F s a

F f x ax F s a F s a

3. State Parseval’s Identity.

Answer:

If F s is a Fourier transform of f x , then

2 2

F s ds f x dx

4. State Convolution theorem.

Answer:

The Fourier transform of Convolution of f x and g x is the product of their Fourier

transforms.

F f g F s G s

5. State and prove Change of scale of property.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 50: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e50

Answer:

If ,F s F f x then

1s

aF f ax Fa

1

2

1; where

2

sa

isx

i t

F f ax f ax e dx

dtf t e t ax

a

1 sF f ax Faa

6. Prove that if F[f(x)] = F(s) then ( ) ( ) ( )

nn n

n

dF x f x i F s

ds

Answer:

1

2

isxF s f x e dx

Diff w.r.t s ‘n’ times

1

2

1( ) ( )

2

nn isx

n

n n isx

dF s f x ix e dx

ds

f x i x e dx

1 1( )

( ) 2

1( ) ( )

2

nn isx

n n

nn n isx

n

nnn

n

dF s x f x e dx

i ds

di F s x f x e dx

ds

dF x f x i F s

ds

7. Solve for f(x) from the integral equation

0

( )cos sf x sxdx e

Answer:

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 51: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e51

0

( )cos sf x sxdx e

0

2cos

2

c

s

c

F f x f x sx dx

F f x e

0

0

2

0

2( ) cos

2 2cos

2 2 1cos

1

c

s

s

f x F f x sx ds

e sx ds

e sx dsx

2 2

0

cos

1,

ax ae bx dx

a b

a b x

8. Find the complex Fourier Transform of

1( )

0 0

x af x

x a

Answer:

1

2

isxF f x f x e dx

;x a a x a

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 52: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e52

11

2

1(cos sin )

2

a

isx

a

a

a

F f x e dx

sx i sx dx

00

2 2 sin(cos )

2 2

2 sin

aasx

sx dxs

as

s

[Use even and odd property second term become zero]

9. Find the complex Fourier Transform of ( )0 0

x x af x

x a

Answer:

1

2

1

2

1(cos sin )

2

isx

a

isx

a

a

a

F f x f x e dx

xe dx

x sx i sx dx

;x a a x a

2

0 0

2

2 2 cos sin( ( sin ) (1)

2 2

2 cos sin

aai sx sx

x i sx dx xs s

as as asi

s

[Use even and odd property first term become zero]

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 53: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e53

10. Write Fourier Transform pair.

Answer:

If ( )f x is defined in , , then its Fourier transform is defined as

1

2

isxF s f x e dx

If F s is an Fourier transform of f x , then at every point of Continuity of f x , we

have

1

2

isxf x F s e ds .

11. Find the Fourier cosine Transform of f(x) = e-x

Answer:

0

0

2

2cos

2cos

2 1

1

c

x x

c

x

c

F f x f x sx dx

F e e sx dx

F es

2 2

0

cosax ae bx dx

a b

12. Find the Fourier Transform of

,( )

0,

imxe a x bf x

otherwise

Answer:

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 54: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e54

1

2

1 1

2 2

isx

b bi m s ximx isx

a a

F f x f x e dx

e e dx e dx

1 1 1

2 2

bi m s x

i m s b i m s a

a

ee e

i m s i m s

13. Find the Fourier sine Transform of 1

x.

Answer:

0

0

2sin

2 sin 2

2

1

2

s

s

F f x f x sx dx

sxdx

x

Fx

14. Find the Fourier sine transform of xe

Answer:

0

0

2

2sin

2sin

2

1

s

x x

s

x

s

F f x f x sx dx

F e e sx dx

sF e

s

2 2

0

sinax be bx dx

a b

15. Find the Fourier cosine transform of 2 2x xe e

Answer:

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 55: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e55

0

2coscF f x f x sx dx

2 2

0

2

0 0

22 2 cos

2cos 2 cos

x x x x

c

x x

F e e e e sx dx

e sx dx e sx dx

2 2 2 2

2 2 1 2 1 12 2

4 1 4 1s s s s

16. Find the Fourier sine transform of

1 , 0 1( )

0 1

xf x

x

Answer:

0

1

0 1

11

00

2sin

2sin sin

2 2 cos1sin 0

2 1 cos

s

s

F f x f x sx dx

F f x f x sx dx f x sx dx

sxsx dx

s

s

s

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 56: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e56

17. Obtain the Fourier sine transform of

, 1

( ) 2 , 1 2

0, 2

x o x

f x x x

x.

Answer:

0

1 2

0 1

1 2

2 2

0 1

2sin

2sin 2 sin

2 cos sin cos sin2

sF f x f x sx dx

x sx dx x sx dx

sx sx sx sxx x

s s s s

2 2 2

2

2 cos sin sin 2 cos sin

2 2sin sin 2

s

s s s s sF f x

s s s s s

s s

s

18. Define self reciprocal and give example.

If the transform of f x is equal to f s , then the function f x is called self

reciprocal.

2

2x

e is self reciprocal under Fourier transform.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 57: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e57

19. Find the Fourier cosine Transform of

0( )

0

x xf x

x

Answer:

0 0

2 2 2

0

2

2 2cos cos

2 sin cos 2 cos 1sin

2 sin cos 1

cF f x f x sx dx x sx dx

sx sx sx s

s s s s s

s s s

s

20. Find the Fourier sine transform of 2 2

x

x a.

Answer:

L et

axf x e

2 2

2ax

s

sF e

s a

Using Inverse formula for Fourier sine transforms

2 2

0

2 2

0

2 2sin

( ) sin , 02

ax

ax

se sx ds

s a

sie sx ds e a

s a

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 58: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e58

Change x and s, we get 2 2

0

sin2

asxsx dx e

x a

2 2 2 2

0

2sin

2

2 2

s

as as

x xF sx dx

x a x a

e e

FOURIER TRANSFORM

PART-B

1. (i)Find the Fourier Transform of

21 1( )

0 1

x if xf x

if x and hence

deduce that (i)3

0

cos sin 3cos

2 16

x x x xdx

x (ii)

2

3

0

sin cos

15

x x xdx

x

(ii). Find the Fourier Transform of

2 2

( )0 0

a x x af x

x a . hence

deduce that 3

0

sin cos

4

x x xdx

x

2. Find the Fourier Transform of

1( )

0

if x af x

if x a and hence evaluate

0

sin)

xi dx

x ii)

2

0

sin xdx

x

4. Find Fourier Transform of

1 1( )

0 1

x if xf x

if x and hence evaluate

i)

2

0

sin xdx

x ii)

4

0

sin xdx

x

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 59: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e59

5. Evaluate i)

2

22 2

0

xdx

x a ii) 2

2 20

dx

x a

6 i). Evaluate (a) 2 2 2 2

0

dx

x a x b(b)

2

2 2 2 2

0

x dx

x a x b

ii). Evaluate (a) 2 2

0 1 4

dx

x x(b)

2

2 2

0 4 9

t dt

t t

7. (i)Find the Fourier sine transform of

sin ;( )

0 ;

x when o xf x

whenx

(ii) Find the Fourier cosine transform of

cos ;( )

0 ;

x when o x af x

whenx a

8. (i) Show that Fourier transform

2

2

x

e is

2

2

s

e

(ii)Obtain Fourier cosine Transform of

2 2a xe and hence find Fourier sine Transform x

2 2a xe

9. (i) Solve for f(x) from the integral equation

0

( )cosf x xdx e

(ii) Solve for f(x) from the integral equation

0

1 ,0 1

( )sin 2 ,1 2

0 , 2

t

f x tx dx t

t

10. (i) Find Fourier sine Transform of xe , x>0 and hence deduce that

2

0

sin

1

x xdx

x

(ii) Find Fourier cosine and sine Transform of4xe , x>0 and hence deduce

that8 8

2 2

0 0

cos2 sin 2( ) ( )

16 8 16 8

x x xi dx e ii dx e

x x

11.(i)Find &ax ax

S cF xe F xe

(ii) Find &ax ax

S c

e eF F

x x

(iii) Find the Fourier cosine transform of ( ) cosaxf x e ax

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 60: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e60

Z - TRANSFORMS

Definition of Z Transform

Let {f(n)} be a sequence defined for n = 0, 1,2 … and f(n) = 0 for n< 0 then its

Z – Transform is defined as

( ) ( ) n

n

Z f n F z f n z (Two sided z transform)

0

( ) ( ) n

n

Z f n F z f n z (One sided z transform)

Unit sample and Unit step sequence

The unit sample sequence is defined as follows

1 0( )

0 0

for nn

for n

The unit step sequence is defined as follows

1 0( )

0 0

for nu n

for n

Properties

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 61: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e61

1. Z – Transform is linear

(i) Z {a f(n) + b g(n)} = a Z{f(n)} + b Z{g(n)}

2. First Shifting Theorem

(i) If Z {f(t)} = F(z),

then aT

at

z zeZ e f t F z

(ii) If Z {f(n)} = F(z),

then n z

Z a f n Fa

3. Second Shifting Theorem

If Z[f(n)]= F(z) then

(i)Z[f(n +1)] = z[ F(z) – f(0)]

(ii)Z[f(n +2)] = 2z [ F(z) – f(0)-f(1)

1z ]

(iii)Z[f(n +k)] = kz [ F(z) – f(0)-f(1)

1z - f(2)2z ………- f(k-1)

( 1)kz ]

(iv) Z[f(n -k)] = kz F(z)

4. Initial Value Theorem

If Z[f(n)] = F(z) then f(0) = lim ( )z

F z

5. Final Value Theorem

If Z[f(n)] = F(z) then 1

lim ( ) lim( 1) ( )n z

f n z F z

PARTIAL FRACTION METHODS

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 62: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e62

Model:I

1 A B

z a z b z a z b

Model:II

2 2

1

( )

A B C

z a z b z bz a z b

Model:III

22

1 A Bz C

z a z bz a z b

Convolution of Two Sequences

Convolution of Two Sequences {f(n)} and {g(n)} is defined as

0

{ ( )* ( )} ( ) ( )n

K

f n g n f K g n K

Convolution Theorem

If Z[f(n)] = F(z) and Z[g(n)] = G(z) then Z{f(n)*g(n)} = F(z).G(z)

WORKING RULE TO FIND INVERSE Z-TRANSFORM USING CONVOLUTION THEOREM

Step: 1 Split given function as two terms

Step: 2 Take 1z both terms

Step: 3 Apply 1z formula

Step: 4 Simplifying we get answer

Note:

12 1

1 .......1

nn a

a a aa

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 63: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e63

1

2 11 .......

1 ( )

n

n aa a a

a

Solution of difference equations

Formula

i) Z[y(n)] = F(z)

ii) Z[y(n +1)] = z[ F(z) – y(0)]

iii) Z[y(n +2)] = 2z [ F(z) – y(0)- y(1)

1z ]

iv) Z[y(n +3)] = 3z [ F(z) – y(0)- y(1)

1z + y(2)2z ]

WORKING RULE TO SOLVE DIFFERENCE EQUATION:

Step: 1 Take z transform on both sides

Step: 2 Apply formula and values of y(0) and y(1).

Step: 3 Simplify and we get F(Z)

Step:4 Find y(n) by using inverse method

Z - Transform Table

No.

f(n)

Z[f(n)]

1. 1

1

z

z

2. an

z

z a

3. n

2( 1)

z

z

4. n2

2

3( 1)

z z

z

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 64: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e64

6. 1

n log

( 1)

z

z

7. 1

1n log

( 1)

zz

z

8. 1

1n

1log

( 1)

z

z z

9. ean

( )a

z

z e

10. 1

!n

1

ze

11. Cos n

2

( cos )

2 cos 1

z z

z z

12. sin n

2

sin

2 cos 1

z

z z

13.

cos2

n

2

2 1

z

z

sin2

n

2 1

z

z

14. nna

2( )

az

z a

f(t) Z(f(t)

1 t

2( 1)

Tz

z

2. t2

2

3

( 1)

( 1)

T z z

z

3 eat

( )aT

z

z e

4. Sin t

2

sin

2 cos 1

z T

z z T

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 65: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e65

5. cos t

2

( cos )

2 cos 1

z z T

z z T

TWO MARKS QUESTIONS WITH ANSWER

1. Define Z transform

Answer:

Let {f(n)} be a sequence defined for n = 0, 1,2 … and f(n) = 0 for n< 0 then

its Z – Transform is defined as

( ) ( ) n

n

Z f n F z f n z (Two sided z transform)

0

( ) ( ) n

n

Z f n F z f n z (One sided z transform)

Find the Z Transform of 1

Answer:

0

n

n

Z f n f n z

0

1 (1) n

n

Z z

1 21 ....z z

111 z

1 11 1

11

z z

z z z

11

zZ

z

2. Find the Z Transform of n

Answer:

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 66: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e66

0

0

1 2 3

0

2 22

1 1

2

               

0 2 3 ...

1 1 11 1

1

1

n

n

n

n

n

n

Z f n f n z

Z n nz

nz z z z

zz z

z z z z

z

z

3. Find the Z Transform of n2

.

Answer:

2 dZ n Z nn z Z n

dz, by the property,

2 2

2 4 3

1 2 1( )

( 1)1 1

z z zd z z zz z

dz zz z

4. State Initial & Final value theorem on Z Transform

Initial Value Theorem

If Z [f (n)] = F (z) then f (0) = lim ( )z

F z

Final Value Theorem

If Z [f (n)] = F (z) then 1

lim ( ) lim( 1) ( )n z

f n z F z

6. State convolution theorem of Z- Transform.

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 67: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e67

Answer:

Z[f(n)] = F(z) and Z[g(n)] = G(z) then Z{f(n)*g(n)} = F(z) · G(z)

7. Find Z –Transform of nna

Answer:

0

0

1 2 3

0

2

2

               

0 2 3 ...

1

n

n

n n n

n

n

n

Z f n f n z

Z na na z

a a a an

z z z z

a a az

z z z a

8. Find Z – Transform of cos

2

n and

sin2

n

Answer:

We know that

0

n

n

Z f n f n z

2

coscos

2 cos 1

z zZ n

z z

2

22

cos2

cos2 1

2 cos 12

z zz

Z nz

z z

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 68: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e68

Similarly 2

sinsin

2 cos 1

zZ n

z z

22

sin2sin

2 12 cos 1

2

zz

Z nz

z z

9. Find Z – Transform of 1

n

Answer:

0

n

n

Z f n f n z

0

1 2 3

1

1

1 1

1....

1 2 3

1 1log 1 log

log1

n

n

n

n

Z zn n

z z zz

n

z

z z

z

z

10. Find Z – Transform of 1

!n

Answer:

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 69: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e69

1

0

0

1 2 3

0

1

1 1

! !

11 ....

! 1! 2! 3!

n

n

n

n

n

n

z z

Z f n f n z

Z zn n

z z zz

n

e e

11. Find Z – Transform of 1

1n

Answer:

0

0

( 1)

0

2 31

1 1

1 1

1

1

....2 3

1log 1

log1

n

n

n

n

n

n

Z f n f n z

Z zn n

z zn

z zz z

zz

zz

z

12. Find Z – Transform of an

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 70: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e70

Answer:

0

0 0

1 2 3

1

1

1 ...

1

n

n

nnn

nn n

Z f n f n z

a aZ a

z z

a a a

z z z

a

z

z a z

z z a

13. State and prove First shifting theorem

Statement: If Z f t F z , then ( )at aTZ e f t F ze

Proof:

0

( ) ( )at anT n

n

Z e f t e f nT z

As f(t) is a function defined for discrete values of t, where t = nT,

then the Z-transform is

0

( ) ( ) ( )n

n

Z f t f nT z F z ).

0

( ) ( ) ( )n

at aT aT

n

Z e f t f nT ze F ze

14. Define unit impulse function and unit step function.

The unit sample sequence is defined as follows:

1 0( )

0 0

for nn

for n

The unit step sequence is defined as follows:

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 71: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e71

1 0( )

0 0

for nu n

for n

15. Find Z – Transform of

atZ e

Answer:

0 0

n nat anT n aT n aT

n n

n

aT

Z e e z e z z e

z zz a

z e z a

[Using First shifting theorem]

16. Find Z – Transform of

2tZ te

Answer:

2

2

2

2

2

22

1

1

T

T

t

z ze

z ze

T

T

TzZ te Z t

z

Tze

ze

[Using First shifting theorem]

17. Find Z – Transform of cos2tZ e t

Answer:

2

coscos 2 cos 2

2cos 1T

T

t

z ze

z ze

z zZ e t Z t

z z

2

cos

2cos 1

T T

T T

ze ze T

ze T ze

[Using First shifting theorem]

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 72: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e72

18. Find Z – Transform of

2 t TZ e

Answer:

Let f (t) = e2t

, by second sifting theorem

2( )

2

2 2

( ) ( ) (0)

11

1 1

t T

T

T T

Z e Z f t T z F z f

zez z

ze ze

19. Find Z – Transform of sinZ t T

Answer:

Let f (t) = sint , by second sifting theorem

2

2 2

sin( ) ( ) ( ) (0)

sin sin0

2cos 1 2cos 1

Z t T Z f t T z F z f

z t z tz

z t z z t z

20. Find Z – transform of 1 2n n

Answer:

0

n

n

Z f n f n z

2

2 2

2

3 2

1 2 2 2

3 2 3 2 1

3 211 1

Z n n Z n n n

Z n n z n z n z

z z z z

zz z

www.Vidyarthiplus.com

www.Vidyarthiplus.com

Page 73: MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL …

Pag

e73

QUESTION BANK

Z-TRANSFORMS

1. (i)Find

21 8

(2 1)(4 1)

zZ

z z &

21 8

(2 1)(4 1)

zZ

z zby convolution theorem.

(ii) Find

21

( )( )

zZ

z a z b &

21

( 1)( 3)

zZ

z zby convolution theorem

2. (i) Find

21

2( )

zZ

z a &

21

2( )

zZ

z aby convolution theorem

3. (i ) State and prove Initial & Final value theorem.

(ii) State and prove Second shifting theorem

(i) Find the Z transform of 1

( 1)( 2)n n&

2 3

( 1)( 2)

n

n n

4. (i) Find

21

2( 4)

zZ

z by residues.

(ii) Find the inverse Z transform of

2

21 ( 1)

z z

z zby partial fractions.

5. (i) Find 1

2 2 2

zZ

z z &

21

2 7 10

zZ

z z

6. (i)Find the Z transform of 1

( )!

f nn

Hence find 1

( 1)!Z

n and

1

( 2)!Z

n.

(ii) Find 1

!Z

n and also find the value of sin( 1)n and cos( 1)n .

7. (i)Solve 2 6 1 9 2 0 0& 1 0ny n y n y n with y y

(ii) Solve 2 4 1 4 0y n y n y n y(0) = 1 ,y(1) =0

8. (i )Solve 3 1 4 2 0, 2 (0) 3& (1) 2y n y n y n n given y y

(ii) Solve 3 3 1 2 0, 0 4, 1 0& 2 8y n y n y n y y y ,

9. (i)Find cos & sinZ n Z n and also find cos & sinn nZ a n Z a n

www.Vidyarthiplus.com

www.Vidyarthiplus.com