logo · 2011. 2. 10. · logo ... i- -1/2(x) ion transport in redox electrolyte. j v maximu m power...

35
LOGO www.themegallery.com www.ssu.ac.kr 태양전지 원리-고체전자론 개론

Upload: others

Post on 06-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • LOGOwww.themegallery.com

    www.ssu.ac.kr

    태양전지 원리-고체전자론 개론

  • nonrenewable energy renewable energy

  • Total global energy

    Consumption 1.0 1010 kW

    0.1% of total earth surface solar cells with 10% efficiency

    Importance of Solar Energy Utilization

    Total solar radiation falling on the earth

    1.2 1014 kW (10,000 times consumption)

  • 1. SPACE TECHNOLOGY

    4. REMOTE POWER

    3. BATTERY RECHARGING

    2. VEHICLES

    태양전지 응용 분야

  • 5. LIGHTING

    7. RESIDENTIAL ELECTRICITY

    6. MILITARY

    8. PORTABLE POWER

    http://21st-century-goods.com/Merchant2/merchant.mv?Screen=PROD&Store_Code=21st&Product_Code=PS9700&Category_Code=SPT

  • How does it work?

    1. Light Absorption

    Conversion of into Electricity

    2. Charge Separation

    3. Charge Collection

    What is Solar cell?

  • Inorganic pnJunction Solar Cell

    n-type

    semiconductorp-type

    semiconductor

    h+

    e–

    ECB

    EVB

    Si, CIS, CdTeEfficiency: very high

    Cost: very high

    Anode

    Conjugated Polymer Solar Cell

    Electron

    acceptor

    Hole

    acceptor

    Cathode

    HOMO

    HOMO

    LUMO

    LUMO

    h+

    e–

    e–

    C60, PolymersEfficiency: low

    Cost: low

    Dye-Sensitized Solar Cell

    Redox

    electrolyte

    e–

    e–

    h+

    A–

    A

    Dye-adsorbed

    n-type

    semiconductor Metal

    Dye-TiO2Efficiency: high

    Cost: low

    Type of solar cell

  • Nanocrystalline Oxides

    Dye

    Redox Couple& Hole Conduxtors

    Transparent Conductive Materials

    Counter Electrode

    Materials for DSSC

  • N

    N

    C

    C

    O

    O

    HO

    N

    N

    C

    C

    O

    O

    O

    HO

    RuNCS

    NCS

    O

    e–

    Pt-coated glass

    I- / I2electrolyte

    Dye/TiO2 layer (10 – 15 m)

    SnO2-basedTCO-

    +

    inter-connection

    DSSC Structrure

  • TiO2/Dye/liquid junction

    EVB

    ECB

    A-

    A

    e–e–

    h+

    TiO2/liquid junction

    metalTiO2

    load

    n-SC

    (TiO2)

    CB

    VB

    EF

    e–

    e–

    e–

    (D+/ D)

    (D+/ D*)

    (I3¯ / I¯)

    Voce–

    load

    PtTCO

    E

    dye redox

    electrolyte

    e–

    e–

    UV

    Visible

    Role of Dye Molecules

  • 1 cm

    6 cm2

    1 cm

    1 cm

    0.5 cm

    0.5 cm

    0.5 cm12 cm2

    1.5 cm2

    0.25 cm0.25 cm

    0.25 cm

    8 8 0.375/cell 64 = 24 cm2

    Surface area = (1/2)n-1 6 (8)n-1

    Nanotechnology

    How to increase amount of dye → by increase of surface area

  • DSSC: Operation PrincipleAnode:

    D + hν → D* absorption

    D* → D+ + e- (TiO2) injection

    2D+ + 3I- → 2D + I3- regeneration

    Cathode:

    I3- + 2e- (Pt) → 3I-

    Cell:

    e-(Pt) + hν → e- (TiO2)

    D*/D+

    D/D+

    CB

    VB

    I3¯/I¯

    surface states

    Voc

    TiO2 Dye

    inj

    cc

    r

  • 투명전극

    전자전달 불리

    전자전달 용이

    Nanoparticle Network: Interconnection?

  • “shuttle”

    I-

    I3-

    염료

    Pt

    = 전자

    TiO2

    Ion Transport in Redox Electrolyte

  • J. Ferber et al., Solar Energy Materials and Solar Cells, 53, (1998) 29

    Total reaction: 2-electron reaction

    3I- I3- + 2e-

    Successive reaction

    (I- I + e-)2 charge-transfer reaction

    2 I I2 fast chemical reaction

    I2 + I- I3

    - fast chemical reaction* Two fast reactions are in equilibrium

    Mass action law

    nI(x) = K1 nI3-1/2(x) nI-

    -1/2(x)

    Ion transport in Redox electrolyte

  • J

    V

    Maximum power rectangle

    Jsc

    VocVmax

    Jmax

    input

    ocsc

    input

    maxmax

    input

    output

    PFF

    P

    PP

    VJ

    VJ

    Fill Factor

    (FF)

    ocscVJ

    Measurement of Conversion Efficiency

  • TiO2Anatase, Rutile, Brookite

    SnO2, ZnO …

  • 200 C

    240 C0.0 0.2 0.4 0.6 0.8

    0

    2

    4

    6

    8

    10

    12

    14

    16

    200 oC

    220 oC

    240 oC

    Ph

    oto

    cu

    rren

    t d

    en

    sit

    y (

    mA

    /cm

    2)

    Voltage (V)

    Voc (V) Jsc (mA/cm2) FF (%) (%)

    200 C 0.733 13.5 62.9 6.24

    220 C 0.729 15.1 63.4 6.97

    240 C 0.739 12.9 61.1 5.82

    Hydrothermal Temperature of TiO2 Nanoparticle

  • Voltage (mV)

    0 100 200 300 400 500 600 700 800

    Cu

    rre

    nt

    de

    ns

    ity

    (m

    A/c

    m2)

    0

    2

    4

    6

    8

    10

    12

    14

    16

    Rutile (11.5 m)

    Anatase (11.5 m)

    Jsc (mA/cm2)

    10-4 10-3 10-2

    Dn (

    cm

    2/s

    )10-6

    10-5

    10-4

    10-3

    Rutile (11.5 m)

    Anatase (11.5 m)

    N.-G. Park, et. al, J. Phys. Chem. B, 104, 8989 (2000): citation 65

    Anatase vs. Rutile TiO2

  • 52%

    D | P – 0.76 | 0.82

    Benkstein, K. D.; Kopidakis, N.; van de Lagemaat, J.; Frank, A. J.; J. Phys. Chem. B. 107 (2003) 7759

    71%

    Network Geometry vs Electron Transport

  • Nakade, S & Yanagida, S. et al;J. Phys. Chem. B. ; 2003; 107(33); 8607-8611

    * Diffusion coefficient D increases and recombination rate decreases with

    the increase of the particle size from 14 nm to 19 nm and up to 32 nm.

    14 nm 19 nm

    32 nm

    IMPS

    IMVS

    Particle Size vs Electron Transport

  • Jörg Ferber and Joachim Luther,

    Solar Energy Materials and Solar Cells, Volume 54, Issues 1-4 , 13 July 1998, Pages 265-275

    Binary Mixture: Theoretical Calculation

  • Matt Law, Lori E. Greene, Justin C. Johnson, Richard Saykally, Peidong Yang

    Nature Materials 4, 455-459 (01 Jun 2005)

    5 m

    0.5 m 50 nm

    I-V

    e- injection: mid-IR transientnp: nanoparticle, nw: nanowire

    ZnO Nanowire for DSSC

  • Nano Lett. 3, 4, 555-560 (2003)

    anatase

    TiO2/PVP TiO2

    0.025 g/ml Ti(OR)4 0.15 g/ml Ti(OR)4

    쉽게 날라감

    ←Beads 多

    전기방사 조건 SEM images

    나노파이버전극

  • 제일 가는 파이버= 54nm

    PVP concentration

    高低

    Diameter

    Beads and aggregations

    PPV : 0.35-0.50 g

    Ti-OR4 : 1.5ml

    acetic acid : 3ml

    ethanol : 10ml

    PPV : 0.45 g

    22-gauge needle

    0.3 ml/h

    2 kV/cm

    600 ℃ for 3h

    내 실험

    최적 조건?

    Materials Letters 62, 29, 4470-4472 (2008)

    Electro spinning method (TiO2 fiber)

  • Synthetic Materials 155, 635-638 (2005)

    Immersing into a 0.1M TiCl4 (24h)

    (a) : TiO2

    (b) : TiCl4 treatment

    R : rutile peak

    (a) : TiO2

    (b) : TiCl4 treatment

    (a) : TiO2 (with liquid electrolytes)

    (b) : TiO2 (with liquid gel)

    (c) : TiCl4 treatment (with liquid electrolytes)

    (d) : TiCl4 treatment (with gel electrolytes)

    SEM & XRD 성능 평가

    TiCl4 treatment

  • Synthetic Metals 153, 77-80 (2005)

    (a): without vapor treatment

    (b): with vapor treatment

    (c): after calcination without vapor treatment

    (d): after calcination with vapor treatment

    before calcination after calcination

    Fiber structure!!

    PVAc film이 fiber위에 형성.

    PVAc/TiO2 전기방사 후,THF vapor하에서 1사간.

    η = 4.01 %

    η = 3.80 %

    (a) : with liquid electrolytes

    (b) : with gel electrolytesanatase

    Vapor treatment (SEM & TEM)

    XRD & I-V curve

    Vapor treatment

  • Journal of Macromolecular Science, Part A : Pure and Applied Chemistry 42, 1529-1540 (2005)

    PS : powder pattern

    PMMA : powder pattern

    PVAc : Fiber structure

    SEM TEM

    TEM

    TEM

    SEM

    SEM

    (a)(c): TiO2 nanofiber without vapor treatment

    (b)(d): TiO2 nanofiber with vapor treatment

    η = 4.01 %

    η = 3.80 %

    (a) : with liquid electrolytes

    (b) : with gel electrolytes

    SEM & TEMVapor

    treatment

    효율

    Various support polymer

  • DSSC실험에 있어서 필요한 결론 :STL은 fiber와 glass의 접착력을 향상시킨다.

    문제점 (소결후)1. Shrinking effect2. poor adhesion

    without STL

    with STL

    under various electrospinning time

    STL : surface treatment layer

    Diluted 방사액 (1:5 in ethanol)을 사용Spin coating (1300rpm, 10s)

    Drying on the hotplate (75℃)

    Device A : FTO/d-TiO2/STL/P3HT/Au/Ag

    Device B : FTO/d-TiO2/STL/TiO2 nanofiber/

    P3HT/Au/Ag

    Device C : FTO/d-TiO2/STL/TiO2 nanofiber/

    N719/P3HT/Au/Ag

    Device D : FTO/d-TiO2/STL/TiO2 nanofiber/

    TiCl4 treatment/N719/P3HT/Au/Ag

    Contact angle : 5°

    = P3HT on TiO2 nanofiber

    Contact angle : 22°

    = P3HT on TiO2 nanoparticle

    Appl. Phys. Lett. 93, 013102 (2008)

    Surface treatment layer

  • 290 ±90nm 150 ±60nm

    TiCl4 treatment

    Surface treatment

    layer

    PVP/TiO2 TiO2

    anatase

    Nanotechnology 18, 365709 (2007)

    Spray method

  • Journal of Physics : Conference Series 61, 1112-1116 (2007)

    0 wt.% nanowire

    100wt.% nanowire

    10wt.% nanowire

    SEM & XRD

    I-V curve & 효율

    Nanowire & Nanoparticle

  • Narukuni Hirata, Jean-Jacques Lagref, Dr. Emilio J. Palomares, Dr., James R. Durrant, Dr.,

    M. Khaja Nazeeruddin, Dr., Michael Gratzel, Prof., Davide Di Censo, Chemistry - A

    European Journal, Volume 10, Issue 3, Pages 595-602 (2004)

    TiO2

    N719

    pico-seconds

    0.85 ms

    Suppression of Recombination from TiO2 to Dye: Supramolecular Approach

  • TCOTiO2

    Ru

    N

    N

    -OOC

    -OOC

    NCSNCS

    N

    N

    Ru

    N

    N

    -OOC

    -OOC

    NCSNCS

    N

    N

    I3-/I-

    e-

    X

    S. M. Zakeeruddin, M. Gratzel et al., Langmuir; 2002; 18(3); 952

    TiO2/Dye/Electrolyte Interface Engineering

  • LOGOwww.themegallery.com