lte basic principle introduction v2

Upload: niyo-moses

Post on 06-Jul-2018

287 views

Category:

Documents


19 download

TRANSCRIPT

  • 8/18/2019 LTE Basic Principle Introduction v2

    1/43

    S

    HUAWEI TECHNOLOGIES CO., LTD.

    What’s LTE

    LTE Basic Principle Introduction

    Name: Paul

    Email:[email protected]

  • 8/18/2019 LTE Basic Principle Introduction v2

    2/43

    Content

    LTE Background

    LTE Key Technologies

    LTE Network Architecture

    LTE Resource Overview

    LTE Market Overview

  • 8/18/2019 LTE Basic Principle Introduction v2

    3/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 3

    Download speed 

    150M

    LTE

    What’s LTE ? 

    Download

    speed 

    171.2Kbps

    2G

    Download speed 

    14.4Mbps

    3G

    2 day

    43 minutes

    4 minutes 

  • 8/18/2019 LTE Basic Principle Introduction v2

    4/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 4

    LTE Background Introduction

    What is LTE? 

    LTE (Long Term Evolution) is known as the evolution of

    radio access technology conducted by 3GPP.

    The radio access network will evolve to E-UTRAN (Evolved

    UMTS Terrestrial Radio Access Network), and the correlated

    core network will evolved to SAE (System Architecture

    Evolution).

    What can LTE do? 

    Flexible bandwidth configuration: supporting 1.4MHz, 3MHz,

    5MHz, 10Mhz, 15Mhz and 20MHz

    Peak date rate (within 20MHz bandwidth): 150Mbps for downlink

    and 50Mbps for uplink

    Time delay:

  • 8/18/2019 LTE Basic Principle Introduction v2

    5/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 5

    Procedure of LTE Standardization

    3GPP started LTE project in December 2004.

    The SI (Study Item) was planned to finish in June 2006 but has been delayed until September 2006. Finisresearch and output technical reports.

    The WI (Work Item)/standard institution stage was started in September 2006. The first version was plann

    September 2007 but has been delayed.

    The first GA protocol version was released in the end of 2008. Protocol 36.xxx series are for LTE.

    The protocol is still under consummating.

    LTE Background Introduction

    LTE WI stageLTE SI stageDelayed

    2006

    Mar2006

    Jun

    2006

    Sep

    2005

    Dec

    2006

    Dec

    2007

    Dec

    2008

    Dec

    2007

    Jun

    2008

    Jun

    2007

    Mar

    2007

    Sep

    2008

    Mar

    2008

    Sep

    2009

    Mar

    LTE eand im

    LTE Rel8(Approval)

    LTE SI

    LTE WI

    LTE Rel8(Spec finished)

  • 8/18/2019 LTE Basic Principle Introduction v2

    6/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 6

    SAE Brief Introduction

    SAE System Architecture Evolution)considers evolution for the whole system architecture, including: 

    Flat Functionality. Take out the RNC entity and part of the functions are arranged on e-NodeB in order to redu

    enhance the schedule ability, such as interference coordination, internal load balance, etc.

    Part of the functions are arranged on core network. To enhance the mobility management, all IP technology is

    and control-plane are separated. The compatibility of other RAT is considered.

    SGi 

    S4 

    S3 S1-MME 

    PCRF S7 

    S6a 

    HSS 

    O(

    S10 

    UE 

    GERAN 

    UTRAN  SGSN 

    “ LTE - Uu ” EUTRAN 

    MME 

    S11 

    S5 ServingSAE

    Gateway

    PDNSAE

    GatewayS1-U 

    LTE Background Introduction

  • 8/18/2019 LTE Basic Principle Introduction v2

    7/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 7

    LTE Background Introduction

    SON Brief Introduction

    SON (Self Organization Network) is the functions of LTE that required by the NGMN (Next Generation M

    operators. From the point of view of the operator’s benefit and experiences, the early communication systems had b

    compatibility and high cost. New requirements of LTE are brought forward, mainly focus on FCAPSI (Fau

     Alarm, Performance, Security, Inventory) management:

    Self-planning and Self-configuration, support plug and play

    Self-Optimization and Self-healing

    Self-Maintenance

     Advantages of SON Reduce OPEX. Lower cost for operator in

    planning, optimization and maintenance.

    Vendor promote the sale of features and tools to

    reduce the cost of network optimization after

    deployment.

  • 8/18/2019 LTE Basic Principle Introduction v2

    8/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 8

  • 8/18/2019 LTE Basic Principle Introduction v2

    9/43

    Content

    LTE Background

    LTE Key Technologies

    LTE Network Architecture

    LTE Resource Overview

    LTE Market Overview

  • 8/18/2019 LTE Basic Principle Introduction v2

    10/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 10

    Radio Frame Structures Supported by LTE:

    Type 1, applicable to FDD

    Type 2, applicable to TDD

    FDD Radio Frame Structure:

    LTE applies OFDM technology, with subcarrier spacing f=15kHz and 2048-order IFFT.

    The time unit in frame structure is Ts=1/(2048* 15000) second

    FDD radio frame is 10ms shown as below, divided into 20 slots which are 0.5ms. One

    slot consists of 7 consecutive OFDM Symbols under Normal CP configuration

    #0 #1 #2 #3 #19#18

    One radio frame, T f = 307200T s = 10 ms

    One slot, T slot = 15360T s = 0.5 ms

    One subframe FDD Radio Frame Structure

    Concept of Resource Block:

    LTE consists of time domain and frequency domain resources. The minimum unit for schedule is RB

    (Resource Block), which compose of RE (Resource Element)

    RE has 2-dimension structure: symbol of time domain and subcarrier of frequency domain

    One RB consists of 1 slot and 12 consecutive subcarriers under Normal CP configuration

    Radio Frame Structure (1)

  • 8/18/2019 LTE Basic Principle Introduction v2

    11/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 11

    TDD Radio Frame Structure:

     Applies OFDM, same subcarriers spacing and time unit

    with FDD.

    Similar frame structure with FDD. radio frame is 10ms

    shown as below, divided into 20 slots which are 0.5ms.

    The uplink-downlink configuration of 10ms frame are

    shown in the right table.

    One slot,

    T slot=15360T s

    GP UpPTSDwPTS

    One radio frame, T f  = 307200T s = 10 ms

    One half-frame, 153600T s = 5 ms

    30720T s

    One subframe,

    30720T s

    GP UpPTSDwPTS

    Subframe #2 Subframe #3 Subframe #4Subframe #0 Subframe #5 Subframe #7

    Uplink-downlink Configurations

    Uplink-downlink

    configuration

    Downlink-to-Uplink

    Switch-point periodicity

    0  1  2 

    0 5 ms D S U

    1 5 ms D S U

    2 5 ms D S U

    3 10 ms D S U

    4 10 ms D S U

    5 10 ms D S U

    6 5 ms D S U

    DwPTS

    GP: Gu

    UpPTS:

    TDD Radio Frame Structure

    Radio Frame Structure (2)

  • 8/18/2019 LTE Basic Principle Introduction v2

    12/43

    HUAWEI TECHNOLOGIES CO., LTD.  Huawei Confidential Page 12

    LTE Key Technologies- Overview

    Sub-frame 

    Time 

    System Bandwid

    Sub-carriers 

    Sub-frame 

    Frequency 

    Time 

    Time frequencyresource for User 1

    Time frequencyresource for User 2

    Time frequencyresource for User 3

    System Bandwidth 

    MIMO

    OFDMA

    LTE

    SC-FDMA

    64QAM

  • 8/18/2019 LTE Basic Principle Introduction v2

    13/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 13

    OFDM & OFDMA

    OFDM (Orthogonal Frequency Division Multiplexing) is a

    modulation multiplexing technology, divides the system

    bandwidth into orthogonal subcarriers. CP is inserted

    between the OFDM symbols to avoid the ISI. OFDMA is the multi-access technology related with OFDM, is

    used in the LTE downlink. OFDMA is the combination of

    TDMA and FDMA essentially.

     Advantage: High spectrum utilization efficiency due to

    orthogonal subcarriers need no protect bandwidth. Support

    frequency link auto adaptation and scheduling. Easy to

    combine with MIMO.

    Disadvantage: Strict requirement of time-frequency domain

    synchronization. High PAPR.

    DFT-S-OFDM & SC-FDMA

    DFT-S-OFDM (Discrete Fourie

    OFDM) is the modulation mult

    in the LTE uplink, which is sim

    release the UE PA limitation caEach user is assigned part of t

    SC-FDMA(Single Carrier Fre

     Accessing)is the multi-acces

    DFT-S-OFDM.

     Advantage: High spectrum util

    orthogonal user bandwidth nee

    Low PAPR.

    The subcarrier assignment sch

    mode and Distributed mode.

    OFDMA & SC-FDMA

    TTI: 1ms

    System Band

    Sub-band 12Sub-carriers

    Time

    TTI: 1ms

    System Band

    Sub-band 12Sub-carriers

    Time

    Sub-carriers

    TTI: 1ms

    Frequency

    Time

    System Bandwidth

    Sub-band 12Sub-carriers

    User 1

    User 2

    User 3

    Sub-carriers

    TTI: 1ms

    Frequency

    Time

    System Bandwidth

    Sub-band 12Sub-carriers

    User 1

    User 2

    User 3

    User 1

    User 2

    User 3

  • 8/18/2019 LTE Basic Principle Introduction v2

    14/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 14

    Downlink MIMO

    MIMO is supported in LTE downlink to achieve spatial

    multiplexing, including single user mode SU-MIMO and multi

    user mode MU-MIMO. 

    In order to improve MIMO performance, pre-coding is used in

    both SU-MIMO and MU-MIMO to control/reduce the

    interference among spatial multiplexing data flows.

    The spatial multiplexing data flows are scheduled to one

    single user In SU-MIMO, to enhance the transmission rate

    and spectrum efficiency. In MU-MIMO, the data flows are

    scheduled to multi users and the resources are shared within

    users. Multi user gain can be achieved by user scheduling in

    the spatial domain.

    Uplink MIMO

    Due to UE cost and power consumpti

    implement the UL multi transmission

    Virtual-MIMO, in which multi single an

    to transmit in the MIMO mode. Virtua

    Scheduler assigns the same resource

    transmits data by single antenna. Sys

    the specific MIMO demodulation sche

    MIMO gain and power gain (higher Tx

    freq resource) can be achieved by Vi

    the multi user data can be controlled

    also bring multi user gain.

    Pre-coding vectors

    User k data

    User 2 data

    User 1 data

    Channel Information

    User1

    User2

    User k

    Scheduler Pre-coder  

    S1

    S2

    Pre-coding vectors

    User k data

    User 2 data

    User 1 data

    Channel Information

    User1

    User2

    User k

    Scheduler Pre-coder  

    S1

    S2

    User 1 data

    Channel

    Scheduler 

    MIMO

    Decoder User k data

    User 1 data

    User 1 data

    Channel

    Scheduler 

    MIMO

    Decoder User k data

    User 1 data

    DL-MIMO Virtual-MI

    MIMO

  • 8/18/2019 LTE Basic Principle Introduction v2

    15/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 15

    LTE 4Rx:Coverage Gain 3dB Capacity Gain 6

    2Rx

    4Rx

    UL 4Rx helps UL coverage by 60%50~100%

    2Rx

    4Rx

    2Rx4Rx

    Cell edge use

    UL cell level t

    UL user perfo

    edge > cell m

    No increase C

    Stable KPIs

    Gain

    UL User

    Tput

    Field

    Higher diversity andarray gains =>

    maximize SINR

    3dB

    UL Cell Edge User Tput UL Cell Level Tput

    LTE 4T DL C ll Ed U T t G i 36%

  • 8/18/2019 LTE Basic Principle Introduction v2

    16/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 16

    LTE 4Tx:DL Cell Edge User Tput Gain 36%Cell Capacity Gain 20%!

    ~36% ~20%

    2Tx2Tx

    4Tx4Tx

    DL MAC

    Throughput

    (Mbps)

    RSRP=-119dBm

    RSRP=-92dBm

    Ave DL user T

    4x2

    4Tx

    Array and diversity gains by using 4

    antennas to transit 2 data streams 

    improvement36%

    20%

    Field Res

    DL Cell Edge User Tput DL Cell Level Tput

  • 8/18/2019 LTE Basic Principle Introduction v2

    17/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 17

    Description• Two component carriers (CC) can be aggr

    wider transmission bandwidth for downlink,or non-contiguous .

    CA Overview

    Benefits•Improved throughput

    •Improved spectrum flexibility: CA with carri

    frequency bands

    Dependency• 2 RRU to support inter-band CA

    • Terminal support to get aggregated bandw

  • 8/18/2019 LTE Basic Principle Introduction v2

    18/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 18

    CA : Testing Result for O Operator

    0

    500

    Non-CA(BW 20M) CA(BW: 20M+20M)

    U

    e

    T

    M

    b

    BW:10M+20M. 2*2 MIMO

    Lab Peak Rate Test

    BW:20M+20M100 

    Field Peak Rate Test: 290([email protected][email protected]

    Avg THP=290M

    Avg PCC=146Mbps

    Avg SCC=144Mbps

    Chipset Vendor QCT Intel Hisilicon

    DL CA(10M+10M) 

    2013Q2 2013Q4 2013Q3

    DL CA(20M+20M) 

    2014Q2 2013Q4 2013Q3

    Field Load Test: 290M([email protected]+20M@1.

    0

    500

    Non-CA(BW 10M) CA(BW: 10M+20M)

    U

    e

    T

    M

    b

    BW:10M+20M. 2*2 MIMO

    BW:10M+20M200 

    18 |

  • 8/18/2019 LTE Basic Principle Introduction v2

    19/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 19

    Resource Grid in Time Frequency Domai

    One downlink slot, Tslot

    Resource element

    OFDM symbolsDLsymb N   OFDM symbolsDLsymb N  

           N     s     c

         s     u        b     c     a     r     r        i     e     r     s

            R        B

    Resource block 

    RBsc

    DLsymb   N   N     resource elements

           N        R        B

            D        L

         s     u        b     c     a     r     r        i     e     r     s

           N     s     c        R

            B

             

      One uplink slot, Tslot

    0l   Nl 

         N     R     B

         U     L

         N     R     B

         U     L

        s    u     b    c    a    r    r     i    e    r    s

         N

        s    c     R

         B

          

    SC-FDMA symbolsULsymb N 

  • 8/18/2019 LTE Basic Principle Introduction v2

    20/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 20

    Scalable Bandwidth Supported

    Transmission

    Bandwidth [RB]

    Transmission Bandwidth Configuration [RB]

    Channel Bandwidth [MHz]

    Resourceblock

    Channeledge

    Channeledge

    DC carrier (downlink only)Active Resource Blocks

    Channel bandwidthBW

    Channel [MHz] 

    1.4  3 5  10  15  20 

    Transmission bandwidthconfiguration  N RB 

    6 15 25 50 75 100

    Transmission bandwidth configuration NRB in E-UTRA channel bandw

    Figure shows the relation between the Channel bandwidth (BWChannel)

    Transmission bandwidth configuration (NRB). 

  • 8/18/2019 LTE Basic Principle Introduction v2

    21/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 21

    Achievable & Supported Peak Data Rates

    Achievable LTE Peak Data RatesAccounts for overhead at different bandwidths& antenna configurations

    DL UL

    Bandwidth 2x2 4x4 1x2

    5MHz 37Mbps 72Mbps 18Mbps

    10MHz 73Mbps 147Mbps 38Mbps

    20MHz 150Mbps 300Mbps 75Mbps

    UE Cat. 1 2 3 4

    DL 10 50 100 150

    UL 5 25 50 50

    UE Supported Peak Data RBased on FDD UE category in 3GPP s

    Peak data rates scale with the bandwidth

    2x2 MIMO supported for initial LTE deployments

    Similar peak data rates defin

  • 8/18/2019 LTE Basic Principle Introduction v2

    22/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 22

    LTE Downlink Speed Calculate,20MHz,2x2 MIMO

    Peak Rate=[100*12*14*(1-9.5%-0.2%-12%-0.17%-0.2%-1.375

    =154.33Mbps100: 100RB,20MHz

    12:12 Subcarriers, One RB has 12 Subcarriers

    14:14 OFDM Symbols, One Subframe has 14OFDM symbols

    9.5%:RS Overload

    0.2%:P-SCH,S-SCH Overload

    12%:PDCCH Overload0.17%:PCFICH and PHICH Overload

    0.2%:PBCH and PDSCH Overload

    1.375%:PDSCH Overload

    6: 64QAM, RE has 6 bits

    2:2x2MIMO

  • 8/18/2019 LTE Basic Principle Introduction v2

    23/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 23

    LTE Uplink Speed Calculate,20MHz

    Peak Rate=[96*12*2*7(1-1/7-1/14)*4]/1ms

    =50.69Mbps96: 96RB,20MHz,PUSCH available 96RB,

    12:12 Subcarriers, One RB has 12 Subcarriers

    2 and 7:2 slot, one slot has 7 symbols(Normal CP)

    1/7:RS Overload expense

    1/14:SRS Overload expense

    4: 16QAM, RE has 4 bits

    T i i B d idth C l l ti

  • 8/18/2019 LTE Basic Principle Introduction v2

    24/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 24

    Transmission Bandwidth Calculation

    Scenarios Dens Urban Urban Suburban Rural

    Trans. Bandwidth(20MHz, S111) 170Mbps 145Mbps 102Mbps 93Mbps

    Results:

    Bandwidth= (S1 User Plane Data Flow+S1 Control Plane+X2 Data Flow)*Scenario Burst Coefficie

    =(S1 User Plane Data Flow+S1 User Plane Data*2%+S1 User Plane Data*3%)*Scenario

    =S1 User Plane Data Flow*(1+5%)*Scenario Burst Coefficient/89.5%

    Calculation Functions:

    Bandwidth Scenarios DL Mbps) UL Mbps)

    2T2R(20MHz) Dense Urban, Urban 34.3 19.8

    2T2R(20MHz) Suburban, Rural 26.3 14.0

    Cell Average Throughput:

    Scenario Dense

    Urban

    Ur

    coefficient 1.4 1.

    Scenario Burst Coeffi

  • 8/18/2019 LTE Basic Principle Introduction v2

    25/43

    Content

    LTE Background LTE Key Technologies

    LTE Network Architecture

    LTE Resource Overview

    LTE Market Overview

  • 8/18/2019 LTE Basic Principle Introduction v2

    26/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 26

    LTE Network Architecture

    Main Network Element of LTE

    The E-UTRAN consists of e-NodeBs, providing the user

    plane and control plane.

    The EPC consists of MME, S-GW and P-GW.

    eNB

    MME / S-GW MME / S-GW

    eNB

    eNB

     S   1   

     S   1   

    S       1       

      S       1

    X2

        X    2X     2    

    E-UTRAN

    internet

    eNB

    RB Control

    Connection Mobility Cont.

    eNB Measurement

    Configuration & Provision

    Dynamic Resource

     Allocation (Scheduler)

    PDCP

    PHY

    MME

    S-GW

    S1

    MAC

    Inter Cell RRM

    Radio Admission Control

    RLC

    E-UTRAN EPC

    RRC

    Mobility

     Anchoring

    EPS Bearer Control

    Idle State Mobility

    Handling

    NAS Security

    P-GW

    UE IP address

    allocation

    Packet Filtering

    RRC: Radi

    PDCP: Pack

    RLC: Rad

    MAC: Med

    PHY: Phy

    EPC: Evo

    MME: Mob

    S-GW: Serv

    P-GW: PDN

    Compare with traditional 3G network, LT

    becomes much more simple and flat, wh

    lower networking cost, higher networkin

    shorter time delay of user data and contr

    Network Interface of LTE

    The e-NodeBs are interconnected with each other by means of the X2 interface, which enabling direct tra

    data and signaling.

    S1 is the interface between e-NodeBs and the EPC, more specifically to the MME via the S1-MME and t

    the S1-U

    LTE N k El F i

  • 8/18/2019 LTE Basic Principle Introduction v2

    27/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 27

    eNB

    RB Control

    Connection Mobility Cont.

    eNB Measurement

    Configuration & Provision

    Dynamic Resource

     Allocation (Scheduler)

    PDCP

    PHY

    MME

    S-GW

    S1

    MAC

    Inter Cell RRM

    Radio Admission Control

    RLC

    E-UTRAN

    RRC

    Mobility

     Anchoring

    EPS Bearer Co

    Idle State MobHandling

    NAS Securi

    e-Node functionalities:

    RRM: RB control, admission control, connection mobility

    control, scheduling; IP header compression and encryption of user data

    stream; Selection of an MME at UE attachment;

    Routing of User Plane data towards Serving Gateway;

    Schedule the paging and broadcast messages from

    MME;

    Measurement and measurement reporting configuration

    for mobility and scheduling;

    MME functionalities:

    NAS signaling and security;

     AS Security control;

    Idle state mobility handling; EPS (Evolved Packet System) bearer control;

    Support paging, handover, roaming and authentication. S-GW functionalities:

    Packet routing and forwarding; Lo

    point for handover; Lawful intercep

    charging per UE, PDN, and QCI; A

    and QCI granularity for inter-opera

    P-GW functionalities:

    Per-user based packet filtering; UE IP address allocation;

    UL and DL service level charging, gating and rate enforcement;

    LTE Network Element Function

  • 8/18/2019 LTE Basic Principle Introduction v2

    28/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 28

    Introduction of LTE Radio Protocol Stack

    Two Planes in LTE Radio Protocol:

    User-plane: For user data transfer

    Control-plane: For system signaling transfer

    Main Functions of User-plane:

    Header Compression

    Ciphering

    Scheduling

     ARQ/HARQ

    eNB

    PHY

    UE

    PHY

    MAC

    RLC

    MAC

    PDCPPDCP

    RLC

    eNB

    PHY

    UE

    PHY

    MAC

    RLC

    MAC

    RLC

    NAS

    RRC RRC

    PDCP PDCP

    Main Functions of Control-plane:

    RLC and MAC layers perform the sa

    user plane

    PDCP layer performs ciphering and

    RRC layer performs broadcast, pagi

    management, RB control, mobility fu

    reporting and control

    NAS layer performs EPS bearer man

    security control

    User-plane protocol stack

    Control-plane protocol stack

    Comparison of UTRAN & E UTRAN Network Archite

  • 8/18/2019 LTE Basic Principle Introduction v2

    29/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 29

    Comparison of UTRAN & E-UTRAN Network Archite

    eNB

    MME / S-GW MME

    eNB

     S   1   

    S       1       

      S       1

    X2

        X    2X    2    

    The main difference between UMTS and LTE: the removing of RNC network element a

    introduction of X2 interface, which make the network more simple and flat, leading lowe

    cost, higher networking flexibility and low latency

    UTRAN

    LTE Interworking With 2G/3G Networks

  • 8/18/2019 LTE Basic Principle Introduction v2

    30/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 30

    LTE Interworking With 2G/3G Networks

    LTE-UE

    Evolved UTRAN (E-UTRAN)

    Evolved P

    MME

    S6a

    Serving

    Gateway

    S1-U

    S11

    S1-MME

    PDN

    Gateway

    PCRF

    S7

    SGiS5/S8

    HSS

    SGSN

    S3UTRAN

    Iu-PS

    S4

    Evolved

    Node B

    (eNB)

    cell

    LTE-Uu

    GERANGb

    Gr

    GGSNGn Gi

  • 8/18/2019 LTE Basic Principle Introduction v2

    31/43

    Content

    LTE Background LTE Key Technologies

    LTE Network Architecture

    LTE Resource Overview LTE Market Overview

    LTE Resource Capacity Assessment System

  • 8/18/2019 LTE Basic Principle Introduction v2

    32/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 32

    eNodeB

    eNodeB

    LTE Resource Capacity Assessment SystemCAir InterfaceTerminal

    Ethernet

    MPT CPU

    Utility

    BBP CPU

    Utility

    Ethernet

    Utility

    RRC

    Connected Usr

    PRB Utility

    Spectrum

    Efficiency

    Flow License

    Utility

    Sub. License

    Utility

    User Plane

    PRACH Utility

    PDCCH Utility

    PUCCH Utility

    SRS Utility

    Paging Utility

    Control Plane

    eNodeB Transmission

    Equipment Transmission

     Avg. Sub. DL

    Throughput

     Avg. DL

    Throughput

    License

    LTE Resource Capacity Assessment

  • 8/18/2019 LTE Basic Principle Introduction v2

    33/43

    HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 33

    LTE Resource Capacity Assessment

    Item Description Scenario nalysis

    RRC License

    Utility

    RRC License Utility

    If network User grow very fast, cell reach th

    of initial RRC license, suggest expansion ne

    connected user license.

    PRB Utility PRB Utility RatioIf the cell with high PRB Utility Ratio, sugges

    parameters related or adding new site.

    ThroughputCell traffic mean

    throughput

    If network throughput grow very fast, reac

    limitation of initial throughput license, sugg

    expansion network throughput license.

    PDCCH UtilityPDCCH Utility

    Ratio

    If cell with high PDCCH utility ratio, due to

    high traffic load, suggest improving co

    adding new site.

  • 8/18/2019 LTE Basic Principle Introduction v2

    34/43

    Content

    LTE Background LTE Key Technologies

    LTE Network Architecture

    LTE Resource Overview LTE Market Overview

  • 8/18/2019 LTE Basic Principle Introduction v2

    35/43

    • GSA: 360 commercial LTE networks launched in 124 countries

    • Huawei acquired 320+ LTE Contracts with 154 Commercial Launched Networks by S

    • Huawei won 140+ LTE contracts in capital cities.

    • Huawei deployed LTE in 9 of 10 Global Financial Central Cities

    360 LTE networks are commerciallylaunched in 124 countries (up to Jan. 2015) 

    GSA: 360 commercial LTE network launched by Jan 20

  • 8/18/2019 LTE Basic Principle Introduction v2

    36/43

    450

    265

    146

    46

    16

    2

    300

    2015

    (forecast )

    20132012201120102009 2014H1

    GSA forecasts 450  commercial

    LTE networks by end 2015

    GSA: 360  commercial LTE network launched by Jan. 20

    Source: GSA Evolution to LT

    360

    2014Q4

    312FDD Only 

    87% launched FDD m

    8% launched TDD mo

    5% launched FDD &T

    360 total launched

    # of Global LTE Commercial Networks in Bands

  • 8/18/2019 LTE Basic Principle Introduction v2

    37/43

    # of Global LTE Commercial Networks in Bands 

    360 LTE Commercial Networks Launched on All Spectrum

    Source: GSA Evolution to LTE report and Huawe

    Different bands m ay ap

    Each network may have several spectrums, t

    7

    850MHz

    8

    APT 700MHz

    10

    2.1GHz

    1.9GHz

    12

    AWS

    36

    US.

    700MHz

    55

    DD800

    68

    2.6GHz

    FDD91

    1.8GHz158

    3.5 GHz(B4

    9

    2.3GHz

    21

    1

    450 MHz

    10

    900MHz

    GSA Status o f LTE Ecosystem Camera, 2Femtocell,

    133Mobile

    20

    USB Modem

  • 8/18/2019 LTE Basic Principle Introduction v2

    38/43

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    1800b3

    1900b2

    1900b25

    2100b1

    2600b7

    700b12

    700b13

    700b14

    700b17

    700b28

    800b20

    850b5

    900b8

     AWSb4

    TDD1900b39

    TDD2300b40

    TDD2600b38

    T2b

    Source: GSA Status of the LTE Ecosystem report

    (up to 10.2014) 

    GSA 

    Status o f LTE Ecosystem  

    LTE user device: 2218 (including 1045 Smartphone)

    133 20

    Phone,

    1045

    Router,559

    USB Modem,191

    Current status o f LTE netwo rks (over 1 Mil l ion subs cribers)

  • 8/18/2019 LTE Basic Principle Introduction v2

    39/43

    58.8[09-2014] 9.9

    16.6[09-2014]

    5.8[09-2014]

    8.1

    9[09-2014]

    1[09

    ~75% coverage

    (Q3-2012)

    38.

    5[09-2014]

    [09-2014]

    8.9[09-2014]

    1.4[09-2014]

    LTE Total: 280+ Million

    Rogers

    5.2

    9[09-2014]

    DTT-Moblie US

    2.5[09-2014]

    Source: GSA Evolution to LTE re

    31.6[09-2014]

    2.3[09-2014]

    Vodafone

    Germany

    5.6[09-2014]

    EE

    http://www.telecomskorea.com/wp-content/uploads/2010/05/lgt_uplus.jpg

  • 8/18/2019 LTE Basic Principle Introduction v2

    40/43

    174

    153

    82

    41

    28

    10

    HW Ericsson NSN ALU ZTE SS

    Huawei Leading Global LTE Markets 

    1063

    SS ALU

    8

    LTE Commercial

    Networks

    LTE TDD Commercia

    Networks

    EricssZTE

    Source: GSA Evolution to LTE report and Huawei Wireless M

    Huawei LTE in Six Continents

  • 8/18/2019 LTE Basic Principle Introduction v2

    41/43

    Huawei LTE in Six Continents

    32

    Con

    17Com

    Netw

    14LTE

    CapUK

    Singapore

    Sweden

    Korea

    PhilippinesNorway

    Germany

    Brazil Austria

    Saudi Arabia

    Kuwait

    Canada

    New Zealand

    Bahrain

    India

    Colombia

    Russia

    FinlandCzech

    Republic Denmark Hong Kong

    South Africa UAE

    Japan MexicoMalaysia

     Australia

    ThailandSpain

    Netherlands

    Huawei dominates global FDD2600 and 1800 netw

    http://www.google.com.hk/url?sa=i&rct=j&q=%E4%BF%84%E7%BD%97%E6%96%AF&source=images&cd=&cad=rja&docid=pK9jsB91bIe17M&tbnid=lnXqT77Huc56MM:&ved=0CAUQjRw&url=http://www.novasgroup.com.cn/country.aspx?countryId=6&ei=KNBWUaqUC8eckQXK64DACQ&psig=AFQjCNG2XaQX3cIXU9B-YVmcMOsk_9lXUA&ust=1364730275775633http://www.google.com.hk/url?sa=i&rct=j&q=%E4%BF%84%E7%BD%97%E6%96%AF&source=images&cd=&cad=rja&docid=pK9jsB91bIe17M&tbnid=lnXqT77Huc56MM:&ved=0CAUQjRw&url=http://www.novasgroup.com.cn/country.aspx?countryId=6&ei=KNBWUaqUC8eckQXK64DACQ&psig=AFQjCNG2XaQX3cIXU9B-YVmcMOsk_9lXUA&ust=1364730275775633

  • 8/18/2019 LTE Basic Principle Introduction v2

    42/43

    HUAWEI TECHNOLOGIES CO., LTD.

    4 7 1027

    2514

    4563

    88

    158 LTE 1800 commercial networks launched 91 LTE 2600 FDD commercial

    (Jan. 2015) 

    EricsNSN

    ZTE

    HuaweiEricsson

    NSNZTE SS ALU

    ALU SS

    893 LTE 2600 FDD device944 LTE 1800 devices were announced

    Source: GSA Evolution to LTE report and Huawei Wireless MI

    (up to Jan. 2015) 

    Source: GSA S

  • 8/18/2019 LTE Basic Principle Introduction v2

    43/43

    HUAWEI TECHNOLOGIES CO., LTD.

    Thank you