ltc5593 - dual 2.3ghz to 4.5ghz high dynamic range ...cds.linear.com/docs/en/datasheet/5593f.pdfhigh...

28
LTC5593 1 5593f TYPICAL APPLICATION FEATURES DESCRIPTION Dual 2.3GHz to 4.5GHz High Dynamic Range Downconverting Mixer The LTC ® 5593 is part of a family of dual-channel high dy- namic range, high gain downconverting mixers covering the 600MHz to 4.5GHz RF frequency range. The LTC5593 is optimized for 2.3GHz to 4.5GHz RF applications. The LO frequency must fall within the 2.1GHz to 4.2GHz range for optimum performance. A typical application is a LTE or WiMAX multichannel or diversity receiver with a 2.3GHz to 2.7GHz RF input. The LTC5593’s high conversion gain and high dynamic range enable the use of lossy IF filters in high selectivity receiver designs, while minimizing the total solution cost, board space and system-level variation. A low current mode is provided for additional power savings and each of the mixer channels has independent shutdown control. LTE Diversity Receiver APPLICATIONS n Conversion Gain: 8.5dB at 2500MHz n IIP3: 27.7dBm at 2500MHz n Noise Figure: 9.5dB at 2500MHz n 15.9dB NF Under 5dBm Blocking n High Input P1dB n 52dB Channel Isolation at 2500MHz n 3.3V Supply, 1.3W Power Consumption n Low Power Mode for 0.8W Consumption n Independent Channel Shutdown Control n 50Ω Single-Ended RF and LO Inputs n LO Input Matched In All Modes n 0dBm LO Drive Level n –40°C to 105°C Operation n Small QFN (5mm × 5mm) Package and Solution Size n Wireless Infrastructure Diversity Receivers (LTE, WiMAX) n Transmit DPD Receivers n MIMO Infrastructure Receivers n Broadband Microwave Receivers L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. IF AMP ADC IF AMP RF 2500MHz TO 2570MHz LNA BIAS BIAS SYNTH V CCIF 3.3V or 5V V CC 3.3V 22pF 22pF 22pF 1μF 22pF 1μF 22pF 150nH 150nH 1nF 1nF 190MHz SAW 190MHz BPF IMAGE BPF RFA RFB ENA LO ENA (0V/3.3V) LO 2345MHz 1.5pF V CCA V CCB IFA + IFA IFB + IFB 5593 TA01a LO AMP LO AMP ENB ENB (0V/3.3V) RF 2500MHz TO 2570MHz LNA 22pF IMAGE BPF IF AMP IF AMP ADC 150nH 150nH 1nF 1nF 190MHz SAW 190MHz BPF V CCIF V CC High Dynamic Range Dual Downconverting Mixer Family PART NUMBER RF RANGE LO RANGE LTC5590 600MHz to 1.7GHz 700MHz to 1.5GHz LTC5591 1.3GHz to 2.3GHz 1.4GHz to 2.1GHz LTC5592 1.6GHz to 2.7GHz 1.7GHz to 2.5GHz LTC5593 2.3GHz to 4.5GHz 2.1GHz to 4.2GHz Wideband Conversion Gain, IIP3 and NF vs IF Frequency (LTC5593 Only, Measured on Evaluation Board) IF OUTPUT FREQUENCY (MHz) 155 6.0 G C (dB) IIP3 (dBm), SSB NF (dB) 6.5 7.5 8.0 8.5 11.0 9.5 175 195 205 5593 TA01b 7.0 10.0 10.5 9.0 8 10 14 16 18 28 IIP3 22 12 24 26 20 165 185 215 225 LO = 2345MHz P LO = 0dBm RF = 2535 ±35MHz TEST CIRCUIT IN FIGURE 1 G C NF

Upload: hoangtu

Post on 07-Apr-2018

224 views

Category:

Documents


3 download

TRANSCRIPT

LTC5593

15593f

TYPICAL APPLICATION

FEATURES DESCRIPTION

Dual 2.3GHz to 4.5GHz High Dynamic Range

Downconverting Mixer

The LTC®5593 is part of a family of dual-channel high dy-namic range, high gain downconverting mixers covering the 600MHz to 4.5GHz RF frequency range. The LTC5593 is optimized for 2.3GHz to 4.5GHz RF applications. The LO frequency must fall within the 2.1GHz to 4.2GHz range for optimum performance. A typical application is a LTE or WiMAX multichannel or diversity receiver with a 2.3GHz to 2.7GHz RF input.

The LTC5593’s high conversion gain and high dynamic range enable the use of lossy IF filters in high selectivity receiver designs, while minimizing the total solution cost, board space and system-level variation. A low current mode is provided for additional power savings and each of the mixer channels has independent shutdown control.

LTE Diversity Receiver

APPLICATIONS

n Conversion Gain: 8.5dB at 2500MHzn IIP3: 27.7dBm at 2500MHzn Noise Figure: 9.5dB at 2500MHzn 15.9dB NF Under 5dBm Blockingn High Input P1dBn 52dB Channel Isolation at 2500MHz n 3.3V Supply, 1.3W Power Consumptionn Low Power Mode for 0.8W Consumption n Independent Channel Shutdown Controln 50Ω Single-Ended RF and LO Inputsn LO Input Matched In All Modesn 0dBm LO Drive Leveln –40°C to 105°C Operationn Small QFN (5mm × 5mm) Package and Solution Size

n Wireless Infrastructure Diversity Receivers (LTE, WiMAX)n Transmit DPD Receiversn MIMO Infrastructure Receiversn Broadband Microwave ReceiversL, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

IFAMP ADC

IFAMP

RF2500MHz TO

2570MHzLNA

BIAS

BIAS

SYNTH

VCCIF3.3V or 5V

VCC3.3V

22pF

22pF

22pF

1µF

22pF 1µF

22pF

150nH 150nH

1nF

1nF

190MHzSAW

190MHzBPF

IMAGEBPF

RFA

RFB

ENA

LO

ENA(0V/3.3V)

LO 2345MHz1.5pF

VCCA

VCCB

IFA+ IFA–

IFB+ IFB–

5593 TA01a

LOAMP

LOAMP

ENB ENB(0V/3.3V)

RF2500MHz TO

2570MHzLNA

22pFIMAGE

BPF

IFAMP

IFAMP ADC

150nH 150nH

1nF

1nF 190MHzSAW

190MHzBPF

VCCIFVCC

High Dynamic Range Dual Downconverting Mixer FamilyPART NUMBER RF RANGE LO RANGE

LTC5590 600MHz to 1.7GHz 700MHz to 1.5GHz

LTC5591 1.3GHz to 2.3GHz 1.4GHz to 2.1GHz

LTC5592 1.6GHz to 2.7GHz 1.7GHz to 2.5GHz

LTC5593 2.3GHz to 4.5GHz 2.1GHz to 4.2GHz

Wideband Conversion Gain,IIP3 and NF vs IF Frequency

(LTC5593 Only, Measured on Evaluation Board)

IF OUTPUT FREQUENCY (MHz)155

6.0

G C (d

B)

IIP3 (dBm), SSB NF (dB)

6.5

7.5

8.0

8.5

11.0

9.5

175 195 205

5593 TA01b

7.0

10.0

10.5

9.0

8

10

14

16

18

28IIP3

22

12

24

26

20

165 185 215 225

LO = 2345MHzPLO = 0dBmRF = 2535 ±35MHzTEST CIRCUIT IN FIGURE 1

GC

NF

LTC5593

25593f

PIN CONFIGURATIONABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC) ...............................................4.0VIF Supply Voltage (VCCIF) .........................................5.5VEnable Voltage (ENA, ENB) ..............–0.3V to VCC + 0.3VBias Adjust Voltage (IFBA, IFBB) ......–0.3V to VCC + 0.3VPower Select Voltage (ISEL) .............–0.3V to VCC + 0.3VLO Input Power (2GHz to 5GHz) .............................9dBmLO Input DC Voltage ............................................... ±0.1VRFA, RFB Input Power (2GHz to 5GHz) ................15dBmRFA, RFB Input DC Voltage .................................... ±0.1VOperating Temperature Range (TC) ........ –40°C to 105°CStorage Temperature Range .................. –65°C to 150°CJunction Temperature (TJ) .................................... 150°C

(Note 1)

24 23 22 21 20 19

7 8 9

TOP VIEW

25GND

UH PACKAGE24-LEAD (5mm × 5mm) PLASTIC QFN

10 11 12

6

5

4

3

2

1

13

14

15

16

17

18RFA

CTA

GND

GND

CTB

RFB

ISEL

ENA

LO

GND

ENB

GND

GND

IFGN

DA

IFA+

IFA–

IFBA

V CCA

GND

IFGN

DB IFB+

IFB–

IFBB

V CCB

TJMAX = 150°C, θJC = 7°C/W

EXPOSED PAD (PIN 25) IS GND, MUST BE SOLDERED TO PCB

ORDER INFORMATIONLEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION TEMPERATURE RANGE

LTC5593IUH#PBF LTC5593IUH#TRPBF 5593 24-Lead (5mm × 5mm) Plastic QFN –40°C to 105°C

Consult LTC Marketing for parts specified with wider operating temperature ranges. Consult LTC Marketing for information on non-standard lead based finish parts.For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

LTC5593

35593f

DC ELECTRICAL CHARACTERISTICS VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = high, ISEL = low, TC = 25°C, unless otherwise noted. Test circuit shown in Figure 1. (Note 2)

PARAMETER CONDITIONS MIN TYP MAX UNITS

Power Supply Requirements (VCCA, VCCB, VCCIFA, VCCIFB)

VCCA, VCCB Supply Voltage (Pins 12, 19) 3.1 3.3 3.5 V

VCCIFA, VCCIFB Supply Voltage (Pins 9, 10, 21, 22) 3.1 3.3 5.3 V

Mixer Supply Current (Pins 12, 19) Both Channels Enabled 196 242 mA

IF Amplifier Supply Current (Pins 9, 10, 21, 22) Both Channels Enabled 200 251 mA

Total Supply Current (Pins 9, 10, 12, 19, 21, 22) Both Channels Enabled 396 493 mA

Total Supply Current – Shutdown ENA = ENB = Low 500 µA

Enable Logic Input (ENA, ENB) High = On, Low = Off

ENA, ENB Input High Voltage (On) 2.5 V

ENA, ENB Input Low Voltage (Off) 0.3 V

ENA, ENB Input Current –0.3V to VCC + 0.3V –20 30 µA

Turn-On Time 0.9 µs

Turn-Off Time 1.0 µs

Low Power Mode Logic Input (ISEL) High = Low Power, Low = Normal Power Mode

ISEL Input High Voltage 2.5 V

ISEL Input Low Voltage 0.3 V

ISEL Input Current –0.3V to VCC + 0.3V –20 30 µA

Low Power Mode Current Consumption (ISEL = High)

Mixer Supply Current (Pins 12, 19) Both Channels Enabled 127 159 mA

IF Amplifier Supply Current (Pins 9, 10, 21, 22) Both Channels Enabled 120 157 mA

Total Supply Current (Pins 9, 10, 12, 19, 21, 22) Both Channels Enabled 247 316 mA

LTC5593

45593f

PARAMETER CONDITIONS MIN TYP MAX UNITS

Conversion Gain RF = 2300MHz RF = 2500MHz RF = 2700MHz RF = 3200MHz RF = 3500MHz RF = 3800MHz

6.8

9.0 8.5 8.0 8.1 7.6 7.0

dB dB dB dB dB dB

Conversion Gain Flatness RF = 2500 ±30MHz, LO = 2310MHz, IF = 190 ±30MHz ±0.25 dB

Conversion Gain vs Temperature TC = –40ºC to 105ºC, RF = 2500MHz –0.008 dB/°C

Input 3rd Order Intercept RF = 2300MHz RF = 2500MHz RF = 2700MHz RF = 3200MHz RF = 3500MHz RF = 3800MHz

24.0

26.1 27.7 27.6 26.5 26.0 26.1

dBm dBm dBm dBm dBm dBm

SSB Noise Figure RF = 2300MHz RF = 2500MHz RF = 2700MHz RF = 3200MHz RF = 3500MHz RF = 3800MHz

9.4 9.5 9.7

11.2 11.3 12.0

dB dB dB dB dB dB

SSB Noise Figure Under Blocking fRF =2500MHz, fLO = 2310MHz, fBLOCK = 2600MHz, PBLOCK = 5dBm PBLOCK = 8dBm

15.9 19.4

dB dB

2RF-2LO Output Spurious Product (fRF = fLO + fIF/2)

fRF = 2405MHz at –10dBm, fLO = 2310MHz, fIF = 190MHz

–64 dBc

3RF-3LO Output Spurious Product (fRF = fLO + fIF/3)

fRF = 2373.3MHz at –10dBm, fLO = 2310MHz, fIF = 190MHz

–70 dBc

Input 1dB Compression fRF = 2500MHz, VCCIF = 3.3V fRF = 2500MHz, VCCIF = 5V

10.4 13.7

dBm dBm

PARAMETER CONDITIONS MIN TYP MAX UNITS

LO Input Frequency Range 2100 to 3800 MHz

RF Input Frequency Range Low Side LO High Side LO

2300 to 4000 2300 to 4000

MHz MHz

IF Output Frequency Range Requires External Matching 5 to 600 MHz

RF Input Return Loss ZO = 50Ω, 2200MHz to 3800MHz >12 dB

LO Input Return Loss ZO = 50Ω, 2400MHz to 3600MHz >12 dB

IF Output Impedance Differential at 190MHz 274Ω||2.4pF R||C

LO Input Power fLO = 2100MHz to 3800MHz –4 0 6 dBm

LO to RF Leakage fLO = 2100MHz to 3800MHz <–33 dBm

LO to IF Leakage fLO = 2100MHz to 3800MHz <–30 dBm

RF to LO Isolation fRF = 2300MHz to 4000MHz >44 dB

RF to IF Isolation fRF = 2300MHz to 4000MHz >38 dB

Channel-to-Channel Isolation fRF = 2500MHz fRF = 3500MHz

52 44

dB dB

AC ELECTRICAL CHARACTERISTICS VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = high, ISEL = low, TC = 25°C, PLO = 0dBm, PRF = –3dBm (∆f = 2MHz for two tone IIP3 tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)

Low Side LO Downmixer Application: ISEL = Low, IF = 190MHz, fLO = fRF – fIF

LTC5593

55593f

PARAMETER CONDITIONS MIN TYP MAX UNITS

Conversion Gain RF = 2500MHz RF = 3500MHz

7.8 6.3

dB dB

Input 3rd Order Intercept RF = 2500MHz RF = 3500MHz

21.6 21.0

dBm dBm

SSB Noise Figure RF = 2500MHz RF = 3500MHz

9.2 11.5

dB dB

Input 1dB Compression RF = 2500MHz, VCCIF = 3.3V RF = 2500MHz, VCCIF = 5V

10.0 10.7

dBm dBm

AC ELECTRICAL CHARACTERISTICS VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = high, TC = 25°C, PLO = 0dBm, PRF = –3dBm (∆f = 2MHz for 2-tone IIP3 tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3)

Low Power Mode, Low Side LO Downmixer Application: ISEL = High, IF = 190MHz, fLO = fRF – fIF

PARAMETER CONDITIONS MIN TYP MAX UNITS

Conversion Gain RF = 2300MHz RF = 2500MHz RF = 2700MHz RF = 3200MHz RF = 3500MHz RF = 3800MHz

8.7 8.4 8.0 7.7 7.2 6.8

dB dB dB dB dB dB

Conversion Gain Flatness RF = 2500 ±30MHz, LO = 2690MHz, IF = 190 ±30MHz ±0.1 dB

Conversion Gain vs Temperature TC = –40ºC to 105ºC, RF = 2500MHz –0.006 dB/°C

Input 3rd Order Intercept RF = 2300MHz RF = 2500MHz RF = 2700MHz RF = 3200MHz RF = 3500MHz RF = 3800MHz

25.1 25.5 25.9 24.5 24.2 23.8

dBm dBm dBm dBm dBm dBm

SSB Noise Figure RF = 2300MHz RF = 2500MHz RF = 2700MHz RF = 3200MHz RF = 3500MHz RF = 3800MHz

10.0 10.5 10.6 11.1 12.1 12.1

dB dB dB dB dB dB

SSB Noise Figure Under Blocking fRF = 2500MHz, fLO = 2690MHz, fBLOCK = 2400MHz, PBLOCK = 5dBm PBLOCK = 8dBm

17.8 21.8

dB dB

2LO-2RF Output Spurious Product (fRF = fLO – fIF/2)

fRF = 2595MHz at –10dBm, fLO = 2690MHz, fIF = 190MHz

–66 dBc

3LO-3RF Output Spurious Product (fRF = fLO – fIF/3)

fRF = 2626.67MHz at –10dBm, fLO = 2690MHz, fIF = 190MHz

–75 dBc

Input 1dB Compression RF = 2500MHz, VCCIF = 3.3V RF = 2500MHz, VCCIF = 5V

10.7 14.1

dBm dBm

High Side LO Downmixer Application: ISEL = Low, IF = 190MHz, fLO = fRF + fIF

LTC5593

65593f

PARAMETER CONDITIONS MIN TYP MAX UNITS

Conversion Gain RF = 2500MHz RF = 3500MHz

7.4 5.9

dB dB

Input 3rd Order Intercept RF = 2500MHz RF = 3500MHz

22.1 20.2

dBm dBm

SSB Noise Figure RF = 2500MHz RF = 3500MHz

10.6 12.4

dB dB

Input 1dB Compression RF = 2500MHz, VCCIF = 3.3V RF = 2500MHz, VCCIF = 5V

10.9 11.7

dBm dBm

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.Note 2: The LTC5593 is guaranteed functional over the case operating temperature range of –40°C to 105°C. (θJC = 7°C/W)

Note 3: SSB Noise Figure measured with a small-signal noise source, bandpass filter and 6dB matching pad on RF input, bandpass filter and 6dB matching pad on the LO input, and no other RF signals applied.Note 4: Channel A to channel B isolation is measured as the relative IF output power of channel B to channel A, with the RF input signal applied to channel A. The RF input of channel B is 50Ω terminated and both mixers are enabled.

AC ELECTRICAL CHARACTERISTICS VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = High, TC = 25°C, PLO = 0dBm, PRF = –3dBm (∆f = 2MHz for two tone IIP3 tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3)

Low Power Mode, High Side LO Downmixer Application: ISEL = High, IF = 190MHz, fLO = fRF + fIF

LTC5593

75593f

2.3GHz to 2.7GHz, low side LO.TYPICAL AC PERFORMANCE CHARACTERISTICSVCC = 3.3V, VCCIF = 3.3V, ENA = ENB = high, ISEL = low, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1.

SSB NF vs RF FrequencyConversion Gain and IIP3 vs RF Frequency

Channel Isolation vs RF Frequency

2300MHz Conversion Gain, IIP3 and NF vs LO Power

2700MHz Conversion Gain, IIP3 and NF vs LO Power

2500MHz Conversion Gain, IIP3 and NF vs LO Power

Conversion Gain, IIP3 and NF vs Supply Voltage (Single Supply)

Conversion Gain, IIP3 and RF Input P1dB vs Temperature

Conversion Gain, IIP3 and NF vs IF Supply Voltage (Dual Supply)

RF FREQUENCY (GHz)2.2

19

IIP3

(dBm

) GC (dB)

21

23

25

27

29

6

8

10

12

14

16

IIP3

GC

2.3 2.4 2.5 2.6

5593 G01

2.7 2.8

105°C85°C25°C–40°C

RF FREQUENCY (GHz)2.2

6

SSB

NF (d

B)

8

10

12

14

16

2.3 2.4 2.5 2.6

5593 G02

2.7 2.8

105°C85°C25°C–40°C

RF FREQUENCY (GHz)2.2

40

ISOL

ATIO

N (d

B)

44

48

52

56

60

2.3 2.4 2.5 2.6

5593 G03

2.7 2.8

105°C85°C25°C–40°C

LO INPUT POWER (dBm)–6

7

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

11

15

19

23

–2 2–4 0 4

5593 G04

6

27

9

13

17

21

25

29

0

4

8

12

16

20

2

6

10

14

18

22

IIP3

NF

85°C25°C–40°C

GC

LO INPUT POWER (dBm)–6

7

G C (d

B), I

IP3

(dBm

)SSB NF (dB)

11

15

19

23

–2 2–4 0 4

5593 G05

6

27

9

13

17

21

25

29

0

4

8

12

16

20

2

6

10

14

18

22

85°C25°C–40°C

GC

IIP3

NF

LO INPUT POWER (dBm)–6

7

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

11

15

19

23

–2 2–4 0 4

5593 G06

6

27

9

13

17

21

25

29

0

4

8

12

16

20

2

6

10

14

18

22

85°C25°C–40°C

NF

GC

IIP3

NF

VCC, VCCIF SUPPLY VOLTAGE (V)3.0

7

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

11

15

19

23

3.2 3.43.1 3.3 3.5

5593 G07

3.6

27

9

13

17

21

25

29

0

4

8

12

16

20

2

6

10

14

18

22

85°C25°C–40°C

RF = 2500MHzVCC = VCCIF

IIP3

GC

NF

VCCIF SUPPLY VOLTAGE (V)3.0

7

G C (d

B), I

IP3

(dBm

)SSB NF (dB)

11

15

19

23

3.6 4.23.3 3.9 4.5 4.8 5.1

5593 G08

5.4

27

9

13

17

21

25

29

0

4

8

12

16

20

2

6

10

14

18

22

85°C25°C–40°C

RF = 2500MHzVCC = 3.3V

IIP3

GC

NF

CASE TEMPERATURE (°C)–40 –25

G C (d

B), I

IP3

(dBm

), P1

dB (d

Bm)

13

25

27

29

5 50 65 80

5593 G09

9

21

17

11

23

7

19

15

–10 20 35 95 110

VCCIF = 5VVCCIF = 3.3V

RF = 2500MHz

IIP3

P1dB

GC

LTC5593

85593f

RF FREQUENCY (GHz)2.2

–75

RELA

TIVE

SPU

R LE

VEL

(dBc

)

–70

–65

–60

–55

2.3 2.4 2.5 2.6

5593 G12

2.7 2.8

PRF = –10dBm

2RF-2LO

3RF-3LO

RF INPUT POWER (dBm)–15

–80

OUTP

UT P

OWER

(dBm

)

–70

–50

–40

–30

20

–10

–9 –3 0 12

5593 G11

–60

0

10

–20

–12 –6 3 6 9

IFOUT(RF = 2500MHz)

2RF-2LO(RF = 2405MHz)

3RF-3LO(RF = 2373.33MHz)

LO = 2310MHz

2.3GHz to 2.7GHz, low side LO (continued).TYPICAL AC PERFORMANCE CHARACTERISTICSVCC = 3.3V, VCCIF = 3.3V, ENA = ENB = High, ISEL = low, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1.

2-Tone IF Output Power, IM3 and IM5 vs RF Input Power

2 × 2 and 3 × 3 Spurs vs RF Frequency

SSB Noise Figure vs RF Blocker Level RF Isolation vs RF FrequencyLO Leakage vs LO Frequency

Single-Tone IF Output Power, 2 × 2 and 3 × 3 Spurs vs RF Input Power

RF INPUT POWER (dBm/TONE)–12

–80

OUTP

UT P

OWER

/TON

E (d

Bm)

–60IM3 IM5

–40

–20

–9 –6 –3 0

5593 G10

3

0

20

IFOUT

–70

–50

–30

–10

10

6

RF1 = 2499MHzRF2 = 2501MHzLO = 2310MHz

LO FREQUENCY (GHz)2.0

–60

LO L

EAKA

GE (d

Bm)

–50

–40

–30

–20

2.1 2.2 2.3 2.4

5593 G14

2.5 2.6 2.7 2.8

LO-RF

LO-IF

RF FREQUENCY (GHz)2.2

35

ISOL

ATIO

N (d

B)

40

45

50

55

65

2.3 2.4 2.5 2.6

RF-LO

RF-IF

5593 G15

2.7 2.8

60

RF BLOCKER POWER (dBm)–25

16

18

22

–10 0

5593 G13

14

12

–20 –15 –5 5 10

10

8

20

SSB

NF (d

B)

PLO = –3dBmPLO = 0dBmPLO = 6dBm

RF = 2500MHzLO = 2310MHzBLOCKER = 2600MHz

Conversion Gain Distribution SSB Noise Figure DistributionIIP3 Distribution

CONVERSION GAIN (dB)7.8

20

25

35RF = 2500MHz

8.4 8.8

5593 G16

15

10

8.0 8.2 8.6 9.0 9.2 9.4

5

0

30

DIST

RIBU

TION

(%)

85°C25°C–40°C

IIP3 (dBm)24.9 25.3 26.1 26.9

DIST

RIBU

TION

(%)

12

16

20

28.1

5593 G17

8

4

10

14

18

6

2

025.7 26.5 27.3 27.7

RF = 2500MHz85°C25°C–40°C

SSB NOISE FIGURE (dB)7.8

20

25

35RF = 2500MHz

9.0 9.8

5593 G18

15

10

8.2 8.6 9.4 10.2 10.6 11.0 11.4

5

0

30

DIST

RIBU

TION

(%)

85°C25°C–40°C

LTC5593

95593f

TYPICAL AC PERFORMANCE CHARACTERISTICSTYPICAL AC PERFORMANCE CHARACTERISTICS2.3GHz to 2.7GHz, low side LO, ISEL = high (low power mode). VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = High, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1.

SSB NF vs RF FrequencyConversion Gain and IIP3 vs RF Frequency

Channel Isolation vs RF Frequency

2300MHz Conversion Gain, IIP3 and NF vs LO Power

2500MHz Conversion Gain, IIP3 and NF vs LO Power

2700MHz Conversion Gain, IIP3 and NF vs LO Power

RF Isolation and LO Leakage vs Frequency

Conversion Gain, IIP3 and NF vs Supply Voltage (Single Supply)

Conversion Gain, IIP3 and RF Input P1dB vs Temperature

RF FREQUENCY (GHz)2.2

12

IIP3

(dBm

) GC (dB)

14

16

18

20

24

IIP3

GC

2.3 2.4 2.5 2.65593 G19

2.7 2.8

22

5

7

9

11

13

17

15

105°C85°C25°C–40°C

RF FREQUENCY (GHz)2.2

6

SSB

NF (d

B)

8

10

12

14

16

2.3 2.4 2.5 2.65593 G20

2.7 2.8

105°C85°C25°C–40°C

RF FREQUENCY (GHz)2.2

40

ISOL

ATIO

N (d

B)

44

48

52

56

60

2.3 2.4 2.5 2.65593 G21

2.7 2.8

105°C85°C25°C–40°C

LO INPUT POWER (dBm)–6

6

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

8

12

14

16

2

24

5593 G22

10

–2–4 40 6

18

20

22

2

4

8

10

12

20

IIP3

NF

6

14

16

1885°C25°C–40°C

GC

LO INPUT POWER (dBm)–6

6

G C (d

B), I

IP3

(dBm

)SSB NF (dB)

8

12

14

16

2

24

5593 G23

10

–2–4 40 6

18

20

22

2

4

8

10

12

20

IIP3

NF

6

14

16

18

85°C25°C–40°C

GC

LO INPUT POWER (dBm)–6

6

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

8

12

14

16

2

24

5593 G24

10

–2–4 40 6

18

20

22

2

4

8

10

12

20

IIP3

6

14

16

18

85°C25°C–40°C

GC

NF

VCC, VCCIF SUPPLY VOLTAGE (V)3.0

6

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

8

12

14

16

3.4

24

5593 G25

10

3.23.1 3.53.3 3.6

18

20

22

2

4

8

10

12

20

IIP3

6

14

16

18

85°C25°C–40°C

GC

NF

RF = 2500MHzVCC = VCCIF

CASE TEMPERATURE (°C)–40

G C (d

B), I

IP3

(dBm

), P1

dB (d

Bm)

18

22

26

805593 G26

14

10

16

20

24

12

8

6–10–25 205 50 65 9535 110

VCCIF = 5VVCCIF = 3.3V

RF = 2500MHz

IIP3

P1dB

GC

RF, LO FREQUENCY (GHz)2.1

LO L

EAKA

GE (d

Bm) RF ISOLATION (dB)

–20

–10

0 70

2.4 2.65593 G27

–30

–40

2.2 2.3 2.5 2.7 2.8

–50

–60

50

60

40

30

20

10

RF-LO

LO-RF

RF-IF

LO-IF

LTC5593

105593f

TYPICAL AC PERFORMANCE CHARACTERISTICS2.3GHz to 2.7GHz, high side LO. VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = high, ISEL = low, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1.

Conversion Gain and IIP3 vs RF Frequency SSB NF vs RF Frequency

Channel Isolation vs RF Frequency

RF FREQUENCY (GHz)2.2

16

IIP3

(dBm

) GC (dB)

18

20

22

24

28

IIP3

2.3 2.4 2.5 2.65593 G28

2.7 2.8

26

5

7

9

11

13

17

15

105°C85°C25°C–40°C

GC

RF FREQUENCY (GHz)2.2

6

SSB

NF (d

B)

8

10

12

14

16

2.3 2.4 2.5 2.65593 G29

2.7 2.8

105°C85°C25°C–40°C

RF FREQUENCY (GHz)2.2

40

ISOL

ATIO

N (d

B)

47

54

61

68

2.3 2.4 2.5 2.65593 G30

2.7 2.8

105°C85°C25°C–40°C

2300MHz Conversion Gain, IIP3 and NF vs LO Power

2500MHz Conversion Gain, IIP3 and NF vs LO Power

LO INPUT POWER (dBm)–6

6

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

10

14

18

22

–2 2–4 0 4

5593 G31

6

26

8

12

16

20

24

28

0

4

8

12

16

20

2

6

10

14

18

22

IIP3

NF

85°C25°C–40°C

GC

LO INPUT POWER (dBm)–6

6

G C (d

B), I

IP3

(dBm

)SSB NF (dB)

10

14

18

22

–2 2–4 0 4

5593 G32

6

26

8

12

16

20

24

28

0

4

8

12

16

20

2

6

10

14

18

22

IIP385°C25°C–40°C

GC

NF

2700MHz Conversion Gain, IIP3 and NF vs LO Power

LO INPUT POWER (dBm)–6

6

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

10

14

18

22

–2 2–4 0 4

5593 G33

6

26

8

12

16

20

24

28

0

4

8

12

16

20

2

6

10

14

18

22

85°C25°C–40°C

GC

NF

IIP3

Conversion Gain, IIP3 and RF Input P1dB vs Temperature

Conversion Gain, IIP3 and NF vs Supply Voltage (Single Supply)

RF Isolation and LO Leakage vs Frequency

VCC, VCCIF SUPPLY VOLTAGE (V)3.0

6

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

10

14

18

3.1 3.2 3.3 3.4

5593 G34

3.5

22

26

8

12

16

20

24 IIP3

0

4

8

12

16

20

2

6

10

14

18

3.6

85°C25°C–40°C

NF

GC

RF = 2500MHzVCC = VCCIF

CASE TEMPERATURE (°C)–40

G C (d

B), I

IP3

(dBm

), P1

dB (d

Bm)

18

22

26

80

5593 G35

14

10

16

20

24

12

8

6–10–25 205 50 65 9535 110

VCCIF = 5VVCCIF = 3.3V

RF = 2500MHz

IIP3

P1dB

GC

RF, LO FREQUENCY (GHz)2.1

LO L

EAKA

GE (d

Bm) RF ISOLATION (dB)

–20

–10

0 70

2.4 2.6

5593 G36

–30

–40

2.2 2.3 2.5 2.7 2.8

–50

–60

50

60

40

30

20

10

RF-LO

LO-RF

RF-IF

LO-IF

LTC5593

115593f

TYPICAL AC PERFORMANCE CHARACTERISTICS2.3GHz to 2.7GHz, high side LO, ISEL = high (low power mode). VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = high, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1.

2700MHz Conversion Gain, IIP3 and NF vs LO Power

Conversion Gain, IIP3 and NF vs Supply Voltage (Single Supply)

SSB NF vs RF FrequencyConversion Gain and IIP3 vs RF Frequency

Channel Isolation vs RF Frequency

2300MHz Conversion Gain, IIP3 and NF vs LO Power

2500MHz Conversion Gain, IIP3 and NF vs LO Power

RF FREQUENCY (GHz)2.2

13

IIP3

(dBm

) GC (dB)

15

17

19

21

23

5

7

9

11

13

IIP3

GC

15

2.3 2.4 2.5 2.6

5593 G37

2.7 2.8

105°C85°C25°C–40°C

RF FREQUENCY (GHz)2.2

6

SSB

NF (d

B)

8

10

12

14

16

2.3 2.4 2.5 2.6

5593 G38

2.7 2.8

105°C85°C25°C–40°C

RF FREQUENCY (GHz)2.2

40

ISOL

ATIO

N (d

B)

47

54

68

61

2.3 2.4 2.5 2.6

5593 G39

2.7 2.8

105°C85°C25°C–40°C

LO INPUT POWER (dBm)–6

6

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

8

12

14

16

2

24

5593 G40

10

–2–4 40 6

18

20

22

2

4

8

10

12

20

NF

6

14

16

18

85°C25°C–40°C

GC

IIP3

LO INPUT POWER (dBm)–6

6

G C (d

B), I

IP3

(dBm

)SSB NF (dB)

8

12

14

16

2

24

5593 G41

10

–2–4 40 6

18

20

22

2

4

8

10

12

20

NF

6

14

16

18

85°C25°C–40°CGC

IIP3

LO INPUT POWER (dBm)–6

6

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

8

12

14

16

2

24

5593 G42

10

–2–4 40 6

18

20

22

2

4

8

10

12

20

NF

6

14

16

18

85°C25°C–40°CGC

IIP3

VCC, VCCIF SUPPLY VOLTAGE (V)3.0

6

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

8

12

14

16

3.4

24

5593 G43

10

3.23.1 3.53.3 3.6

18

20

22

2

4

8

10

12

20

NF

6

14

16

18

85°C25°C–40°CGC

IIP3

RF = 2500MHzVCC = VCCIF

Conversion Gain, IIP3 and RF Input P1dB vs Temperature

RF Isolation and LO Leakage vs Frequency

CASE TEMPERATURE (°C)–40

G C (d

B), I

IP3

(dBm

), P1

dB (d

Bm)

18

22

26

805593 G44

14

10

16

20

24

12

8

6–10–25 205 50 65 9535 110

VCCIF = 5VVCCIF = 3.3V

RF = 2500MHz

IIP3

P1dB

GC

RF, LO FREQUENCY (GHz)2.1

LO L

EAKA

GE (d

Bm) RF ISOLATION (dB)

–20

–10

0 70

2.4 2.6

5593 G45

–30

–40

2.2 2.3 2.5 2.7 2.8

–50

–60

50

60

40

30

20

10

RF-LO

LO-RF

RF-IF

LO-IF

LTC5593

125593f

TYPICAL AC PERFORMANCE CHARACTERISTICS2.7GHz to 4GHz, low side LO. VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = high, ISEL = low, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1.

SSB NF vs RF FrequencyConversion Gain and IIP3 vs RF Frequency

Channel Isolation vs RF Frequency

3200MHz Conversion Gain, IIP3 and NF vs LO Power

3500MHz Conversion Gain, IIP3 and NF vs LO Power

RF FREQUENCY (GHz)2.6 2.8

18

IIP3

(dBm

) GC (dB)

22

28

IIP3

GC

3.0 3.4 3.65593 G46

20

26

24

6

10

16

8

14

12

3.2 3.8 4.0

105°C85°C25°C–40°C

RF FREQUENCY (GHz)2.6 2.8

6

SSB

NF (d

B)

10

16

3.0 3.4 3.65593 G47

8

14

12

3.2 3.8 4.0

105°C85°C25°C–40°C

RF FREQUENCY (GHz)2.6 2.8

40

ISOL

ATIO

N (d

B)

44

50

3.0 3.4 3.65593 G48

42

48

46

3.2 3.8 4.0

105°C85°C25°C–40°C

LO INPUT POWER (dBm)–6

6

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

10

14

18

22

–2 2–4 0 45593 G49

6

26

8

12

16

20

24

28

0

4

8

12

16

20

2

6

10

14

18

22IIP3

NF

85°C25°C–40°C

GC

LO INPUT POWER (dBm)–6

6

G C (d

B), I

IP3

(dBm

)SSB NF (dB)

10

14

18

22

–2 2–4 0 45593 G50

6

26

8

12

16

20

24

28

0

4

8

12

16

20

2

6

10

14

18

22IIP3

NF

85°C25°C–40°C

GC

3800MHz Conversion Gain, IIP3 and NF vs LO Power

LO INPUT POWER (dBm)–6

6

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

10

14

18

22

–2 2–4 0 45593 G51

6

26

8

12

16

20

24

28

0

4

8

12

16

20

2

6

10

14

18

22IIP3

85°C25°C–40°C

GC

NF

Conversion Gain, IIP3 and NF vs Supply Voltage (Single Supply)

VCC, VCCIF SUPPLY VOLTAGE (V)3.0

6

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

10

14

18

22

3.2 3.43.1 3.3 3.55593 G52

3.6

26

8

12

16

20

24

28

0

4

8

12

16

20

2

6

10

14

18

22IIP3

85°C25°C–40°C

GC

NF

RF = 3500MHzVCC = VCCIF

Conversion Gain, IIP3 and RF Input P1dB vs Temperature

RF Isolation and LO Leakage vs Frequency

CASE TEMPERATURE (°C)–40 –25

G C (d

B), I

IP3

(dBm

), P1

dB (d

Bm)

12

24

26

28

5 50 65 805593 G53

8

20

16

10

22

6

18

14

–10 20 35 95 110

VCCIF = 5VVCCIF = 3.3V

RF = 2500MHz

IIP3

P1dB

GC

RF, LO FREQUENCY (GHz)2.6

LO L

EAKA

GE (d

Bm) RF ISOLATION (dB)

–20

–10

0 70

3.2 3.65593 G54

–30

–40

2.8 3.0 3.4 3.8 4.0

–50

–60

50

60

40

30

20

10

RF-LO

LO-RF

RF-IF

LO-IF

LTC5593

135593f

TYPICAL AC PERFORMANCE CHARACTERISTICS2.7GHz to 4GHz, low side LO, ISEL = high (low power mode). VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = high, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1.

SSB NF vs RF FrequencyConversion Gain and IIP3 vs RF Frequency

Channel Isolation vs RF Frequency

RF FREQUENCY (GHz)2.6 2.8

14

IIP3

(dBm

) GC (dB)

18

24

IIP3

GC

3.0 3.4 3.65593 G55

16

22

20

4

8

14

6

12

10

3.2 3.8 4.0

105°C85°C25°C–40°C

RF FREQUENCY (GHz)2.6 2.8

6

SSB

NF (d

B)

10

16

3.0 3.4 3.65593 G56

8

14

12

3.2 3.8 4.0

105°C85°C25°C–40°C

RF FREQUENCY (GHz)2.6 2.8

40

ISOL

ATIO

N (d

B)

44

50

3.0 3.4 3.65593 G57

42

48

46

3.2 3.8 4.0

105°C85°C25°C–40°C

3200MHz Conversion Gain, IIP3 and NF vs LO Power

3800MHz Conversion Gain, IIP3 and NF vs LO Power

Conversion Gain, IIP3 and RF Input P1dB vs Temperature

3500MHz Conversion Gain, IIP3 and NF vs LO Power

Conversion Gain, IIP3 and NF vs Supply Voltage (Single Supply)

RF Isolation and LO Leakage vs Frequency

LO INPUT POWER (dBm)–6

6

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

8

12

14

16

2

24

5593 G58

10

–2–4 40 6

18

20

22

2

4

8

10

12

20

NF

6

14

16

18

85°C25°C–40°C

IIP3

GC

LO INPUT POWER (dBm)–6

5

G C (d

B), I

IP3

(dBm

)SSB NF (dB)

7

11

13

15

2

23

5593 G59

9

–2–4 40 6

17

19

21

2

4

8

10

12

20

NF

6

14

16

18

85°C25°C–40°C

IIP3

GC

LO INPUT POWER (dBm)–6

6

4

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

8

12

14

16

2

5593 G60

10

–2–4 40 6

18

20

22

2

4

8

10

12

20

6

14

16

18

85°C25°C–40°C

IIP3

GC

NF

VCC, VCCIF SUPPLY VOLTAGE (V)3.0

5

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

7

11

13

15

3.4

23

5593 G61

9

3.23.1 3.53.3 3.6

17

19

21

2

4

8

10

12

20

6

14

16

18

85°C25°C–40°C

IIP3

GC

NF

RF = 3500MHzVCC = VCCIF

CASE TEMPERATURE (°C)–40

G C (d

B), I

IP3

(dBm

), P1

dB (d

Bm)

17

21

25

80

5593 G62

13

9

15

19

23

11

7

5–10–25 205 50 65 9535 110

VCCIF = 5VVCCIF = 3.3V

RF = 3500MHz

IIP3

P1dB

GC

RF, LO FREQUENCY (GHz)2.6

LO L

EAKA

GE (d

Bm) RF ISOLATION (dB)

–20

–10

0 70

3.2 3.6

5593 G63

–30

–40

2.8 3.0 3.4 3.8 4.0

–50

–60

50

60

40

30

20

10

RF-LO

LO-RF

RF-IF

LO-IF

LTC5593

145593f

TYPICAL AC PERFORMANCE CHARACTERISTICS2.7GHz to 4GHz, high side LO. VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = high, ISEL = low, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1.

3800MHz Conversion Gain, IIP3 and NF vs LO Power

Conversion Gain, IIP3 and NF vs Supply Voltage (Single Supply)

SSB NF vs RF FrequencyConversion Gain and IIP3 vs RF Frequency

Channel Isolation vs RF Frequency

3200MHz Conversion Gain, IIP3 and NF vs LO Power

3500MHz Conversion Gain, IIP3 and NF vs LO Power

RF FREQUENCY (GHz)2.6 2.8

18

IIP3

(dBm

) GC (dB)

22

28

IIP3

GC

3.0 3.4 3.6

5593 G64

20

26

24

6

10

16

8

14

12

3.2 3.8 4.0

105°C85°C25°C–40°C

RF FREQUENCY (GHz)2.6 2.8

6

SSB

NF (d

B)

10

16

3.0 3.4 3.6

5593 G65

8

14

12

3.2 3.8 4.0

105°C85°C25°C–40°C

RF FREQUENCY (GHz)2.6 2.8

40

ISOL

ATIO

N (d

B)

46

55

3.0 3.4 3.6

5593 G66

43

52

49

3.2 3.8 4.0

105°C85°C25°C–40°C

LO INPUT POWER (dBm)–6

6

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

10

14

18

–4 –2 0 2

5593 G67

4

22

26

8

12

16

20

24IIP3

0

4

8

12

16

20

2

6

10

14

18

6

85°C25°C–40°C

NF

GC

LO INPUT POWER (dBm)–6

6

G C (d

B), I

IP3

(dBm

)SSB NF (dB)

10

14

18

–4 –2 0 2

5593 G68

4

22

26

8

12

16

20

24IIP3

0

4

8

12

16

20

2

6

10

14

18

6

85°C25°C–40°C

GC

NF

LO INPUT POWER (dBm)–6

6

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

10

14

18

–4 –2 0 2

5593 G69

4

22

26

8

12

16

20

24IIP3

0

4

8

12

16

20

2

6

10

14

18

6

85°C25°C–40°C

NF

GC

VCC, VCCIF SUPPLY VOLTAGE (V)3.0

5

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

9

13

17

3.1 3.2 3.3 3.4

5593 G70

3.5

21

25

7

11

15

19

23IIP3

0

4

8

12

16

20

2

6

10

14

18

3.6

85°C25°C–40°C

NF

GC

RF = 3500MHzVCC = VCCIF

RF, LO FREQUENCY (GHz)2.6

LO L

EAKA

GE (d

Bm) RF ISOLATION (dB)

–20

–10

0 70

3.2 3.6

5593 G72

–30

–40

2.8 3.0 3.4 3.8 4.0

–50

–60

50

60

40

30

20

10

RF-LO

LO-RF

RF-IF

LO-IF

Conversion Gain, IIP3 and RF Input P1dB vs Temperature

RF Isolation and LO Leakage vs Frequency

CASE TEMPERATURE (°C)–40

G C (d

B), I

IP3

(dBm

), P1

dB (d

Bm)

17

21

27

25

805593 G71

13

9

15

19

23

11

7

5–10–25 205 50 65 9535 110

VCCIF = 5VVCCIF = 3.3V

RF = 3500MHz

IIP3

P1dB

GC

LTC5593

155593f

TYPICAL AC PERFORMANCE CHARACTERISTICS2.7GHz to 4GHz, high side LO, ISEL = high (low power mode). VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = high, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1.

SSB NF vs RF FrequencyConversion Gain and IIP3 vs RF Frequency

Channel Isolation vs RF Frequency

3200MHz Conversion Gain, IIP3 and NF vs LO Power

3500MHz Conversion Gain, IIP3 and NF vs LO Power

RF FREQUENCY (GHz)2.6 2.8

14

IIP3

(dBm

) GC (dB)

18

24

IIP3

GC

3.0 3.4 3.65593 G73

16

22

20

4

8

14

6

12

10

3.2 3.8 4.0

105°C85°C25°C–40°C

RF FREQUENCY (GHz)2.6 2.8

6

SSB

NF (d

B)10

16

3.0 3.4 3.65593 G74

8

14

12

3.2 3.8 4.0

105°C85°C25°C–40°C

RF FREQUENCY (GHz)2.6 2.8

40

ISOL

ATIO

N (d

B)

46

55

3.0 3.4 3.65593 G75

43

52

49

3.2 3.8 4.0

105°C85°C25°C–40°C

LO INPUT POWER (dBm)–6

5

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

7

11

13

15

2

23

5593 G76

9

–2–4 40 6

17

19

21

2

4

8

10

12

20

NF

6

14

16

18

85°C25°C–40°C

IIP3

GC

LO INPUT POWER (dBm)–6

4

G C (d

B), I

IP3

(dBm

)SSB NF (dB)

6

10

12

14

2

22

5593 G77

8

–2–4 40 6

16

18

20

2

4

8

10

12

20

NF

6

14

16

18

85°C25°C–40°C

IIP3

GC

3800MHz Conversion Gain, IIP3 and NF vs LO Power

Conversion Gain, IIP3 and RF Input P1dB vs Temperature

Conversion Gain, IIP3 and NF vs Supply Voltage (Single Supply)

RF Isolation and LO Leakage vs Frequency

LO INPUT POWER (dBm)–6

4

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

6

10

12

14

2

22

5593 G78

8

–2–4 40 6

16

18

20

2

4

8

10

12

20

NF

6

14

16

18

85°C25°C–40°C

IIP3

GC

VCC, VCCIF SUPPLY VOLTAGE (V)3.0

4

G C (d

B), I

IP3

(dBm

)

SSB NF (dB)

6

10

12

14

3.4

22

5593 G79

8

3.23.1 3.53.3 3.6

16

18

20

2

4

8

10

12

20

6

14

16

18

85°C25°C–40°C

IIP3

NF

RF = 3500MHzVCC = VCCIF

GC

CASE TEMPERATURE (°C)–40

G C (d

B), I

IP3

(dBm

), P1

dB (d

Bm)

16

20

24

805593 G80

12

8

14

18

22

10

6

4–10–25 205 50 65 9535 110

VCCIF = 5VVCCIF = 3.3V

RF = 3500MHz

IIP3

P1dB

GC

RF, LO FREQUENCY (GHz)2.6

LO L

EAKA

GE (d

Bm) RF ISOLATION (dB)

–20

–10

0 70

3.2 3.65593 G81

–30

–40

2.8 3.0 3.4 3.8 4.0

–50

–60

50

60

40

30

20

10

RF-LO

LO-RF

RF-IF

LO-IF

LTC5593

165593f

TYPICAL DC PERFORMANCE CHARACTERISTICSISEL = low, ENA = ENB = high, test circuit shown in Figure 1

ISEL = high (low power mode), ENA = ENB = high, test circuit shown in Figure 1

VCC Supply Current vs Supply Voltage (Mixer and LO Amplifier)

VCC Supply Current vs Supply Voltage (Mixer and LO Amplifier)

VCCIF Supply Current vs Supply Voltage (IF Amplifier)

VCCIF Supply Current vs Supply Voltage (IF Amplifier)

Total Supply Current vs Temperature (VCC + VCCIF)

Total Supply Current vs Temperature (VCC + VCCIF)

VCC SUPPLY VOLTAGE (V)3.0

184

SUPP

LY C

URRE

NT (m

A)

188

192

196

3.1 3.2 3.3 3.4

5593 G82

3.5

200

204

186

190

194

198

202

3.6

105°C85°C25°C–40°C

VCCIF SUPPLY VOLTAGE (V)3.0

140

SUPP

LY C

URRE

NT (m

A)

160

180

200

220

3.6 4.2 4.8 5.4

5593 G83

240

260

3.3 3.9 4.5 5.1

105°C

85°C

25°C

–40°C

TEMPERATURE (°C)

340

SUPP

LY C

URRE

NT (m

A)

380

420

460

360

400

440

–10 20 50 80

5593 G84

110–25–40 5 35 65 95

VCC = 3.3V,VCCIF = 5V

(DUAL SUPPLY)

VCC = VCCIF = 3.3V(SINGLE SUPPLY)

VCC SUPPLY VOLTAGE (V)3.0

120

SUPP

LY C

URRE

NT (m

A)

124

128

3.1 3.2 3.3 3.4

5593 G85

3.5

134

122

126

130

132

3.6

105°C85°C25°C–40°C

VCCIF SUPPLY VOLTAGE (V)3.0

80

SUPP

LY C

URRE

NT (m

A)

100

120

3.6 4.2 4.8 5.4

5593 G86

140

160

3.3 3.9 4.5 5.1

105°C

85°C

25°C

–40°C

TEMPERATURE (°C)

200

SUPP

LY C

URRE

NT (m

A)

240

300

220

260

280

–10 20 50 80

5593 G87

110–25–40 5 35 65 95

VCC = 3.3V,VCCIF = 5V

(DUAL SUPPLY)

VCC = VCCIF = 3.3V(SINGLE SUPPLY)

LTC5593

175593f

PIN FUNCTIONSRFA, RFB (Pins 1, 6): Single-Ended RF Inputs for Chan-nels A and B. These pins are internally connected to the primary sides of the RF input transformers, which have low DC resistance to ground. Series DC-blocking capaci-tors should be used to avoid damage to the integrated transformer when DC voltage is present at the RF inputs. The RF inputs are impedance matched when the LO input is driven with a 0±6dBm source between 2.1GHz and 4.2GHz and the channels are enabled.

CTA, CTB (Pins 2, 5): RF Transformer Secondary Center-Tap on Channels A and B. These pins may require bypass capacitors to ground to optimize IIP3 performance. Each pin has an internally generated bias voltage of 1.2V and must be DC-isolated from ground and VCC.

GND (Pins 3, 4, 7, 13, 15, 24, Exposed Pad Pin 25): Ground. These pins must be soldered to the RF ground plane on the circuit board. The exposed pad metal of the package provides both electrical contact to ground and good thermal contact to the printed circuit board.

IFGNDB, IFGNDA (Pins 8, 23): DC Ground Returns for the IF Amplifiers. These pins must be connected to ground to complete the DC current paths for the IF amplifiers. Chip inductors may be used to tune LO-IF and RF-IF leakage. Typical DC current is 100mA for each pin.

IFB+, IFB–, IFA–, IFA+ (Pins 9, 10, 21, 22): Open-Collec-tor Differential Outputs for the IF Amplifiers of Channels B and A. These pins must be connected to a DC supply through impedance matching inductors, or transformer center-taps. Typical DC current consumption is 50mA into each pin.

IFBB, IFBA (Pins 11, 20): Bias Adjust Pins for the IF Amplifiers. These pins allow independent adjustment of the internal IF buffer currents for channels B and A, respectively. The typical DC voltage on these pins is 2.2V. If not used, these pins must be DC isolated from ground and VCC.

VCCB and VCCA (Pins 12, 19): Power Supply Pins for the LO Buffers and Bias Circuits. These pins must be con-nected to a regulated 3.3V supply with bypass capacitors located close to the pins. Typical current consumption is 98mA per pin.

ENB, ENA (Pins 14, 17): Enable Pins. These pins allow Channels B and A, respectively, to be independently en-abled. An applied voltage of greater than 2.5V activates the associated channel while a voltage of less than 0.3V disables the channel. Typical input current is less than 10μA. These pins must not be allowed to float.

LO (Pin 16): Single-Ended Local Oscillator Input. This pin is internally connected to the primary side of the LO input transformer and has a low DC resistance to ground. Series DC-blocking capacitors should be used to avoid damage to the integrated transformer when DC voltage is present at the LO input. The LO input is internally matched to 50Ω for all states of ENA and ENB.

ISEL (Pin 18): Low Power Select Pin. When this pin is pulled low (<0.3V), both mixer channels are biased at the normal current level for best RF performance. When greater than 2.5V is applied, both channels operate at reduced current, which provides reasonable performance at lower power consumption. This pin must not be allowed to float.

LTC5593

185593f

BLOCK DIAGRAM

5593 BD

BIAS

BIAS

GND

ENA

ISEL

LO

VCCBIFBB

VCCAIFBA

IFB–IFB+

IFA–IFA+

IFGNDB

IFGNDA

GND

RFB

LOAMP

LOAMP

ENB

GND

IFAMP

11109 12

14

13

GND 15

16

17

18

6

87

CTB5

GND4

GND3

CTA2

RFA1

IFAMP

22 21 20 192324

LTC5593

195593f

TEST CIRCUIT

RF

GND

GND

BIAS

DC1710AEVALUATION BOARDSTACK-UP(NELCO N4000-13)

0.015”

0.015”

0.062”

4:1T1A

IFA50Ω

C7A

L2AL1A

C5A

R2A

C6

C3A C4

LTC55931

192021222324

121110987

LO50Ω

17

18

16

15

14

C2

5

6 13

4

3

RFA50Ω

VCCIF3.3V TO 5V

C1A

RFB50Ω

C1B

2

IFGNDAGND IFA+ IFA– IFBA

LO

GND

GND

ISEL

ENB

ENA

VCCA

IFGNDBGND IFB+ IFB– IFBB VCCB

RFA

CTA

GND

GND

CTB

RFB

5593 F01

4:1T1B

IFB50Ω

C5BC3B

C8A

C8B

C7B

L1BL2B

ISEL(0V/3.3V)

VCC3.3V

ENA(0V/3.3V)

ENB(0V/3.3V)

R2B

25GND

L1, L2 vs IF FREQUENCIES

IF (MHz) L1A, L1B, L2A, L2B (nH)

140 270

190 150

240 100

300 56

380 33

470 22

REF DES VALUE SIZE VENDOR

C1A, C1B, C3A, C3B C5A, C5B

22pF 0402 AVX

C2 1.5pF 0402 AVX

C8A, C8B 10pF 0402 AVX

C4, C6 1µF 0603 AVX

C7A, C7B 1000pF 0402 AVX

L1A, L1B L2A, L2B

150nH 0603 Coilcraft

T1A, T1B (Alternate)

TC4-1W-7ALN+ (WBC4-6TLB)

Mini-Circuits (Coilcraft)

R2 vs RF and LO Frequencies

RF (MHz) LO R2A, R2B

2300 to 2700 Low Side 953Ω

High Side 3.01kΩ

2700 to 4000 Low Side Open

High Side Open

Figure 1. Standard Test Circuit Schematic (190MHz IF)

LTC5593

205593f

Introduction

The LTC5593 consists of two identical mixer channels driven by a common LO input signal. Each high linearity mixer consists of a passive double-balanced mixer core, IF buffer amplifier, LO buffer amplifier and bias/enable circuits. See the Pin Functions and Block Diagram sections for a description of each pin. Each of the mixers can be shutdown independently to reduce power consumption and low current mode can be selected that allows a trade-off between performance and power consumption. The RF and LO inputs are single-ended and are internally matched to 50Ω. low side or high side LO injection can be used. The IF outputs are differential. The evaluation circuit, shown in Figure 1, utilizes bandpass IF output matching and an IF transformer to realize a 50Ω single-ended IF output. The evaluation board layout is shown in Figure 2.

APPLICATIONS INFORMATION

Figure 2. Evaluation Board Layout

RF Inputs

The RF inputs of channels A and B are identical. The RF input of channel A, shown in Figure 3, is connected to the primary winding of an integrated transformer. A 50Ω match is realized when a series external capacitor, C1A, is con-nected to the RF input. C1A is also needed for DC blocking if the source has DC voltage present, since the primary side of the RF transformer is internally DC-grounded. The DC resistance of the primary is approximately 3.6Ω.

The secondary winding of the RF transformer is inter-nally connected to the channel A passive mixer core. The center-tap of the transformer secondary is connected to Pin 2 (CTA) to allow the connection of bypass capacitor, C8A. The value of C8A can be adjusted to improve the

Figure 3. Channel A RF Input Schematic

LTC5593

C1A

C8A

RFA

CTA

RFA

TO CHANNEL A MIXER

1

2

5593 F03

LTC5593

215593f

Figure 4. Channel-to-Channel Isolation vs C8 Values

RF FREQUENCY (GHz)2.2

30

CHAN

NEL

ISOL

ATIO

N (d

B)

40

45

50

2.4 2.6 2.7

5593 F04

35

2.3 2.5 2.8

55

C8 OPENC8 = 2.2pFC8 = 10pF

channel-to-channel isolation at specific RF operation frequency with minor impact to conversion gain, linearity and noise performance. The channel-to-channel isola-tion performance with different values of C8A is given in Figure 4. When used, it should be located within 2mm of Pin 2 for proper high frequency decoupling. The nominal DC voltage on the CTA pin is 1.2V.

APPLICATIONS INFORMATION

Figure 6. LO Input Schematic

The RF input impedance and input reflection coefficient, versus RF frequency, are listed in Table 1. The reference plane for this data is Pin 1 of the IC, with no external matching, and the LO is driven at 2.31GHz.

Table 1. RF Input Impedance and S11 (at Pin1, No External Matching, LO Input Driven at 2.31GHz)

FREQUENCY (GHZ)

RF INPUT IMPEDANCE

S11

MAG ANGLE

2.0 74.2 + j13.6 0.22 23.1

2.2 69.4 – j6.4 0.17 –15.2

2.4 45.2 – j3.0 0.06 –146.0

2.6 45.6 + j6.5 0.08 120.3

2.8 48.3 + j10.9 0.11 92.3

3.0 51.5 + j14.1 0.14 75.9

3.2 57.1 + j15.5 0.16 57.3

3.4 62.6 + j11.8 0.15 37.2

3.6 64.3 + j4.7 0.13 16.0

3.8 63.6 – j6.8 0.13 –23.2

4.0 50.8 – j10.7 0.11 –79.4

LO Input

The LO input, shown in Figure 6, is connected to the pri-mary winding of an integrated transformer. A 50Ω imped-ance match from 2.1GHz to 3.4GHz is realized at the LO port by adding a 1.5pF external series capacitor, C2. This capacitor is also needed for DC blocking if the LO source has DC voltage present, since the primary side of the LO transformer is DC-grounded internally. The DC resistance of the primary is approximately 1.8Ω. For LO frequency

Figure 5. RF Port Return Loss

RF FREQUENCY (GHz)2.0

30

RF P

ORT

RETU

RN L

OSS

(dB)

15

20

10

5

2.4 3.0 3.2 3.4 3.6 3.82.8

5593 F05

25

2.2 2.6 4.0

0LO = 2.4GHzLO = 3GHzLO = 3.6GHz

LO

L4

TOMIXER B

LTC5593ISEL

5593 F06

18

LO16

17ENA

ENB

C2

14

BIAS

BIAS

TOMIXER A

For the RF inputs to be properly matched, the appropriate LO signal must be applied to the LO input. A broadband input match is realized with C1A = 22pF. The measured input return loss is shown in Figure 5 for LO frequencies of 2.4GHz, 3.0GHz and 3.6GHz. These LO frequencies correspond to lower, middle and upper values in the LO range. As shown in Figure 5, the RF input impedance is dependent on LO frequency, although a single value of C1A is adequate to cover the 2.3GHz to 4.0GHz RF band.

LTC5593

225593f

Figure 7. LO Input Return Loss

APPLICATIONS INFORMATIONfrom 3.4GHz to 3.8GHz, the LO port can be well matched by using C2 = 0.6pF and L4 = 10nH.

The secondary of the transformer drives a pair of high speed limiting differential amplifiers for channels A and B. The LTC5593’s LO amplifiers are optimized for the 2.1GHz to 4.2GHz LO frequency range; however, LO frequencies outside this frequency range may be used with degraded performance.

The LO port is always 50Ω matched, even when one or both of the channels is disabled. This helps to reduce fre-quency pulling of the LO source when the mixer is switched between different operating states. Figure 7 illustrates the LO port return loss for the different operating modes.

The nominal LO input level is 0dBm, though the limiting amplifiers will deliver excellent performance over a ±6dBm input power range. Table 2 lists the LO input impedance and input reflection coefficient versus frequency.

Table 2. LO Input Impedance vs Frequency (at Pin 16, No External Matching, ENA = ENB = High)

FREQUENCY (GHz)

INPUT IMPEDANCE

S11

MAG ANGLE

2.0 33.8 + j22.8 0.32 110.3

2.2 34.8 + j22.2 0.31 109.7

2.4 34.5 + j21.8 0.31 110.9

2.6 32.5 + j22.8 0.34 111.9

2.8 30.7 + j25.9 0.38 108.8

3.0 29.6 + j30.1 0.43 103.4

3.2 29.3 + j34.8 0.47 97.1

3.4 29.3 + j38.7 0.50 92.1

3.6 30.7 + j43.1 0.52 86.0

3.8 33.0 + j46.9 0.52 80.5

4.0 36.1 + j49.8 0.52 75.6

LO FREQUENCY (GHz)2.0

35

LO P

ORT

RETU

RN L

OSS

(dB)

30

20

15

10

0

2.2 3.0 3.4

5593 F07

25

5

2.8 3.8 4.02.4 2.6 3.2 3.6

BOTH CHANNELS ONONE CHANNEL ONBOTH CHANNELS OFF

C2 = 1.5pFL4 = OPEN

C2 = 0.6pFL4 = 10nH

IF Outputs

The IF amplifiers in channels A and B are identical. The IF amplifier for channel A, shown in Figure 8, has differen-tial open collector outputs (IFA+ and IFA–), a DC ground return pin (IFGNDA), and a pin for adjusting the internal bias (IFBA). The IF outputs must be biased at the sup-ply voltage (VCCIFA), which is applied through matching inductors L1A and L2A. Alternatively, the IF outputs can be biased through the center tap of a transformer (T1A). The common node of L1A and L2A can be connected to the center tap of the transformer. Each IF output pin draws approximately 50mA of DC supply current (100mA total). An external load resistor, R2A, can be used to improve impedance matching if desired.

IFGNDA (Pin 23) must be grounded or the amplifier will not draw DC current. Inductor L3A may improve LO-IF and RF-IF leakage performance in some applications, but is otherwise not necessary. Inductors should have small resistance for DC. High DC resistance in L3A will reduce the IF amplifier supply current, which will degrade RF performance.

LTC5593

235593f

Figure 8. IF Amplifier Schematic with Bandpass Match

4:1T1A IFA

C7AL2AL1A

C5A

R2A

L3A (OR SHORT)VCCIFA

20212223

IFAMP

BIAS

100mA

4mA

IFBA

VCCA

LTC5593

IGNDAIFA–IFA+

R1A(OPTION TO

REDUCEDC POWER)

5593 F08

Figure 9. IF Output Small-Signal Model

22 21IFA+ IFA–

0.9nH0.9nHRIF

CIF

LTC5593

5593 F09

APPLICATIONS INFORMATION

For optimum single-ended performance, the differential IF output must be combined through an external IF transformer or a discrete IF balun circuit. The evaluation board (see Figures 1 and 2) uses a 4:1 IF transformer for impedance transformation and differential to single-ended conversion. It is also possible to eliminate the IF transformer and drive differential filters or amplifiers directly.

The IF output impedance can be modeled as 260Ω in parallel with 2.3pF. The equivalent small-signal model, including bondwire inductance, is shown in Figure 9. Frequency-dependent differential IF output impedance is listed in Table 3. This data is referenced to the package pins (with no external components) and includes the ef-fects of IC and package parasitics.

Bandpass IF Matching

The bandpass IF matching configuration, shown in Figures 1 and 8, is best suited for IF frequencies in the 90MHz to 600MHz range. Resistor R2A may be used to

reduce the IF output resistance for greater bandwidth and inductors L1A and L2A resonate with the internal IF output capacitance at the desired IF frequency. The value of L1A, L2A can be estimated as follows:

L1A =L2A = 12πfIF( )2 • 2 •CIF

where CIF is the internal IF capacitance (listed in Table 3).

LTC5593

245593f

Figure 12. IF Output with Lowpass Matching

APPLICATIONS INFORMATIONTable 3. IF Output Impedance vs Frequency

FREQUENCY (MHz)

DIFFERENTIAL OUTPUT IMPEDANCE (RIF || XIF (CIF))

90 291 || –j714 (2.5pF)140 282 || –j463 (2.5pF)190 274 || –j353 (2.4pF)240 265 || –j278 (2.4pF)300 252 || –j225 (2.4pF)380 231 || –j177 (2.4pF)500 227 || –j127 (2.5pF)

Values of L1A and L2A are tabulated in Figure 1 for vari-ous IF frequencies. The measured IF output return loss for bandpass IF matching is plotted in Figure 10.

Performances of 470MHz IF output frequency with low side LO injection using bandpass IF matching is shown in Figure 11. The test circuit schematic and components values are shown in Figure 1 with R2 open in this example. The test conditions are: VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = high, ISEL = low, TC = 25°C.

Lowpass IF Matching

For IF frequencies below 90MHz, the inductance values become unreasonably high and the lowpass topology shown in Figure 12 is preferred. This topology also can provide improved RF to IF and LO to IF isolation. VCCIFA is supplied through the center tap of the 4:1 transformer. A lowpass impedance transformation is realized by shunt

4:1

T1A IFA50Ω

VCCIFA3.1 TO 5.3V

C5A

2122IFA–IFA+

C6

C9A

R2AL1A L2A

LTC5593

5593 F12

Figure 11. Performances of 470MHz IF Using Bandpass Matching

RF FREQUENCY (MHz)2.2

G C (d

B), I

IP3

(dBm

)

CHANNEL ISOLATION (dB)

17

23

25

3.8

5593 F11

1513

52.6 3.0 3.42.4 2.8 3.2 3.6

9

29

IIP327

21

19

11

7

44

50

52

4240

32

36

5654

48

46

38

34

C8 = OPENC8 = 10pF

GC

CHANNELISOLATION

Figure 10. IF Output Return Loss with Bandpass Matching

IF FREQUENCY (MHz)100

IF P

ORT

RETU

RN L

OSS

(dB)

150 250 300 350 400 450 500 550 600

5593 F10

200

5

10

15

20

25

30

L1, L2150nH

L1, L256nH

L1, L233nH

L1, L222nH

LTC5593

255593f

Figure 13. IF Output Return Loss with Lowpass Matching

IF FREQUENCY (MHz)

IF P

ORT

RETU

RN L

OSS

(dB)

90 170 210 250

5591 F13

13050

0

5

10

15

20

25

30

L1, L247nH

L1, L2150nH

L1, L282nH

APPLICATIONS INFORMATIONelements R2A and C9A (in parallel with the internal RIF and CIF), and series inductors L1A and L2A. Resistor R2A is used to reduce the IF output resistance for greater band-width, or it can be deleted for the highest conversion gain. The final impedance transformation to 50Ω is realized by transformer T1A. The measured IF output return loss for lowpass IF matching with R2A and C9A open is plotted in Figure 13. The LTC5593 demo board (see Figure 2) has been laid out to accommodate this matching topology with only minor modifications.

VCCIF values of 3.3V and 5V. For the highest conversion gain, high-Q wire-wound chip inductors are recommended for L1A and L2A, especially when using VCCIF = 3.3V. low cost multilayer chip inductors may be substituted, with a slight reduction in conversion gain.

Table 4. Performance Comparison with VCCIF = 3.3V and 5V (RF = 2500MHz, Low Side LO, IF = 190MHz, ENA = ENB = High)

VCCIF (V)

R2A (Ω)

ICCIF (mA)

GC (dB)

P1dB (dBm)

IIP3 (dBm)

NF (dB)

3.3953 200 8.5 10.4 27.7 9.5

Open 200 9.6 9.6 27.2 9.5

5953 207 8.4 13.7 28.5 9.7

Open 207 9.5 13.3 27.4 9.7

The IFBA pin (Pin 20) is available for reducing the DC current consumption of the IF amplifier, at the expense of IIP3. The nominal DC voltage at Pin 20 is 2.1V, and this pin should be left open-circuited for optimum performance. The internal bias circuit produces a 4mA reference for the IF amplifier, which causes the amplifier to draw approxi-mately 100mA. If resistor R1A is connected to Pin 20 as shown in Figure 8, a portion of the reference current can be shunted to ground, resulting in reduced IF amplifier current. For example, R1A = 470Ω will shunt away 1.4mA from Pin 20 and the IF amplifier current will be reduced by 35% to approximately 65mA. Table 5 summarizes RF performance versus total IF amplifier current when both channels are enabled.

Table 5. Mixer Performance with Reduced IF Amplifier Current RF = 2500MHz, Low Side LO, IF = 190MHz, VCC = VCCIF = 3.3V

R1A, R1B

ICCIF (mA)

GC (dB)

IIP3 (dBm)

P1dB (dBm)

NF (dB)

Open 200 8.5 27.7 10.4 9.5

3.3kΩ 176 8.4 26.7 10.5 9.5

1.0kΩ 151 8.1 24.9 10.5 9.4

470Ω 130 8.0 23.5 10.4 9.3

IF Amplifier Bias

The IF amplifier delivers excellent performance with VCCIF = 3.3V, which allows a single supply to be used for VCC and VCCIF. At VCCIF = 3.3V, the RF input P1dB of the mixer is limited by the output voltage swing. For higher P1dB, in this case, resistor R2A (Figure 1) can be used to reduce the output impedance and thus the voltage swing, thus improving P1dB. The trade-off for improved P1dB will be lower conversion gain.

With VCCIF increased to 5V the P1dB increases by over 3dB, at the expense of higher power consumption. Mixer P1dB performance at 2500MHz is tabulated in Table 4 for

LTC5593

265593f

Low Power Mode

Both mixer channels can be set to low power mode using the ISEL pin. This allows flexibility to choose a reduced current mode of operation when lower RF performance is acceptable. Figure 14 shows a simplified schematic of the ISEL pin interface. When ISEL is set low (<0.3V), both channels operate at nominal DC current. When ISEL is set high (>2.5V), the DC currents in both channels are reduced, thus reducing power consumption. The performance in low power mode and normal power mode are compared in Table 6.

Table 6. Performance Comparison Between Different Power Mode RF = 2500MHz, Low Side LO, IF = 190MHz, ENA = ENB = High

ISEL

ITOTAL (mA)

GC (dB)

IIP3 (dBm)

P1dB (dBm)

NF (dB)

Low 396 8.5 27.7 10.4 9.5

High 247 7.8 21.6 10.0 9.2

Enable Interface

Figure 15 shows a simplified schematic of the ENA pin interface (ENB is identical). To enable channel A, the ENA voltage must be greater than 2.5V. If the enable function is not required, the enable pin can be connected directly to VCC. The voltage at the enable pin should never exceed the power supply voltage (VCC) by more than 0.3V. If this should occur, the supply current could be sourced through the ESD diode, potentially damaging the IC.

The Enable pins must be pulled high or low. If left float-ing, the on/off state of the IC will be indeterminate. If a three-state condition can exist at the enable pins, then a pull-up or pull-down resistor must be used.

Supply Voltage Ramping

Fast ramping of the supply voltage can cause a current glitch in the internal ESD protection circuits. Depending on the supply inductance, this could result in a supply volt-age transient that exceeds the maximum rating. A supply voltage ramp time of greater than 1ms is recommended.

Spurious Output Levels

Mixer spurious output levels versus harmonics of the RF and LO are tabulated in Table 7. The spur levels were measured on a standard evaluation board using the test circuit shown in Figure 1. The spur frequencies can be calculated using the following equation:

fSPUR = (M • fRF) – (N • fLO)

Table 7. IF Output Spur Levels (dBc)RF = 2500MHz, FRF = –3dBm, FLO = 0dBm, FIF 190MHz, Low Side LO, VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = High, ISEL = Low, TC = 25°C

N

M

0 1 2 3 4 5 6 7 8

0 –40 –48 –60 –51 –83 –62 –74 *

1 –48 –0 –75 –62 –69 –69 * * *

2 –74 –78 –61 –85 –82 –87 –89 * *

3 * * * –65 * * * * *

4 * * * * * * * * *

5 * * * * * * * *

6 * * * * * * *

*Less than –90dBc

Figure 15. ENA Interface SchematicFigure 14. ISEL Interface Schematic

LTC5593

18ISEL

VCCB

500Ω

VCCA

5593 F14

19

BIAS A

BIAS B

LTC5593

17ENA 500Ω

VCCA

5593 F15

19

CLAMP

APPLICATIONS INFORMATION

LTC5593

275593f

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.

UH Package24-Lead Plastic QFN (5mm × 5mm)

(Reference LTC DWG # 05-08-1747 Rev A)

5.00 ± 0.10

5.00 ± 0.10

NOTE:1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE2. DRAWING NOT TO SCALE3. ALL DIMENSIONS ARE IN MILLIMETERS4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE5. EXPOSED PAD SHALL BE SOLDER PLATED6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

PIN 1TOP MARK(NOTE 6)

0.55 ± 0.10

23

1

2

24

BOTTOM VIEW—EXPOSED PAD

3.25 REF3.20 ± 0.10

3.20 ± 0.10

0.75 ± 0.05 R = 0.150TYP

0.30 ± 0.05(UH24) QFN 0708 REV A

0.65 BSC

0.200 REF

0.00 – 0.05

0.75 ±0.05

3.25 REF

3.90 ±0.05

5.40 ±0.05

0.30 ± 0.05

PACKAGE OUTLINE

0.65 BSC

RECOMMENDED SOLDER PAD LAYOUTAPPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

PIN 1 NOTCHR = 0.30 TYPOR 0.35 × 45°

CHAMFERR = 0.05

TYP

3.20 ± 0.05

3.20 ± 0.05

UH Package24-Lead Plastic QFN (5mm × 5mm)

(Reference LTC DWG # 05-08-1747 Rev A)

PACKAGE DESCRIPTIONPlease refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

LTC5593

285593f

Linear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com LINEAR TECHNOLOGY CORPORATION 2011

LT 1011 • PRINTED IN USA

RELATED PARTS

TYPICAL APPLICATION

PART NUMBER DESCRIPTION COMMENTSInfrastructureLTC5569 300MHz to 4GHz Dual Active Downconverting Mixer 2dB Gain, 26.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/180mA SupplyLT5527 400MHz to 3.7GHz, 5V Downconverting Mixer 2.3dB Gain, 23.5dBm IIP3 and 12.5dB NF at 1900MHz, 5V/78mA SupplyLT5557 400MHz to 3.8GHz, 3.3V Downconverting Mixer 2.9dB Gain, 24.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/82mA SupplyLTC6416 2GHz 16-Bit ADC Buffer 40dBm OIP3 to 300MHz, Programmable Fast Recovery Output ClampingLTC6412 31dB Linear Analog VGA 35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dBLTC554X 600MHz to 4GHz Downconverting Mixer Family 8dB Gain, >25dBm IIP3, 10dB NF, 3.3V/200mA SupplyLT5554 Ultralow Distort IF Digital VGA 48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain StepsLT5578 400MHz to 2.7GHz Upconverting Mixer 27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF TransformerLT5579 1.5GHz to 3.8GHz Upconverting Mixer 27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF PortsLTC5590 Dual 600MHz to 1.7GHz Downconverting Mixer 8.7dB Gain, 26dBm IIP3, 9.7dB Noise FigureLTC5591 Dual 1.3GHz to 2.3GHz Downconverting Mixer 8.5dB Gain, 26.2dBm IIP3, 9.9dB Noise FigureLTC5592 Dual 1.6GHz to 2.7GHz Downconverting Mixer 8.3dB Gain, 27.3dBm IIP3, 9.8dB Noise FigureRF Power DetectorsLT5534 50MHz to 3GHz Log Detector ±1dB over Temperature, 38ns Response Time, 60dB Dynamic RangeLT5581 6GHz Low Power RMS Detector 40dB Dynamic Range, ±1dB Accuracy Over Temperature, 1.5mA Supply Current

LTC5583 Dual 6GHz RMS DetectorUp to 60dB Dynamic Range, >50dB Isolation, Difference Output for VSWR Measurement

ADCsLTC2285 14-Bit, 125Msps Dual ADC 72.4dB SNR, >88dB SFDR, 790mW Power ConsumptionLTC2185 16-Bit, 125Msps Dual ADC Ultralow Power 76.8dB SNR, 185mW/Channel Power ConsumptionLTC2242-12 12-Bit, 250Msps ADC 65.4dB SNR, 78dB SFDR, 740mW Power Consumption

Extended frequency range 3.7GHz to 4.5GHz, low side LO, VCC = 3.3V, VCCIF = 3.3V, ENA = high, ENB = ISEL = low, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for 2-tone IIP3 Tests, ∆f = 2MHz), IF = 305MHz

Conversion Gain, IIP3 and SSB NF vs RF Frequency

IFA50Ω

4:1TC4-1W-7ALN+

56nH

1000pF

22pF1µF

22pF 1µF

0.5pF

2.2nHLTC5593

CHANNEL A

CHANNEL B NOT SHOWN

1

192021222324

LO50Ω

17

18

16

154

3

RFA50Ω

VCCIF3.3V

VCC3.3V

TOCHANNEL B

TOCHANNEL B

2.2pF2

IFGNDAGND IFA+ IFA– IFBA

LO

GND

ISEL

ENA

VCCA

RFA

CTA

GND

GND

5593 TA02a

56nH

ISEL

ENA

1.1pF

3.3nH

RF FREQUENCY (MHz)3.7

G C (d

B), S

SB N

F (d

B), I

IP3

(dBm

)

20

26

24

22

28

4.4

5593 TA02b

16

18

12

10

8

6

14

43.8 4.0 4.2 4.33.9 4.1 4.64.5 4.7

IIP3

NF

GC