loess in europe - egqsj · soils; similar observations were made for the early weichse-lian record...

3
3 E&G / Vol. 60 / No. 1 / 2011 / 3–5 / DOI 10.3285/eg.60.1.00 / © Authors / Creative Commons Attribution License E & G Quaternary Science Journal Volume 60 / Number 1 / 2011 / 3–5 / DOI 10.3285/eg.60.1.00 www.quaternary-science.net GEOZON SCIENCE MEDIA ISSN 0424-7116 Loess in Europe Guest Editorial Manfred Frechen Address of author: M. Freen, Leibniz Institute for Applied Geophysics (LIAG), Georonology & Isotope Hydrology, Stilleweg 2, 30655 Hannover, Germany. E-Mail: [email protected] e papers of this Special Issue give remarkable new results and conclusions on loess from Europe underlining the excel- lence of loess arives for past climate and environment re- constructions from a local and regional perspective and their relationship to a more global interpretation (Frechen 2011 a, b). Loess is a clastic predominantly silt-sized sediment, whi is formed by the accumulation of wind-blown dust. According to Pye (1995) four fundamental requirements are necessary for it formation: a dust source, adequate wind en- ergy to transport the dust, a suitable accumulation area, and a sufficient amount of time. During the aternary, loess and loess-like sediments were formed in periglacial environ- ments on mid-continental shield areas in Europe and Siberia, on the margins of high mountain ranges like in Tajikistan and on semi-arid margins of some lowland deserts like in China. e term “Löß” was first described in Central Europe by Karl Cäsar von Leonhard (1823/24) who reported yel- lowish brown, silty deposits along the Rhine valley near Heidelberg. Charles Lyell (1834) brought this term into widespread usage by observing similarities between loess and loess derivatives along the loess bluffs in the Rhine and Mississippi. At that time it was thought that the yel- lowish brown silt-ri sediment was of fluvial origin being deposited by the large rivers. It took until the end of the 19 th century until the aeolian origin of loess was recognized (Virlet D'Aoust 1857), especially the convincing observa- tions of loess in China by Ferdinand von Richthofen's (1878). A tremendous number of papers have been pub- lished since then, focusing on the formation of loess and on loess/palaeosol sequences as arives of climate and en- vironment ange (e.g. Pye 1995; Smalley 1995; Pécsi & Richter 1996). Mu effort was put into the seing up of regional and local loess stratigraphies and their correlation (Kukla 1970, 1975, 1977). But even the ronostratigraphical position of the last interglacial soil correlating to marine isotope sub- stage 5e has been a maer of debate, owing to the la of robust and reliable numerical dating, as summarized for example in Zöller et al. (1994) and Frechen, Horváth & Gábris (1997) for the Austrian and Hungarian loess stratig- raphy, respectively. Since the 1980s, thermoluminescence (TL), optically stim- ulated luminescence (OSL) and infrared stimulated lumines- cence (IRSL) dating are available providing the possibility for dating the time of loess (dust) deposition, i.e. the time elapsed since the last exposure of the mineral grains to day- light. During the past decade luminescence dating has sig- nificantly improved by new methodological improvements, especially the development of single aliquot regenerative (SAR) protocols (Murray & Wintle 2000) resulting in reli- able ages (or age estimates) with an accuracy of up to 5 and 10% for the last glacial record. More recently luminescence dating has also become a robust dating tenique for penul- timate and antepenultimate glacial loess (e.g. Thiel et al. this issue; Schmidt et al. this issue) allowing for a reliable cor- relation of loess/palaeosol sequences for at least the last two interglacial/glacial cycles throughout Europe and the North- ern Hemisphere (Frechen 2011a). Furthermore, the numeri- cal dating provides the basis for quantitative loess resear applying more sophisticated methods to determine and un- derstand high-resolution proxy data, su as the palaeodust content of the atmosphere, variations of the atmospheric cir- culation paerns and wind systems, palaeoprecipitation and palaeotemperature. e papers of this Special Issue on Loess in Europe give the basis for substantial further allenging developments in loess resear and are summarised geographically from north to south. Lile is known about the timing of loess accumulation and soil formation as well as the selement history in the “Altmoränengebiet” in northern Germany. Urban, Kunz & Gehrt (this issue) provide some evidence for the human im- pact on soil development since the late Neolithic by means of sedimentology, pedology and palynology as well as OSL and radiocarbon dating. Wagner (this issue) carried out a spatial compilation and visualisation of loess parameters for loess and loess-like sediments in the Weser-Aller catment, including parts of southern Lower Saxony and northern Hesse in Northwest Germany. In this study, very detailed maps of loess prop- erty paerns including loess thiness, granulometry and stratigraphy were collected from publications and historical- ly maps published between 1876 and 2007 resulting in more than 600 loess locations providing the base information for the area under study. e loess/palaeosol sequences from Saxony were re-in- vestigated by Meszner, Fuchs & Faust (this issue), who

Upload: others

Post on 22-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Loess in Europe - EGQSJ · soils; similar observations were made for the Early Weichse-lian record at the Tönchesberg section (Boenigk & Frechen 2001). Maar lakes and dry maars of

3E&G / Vol. 60 / No. 1 / 2011 / 3–5 / DOI 10.3285/eg.60.1.00 / © Authors / Creative Commons Attribution License

E&G Quaternary Science Journal Volume 60 / Number 1 / 2011 / 3–5 / DOI 10.3285/eg.60.1.00

www.quaternary-science.net

GEOZON SCIENCE MEDIA

ISSN 0424-7116

Loess in EuropeGuest Editorial

Manfred Frechen

Address of author: M. Frechen,LeibnizInstituteforAppliedGeophysics(LIAG),Geochronology&IsotopeHydrology,Stilleweg2,30655Hannover,Germany.E-Mail:[email protected]

ThepapersofthisSpecialIssuegiveremarkablenewresultsandconclusionsonloessfromEuropeunderliningtheexcel-lenceofloessarchivesforpastclimateandenvironmentre-constructionsfromalocalandregionalperspectiveandtheirrelationshiptoamoreglobalinterpretation(Frechen2011a, b). Loess is a clastic predominantly silt-sized sediment,whichis formedbytheaccumulationofwind-blowndust.AccordingtoPye(1995)fourfundamentalrequirementsarenecessaryforitformation:adustsource,adequatewinden-ergytotransportthedust,asuitableaccumulationarea,anda sufficient amount of time. During the Quaternary, loessandloess-likesedimentswereformedinperiglacialenviron-mentsonmid-continentalshieldareasinEuropeandSiberia,on themarginsofhighmountain ranges like inTajikistanandon semi-aridmarginsof some lowlanddeserts like inChina.

Theterm“Löß”wasfirstdescribedinCentralEuropebyKarlCäsar von Leonhard (1823/24) who reported yel-lowish brown, silty deposits along the Rhine valley nearHeidelberg.CharlesLyell (1834)brought this term intowidespreadusagebyobservingsimilaritiesbetween loessand loess derivatives along the loess bluffs in the RhineandMississippi.Atthattimeitwasthoughtthattheyel-lowishbrownsilt-richsedimentwasoffluvialoriginbeingdepositedby the large rivers. It tookuntil theendof the19thcenturyuntiltheaeolianoriginofloesswasrecognized(VirletD'Aoust1857),especiallytheconvincingobserva-tionsof loess inChinabyFerdinandvonRichthofen's(1878). A tremendous number of papers have been pub-lished since then, focusingon the formationof loessandonloess/palaeosolsequencesasarchivesofclimateanden-vironment change (e.g. Pye 1995; Smalley 1995; Pécsi &Richter1996).

Mucheffortwasput intothesettingupofregionalandlocalloessstratigraphiesandtheircorrelation(Kukla1970,1975, 1977).But even thechronostratigraphical positionofthe last interglacial soil correlating tomarine isotope sub-stage5ehasbeenamatterofdebate,owingto the lackofrobust and reliable numerical dating, as summarized forexampleinZölleretal. (1994)andFrechen,Horváth&Gábris(1997)fortheAustrianandHungarianloessstratig-raphy,respectively.

Sincethe1980s,thermoluminescence(TL),opticallystim-ulatedluminescence(OSL)andinfraredstimulatedlumines-

cence (IRSL) dating are available providing the possibilityfordating the timeof loess (dust)deposition, i.e. the timeelapsedsincethelastexposureofthemineralgrainstoday-light.Duringthepastdecadeluminescencedatinghassig-nificantlyimprovedbynewmethodologicalimprovements,especially the development of single aliquot regenerative(SAR)protocols(Murray&Wintle2000)resultinginreli-ableages(orageestimates)withanaccuracyofupto5and10%forthelastglacialrecord.Morerecentlyluminescencedatinghasalsobecomearobustdatingtechniqueforpenul-timateandantepenultimateglacialloess(e.g.Thieletal.thisissue;Schmidtetal.thisissue)allowingforareliablecor-relationofloess/palaeosolsequencesforatleastthelasttwointerglacial/glacialcyclesthroughoutEuropeandtheNorth-ernHemisphere(Frechen2011a).Furthermore,thenumeri-caldatingprovidesthebasisforquantitativeloessresearchapplyingmoresophisticatedmethodstodetermineandun-derstandhigh-resolutionproxydata,suchasthepalaeodustcontentoftheatmosphere,variationsoftheatmosphericcir-culationpatternsandwindsystems,palaeoprecipitationandpalaeotemperature.

ThepapersofthisSpecialIssueonLoessinEuropegivethe basis for substantial further challenging developmentsin loess researchandare summarisedgeographically fromnorthtosouth.

Little is known about the timing of loess accumulationandsoil formationaswellas thesettlementhistory in the“Altmoränengebiet”innorthernGermany.Urban,Kunz&Gehrt(thisissue)providesomeevidenceforthehumanim-pactonsoildevelopmentsincethelateNeolithicbymeansofsedimentology,pedologyandpalynologyaswellasOSLandradiocarbondating.

Wagner (this issue) carried out a spatial compilationandvisualisationofloessparametersforloessandloess-likesedimentsintheWeser-Allercatchment,includingpartsofsouthern Lower Saxony and northern Hesse in NorthwestGermany. In this study, very detailed maps of loess prop-erty patterns including loess thickness, granulometry andstratigraphywerecollectedfrompublicationsandhistorical-lymapspublishedbetween1876and2007resultinginmorethan600loesslocationsprovidingthebaseinformationfortheareaunderstudy.

The loess/palaeosol sequences from Saxony were re-in-vestigated by Meszner, Fuchs & Faust (this issue), who

Page 2: Loess in Europe - EGQSJ · soils; similar observations were made for the Early Weichse-lian record at the Tönchesberg section (Boenigk & Frechen 2001). Maar lakes and dry maars of

4

presentanewcompositeprofileincludingnewstratigraph-ic marker horizons and palaeosols. They identified threepalaeosols for the so far poorly differentiatedWeichselianPleniglacialrecordinSaxony.

In theLowerRhineEmbayment, detailed loess/palale-osolsequenceshavebeendescribedfromthekm-wideex-posuresofthebrowncoalopen-castminesandfrommanybrickyards, e.g. Grafenberg, Rheindahlen and Erkelenz.MostofthestudiedsectionsgiveevidenceforrichPalaeo-lithic(andyoungerperiods)artefactsandsettlementstruc-tures.Pawlik&Thissen(thisissue)presentresultsfromaMiddle Palaeolithic archaeological layer in the open castbrowncoalmineInden,whichtheycorrelatetotheEemianinterglacial. The studied artefacts give evidence for birchpitch fixed tools, either as hafted impliments fixed withbirch pitch onto shafts or being used for successive haft-ing-and-retrolingactivities.Pawlik&Thissen(thisissue)pointoutthatbirchpitchresiduesevidencehumanuseofadhesiveandmulticomponenttoolmakingalreadyintheMiddlePalaeolithic.

At theSchwalbenberg section, averydetailedWeichse-lian Middle Pleniglacial loess record is exposed (Frechen&Schirmer this issue).Eightweak interstadialpalaeosolsincludingAhandBcv(calciccambisol)horizonsare inter-calatedinloessandreworkedloess.Thechronostratigraphi-calunitsshowlittleornoageincreasewithdepthindicat-ingfastaccumulationofsedimentandfastformationofthesoils;similarobservationsweremadefortheEarlyWeichse-lianrecordattheTönchesbergsection(Boenigk&Frechen2001).

MaarlakesanddrymaarsoftheWestEifelVolcanicFieldareexcellent sediment trapsandprovide sediment recordswith the possibility to archive event-laminated sediments.Dietrich&Sirocko(thisissue)describethepotentialofmi-croX-rayfluorescence(µXRF)scanningtostudybulksedi-mentchemicaldata formajor and trace elements inmaarlake sediments to determine the elemental stratificationwithinsedimentcores.ThecoresunderstudyfromtheDeh-nerdrymaarandtheSchalkenmehrenmaarshowbothfullyglacialaswellaswarmandwetclimateconditionsandgiveevidenceforthemajordustdepositionevents.Dietrich&Sirocko(thisissue)showevidencethatacombinationoftheCacontentandthegrayscalevaluescorrelatesbestwiththesignalofaeoliansedimentinput.

Reliable dating of maar sediments is a real challenge.Schmidt et al. (this issue) studied sediments from theJungfernweiherlocatedintheWestEifelVolcanicFieldusingluminescencedating.TheIRSLdatingstudyindicatesthatthesedimentsfrom16mbelowsurfacehaveluminescenceageof250kaandincreaseupto400kafortheoldestsampledsedi-mentsabout94mbelowmodernsurface.However,oneoftheco-authors (F.Sirocko,seeappendixofSchmidtetal. thisissuea)hasadifferent interpretationbasedon radiocarbondatingandfurtherrelativedatingmethods,suchassedimentmagnetisation,tuningofgreyscalevariationswithGreenlandicecoreandintercalatedtephrahorizonsindicatingalastgla-cialrecord.Thedifferentopinionsshowthatchronologicalap-proachesareverychallenging.

At thegravelquarryGaul locatednearWeilbachin the

southernforelandoftheTaunusMountains,aMiddletoUp-perPleistocene loess/palaleosol sequence isexposedcorre-latingwiththelastthreeglacialcycles.Theoldestloessgavepost-IRIRSLat225°Cageestimatesofatleast350ka(MIS10)ago(Schmidt,Semmel&Frechenthisissue).Ahumic-richhorizon(“WeilbacherHumuszone”)correlatestothelatephaseofthepenultimateinterglacial(MIS7).TheuppermostloesscorrelatestotheUpperWürmian.

Thieletal.(thisissue)investigatedthreeimportantPleis-tocenekeyloesssectionsinLowerAustria,theseareJoching,PaudorfandGöttweig.Thepost-IRIRSLageestimatesallowfora correlationof thepedocomplex“PaudorferBodenbil-dung”withthelast interglacial(MIS5),whichisinagree-mentwithpreviousTLageestimatesofZölleretal.(1994).However, thepedocomplex“GöttweigerVerlehmungszone”is signifiacantly older (≥350 ka) than the last interglacialsoil.Thieletal.(thisissue)foundoutthatdiscontinuitiesinloess/palaeosol recordsobserved inLowerAustriaare sig-nificant making a simple counting from the top approachunreliable.Thus, theLowerAustrian loessstratigraphy in-cludingthetimingoftheintercalatedpalaeosolsremainsun-derdiscussionandrequiresfurtherluminescencebasedagedetermination.

LoessdepositsfromtheHagenbachKlammlocatedinthenorthernViennaForestweredatedusingluminescencedat-ingbyFranketal.(thisissue).Themolluscassemblagesin-dicateveryhumidandcoolclimaticconditionsfortheUp-perPleniglacial (UpperWürmian).Franketal. (this issue)observedgoodagreementbetweenmalcalogicalresultsandthoseofnumericaldatingincluding14CandIRSLages.Thedating resultsmakea loessaccumulationprior to theLastGlacialMaximummostlikely.

Zech et al. (this issue) give an overview on the mostrecent proxy developments concerning biomarkers andcompound-specific stable isotopes. The aim of these novelmethodological approaches is todeterminemorequantita-tivepalaeoclimateproxies for reconstructionofvegetationhistory,palaeotemperatureandpalaeoclimate/aridity.

Wacha et al. (this issue) investigated a very detailedloess/palaeosol sequence on Susak. Radiocarbon ages andluminescence age estimates indicate an Upper PleistocenerecordincludingaverydetailedandthickMiddlePlenigla-cialrecord(MIS3)includingnumerousintercalatedpalale-osolsandat leastthreetephralayers,most likelyfromtheItalianVolcanicprovinces.TheislandofSusakisuniqueintheNorthAdriatic Seabecause the geomorphologyof theislandhasallcharacteristicsofaloessplateaudissectedbynumerousgorges,steepbluffsandgullies(Wachaetal.thisissue).

The Late Pleistocene/Holocene morphological and geo-logicalhistoryoftheParaguayanChacoandtheArgentinePampaPlain(Chaco-PampaPlain)wasstudiedbyKrucketal.(thisissue).Satelliteimageswereusedtosynthesisepre-viousandnewmultidisciplinaryresultsofthisvast-extend-edarea.Krucketal.(thisissue)localisedsourceregionsofloess,loess-likesedimentsandsandydepositsinthesouth-westernPampaandtheneighbouringAndeanslopesandtheAltiplano,thusindicatingasedimenttransporttowardseastandlaternortheast.

E&G / Vol. 60 / No. 1 / 2011 / 3–5 / DOI 10.3285/eg.60.1.00 / © Authors / Creative Commons Attribution License

Page 3: Loess in Europe - EGQSJ · soils; similar observations were made for the Early Weichse-lian record at the Tönchesberg section (Boenigk & Frechen 2001). Maar lakes and dry maars of

5E&G / Vol. 60 / No. 1 / 2011 / 3–5 / DOI 10.3285/eg.60.1.00 / © Authors / Creative Commons Attribution License

References

Boenigk,W.&Frechen,M.(2001):TheloessrecordinsectionsatKoblenz-MetternichandTönchesbergintheMiddleRhineArea.–QuaternaryInternational,76/77:201–209.

Dietrich,S.&Sirocko,F.(thisissue):Thepotentialofdustdetectionbymeansof !XRFscanning inEifelmaar lakesediments.–QuaternaryScienceJournal(EuG),60(1).

Frank,C.,Terhorst,B.,Damm,B.,Thiel,C.,Frechen,M.&Peticzka,R.(thisissue):PleistoceneloessdepositsandmolluscassemblagesintheEasternPre-Alps.–QuaternaryScienceJournal(EuG),60(1).

Frechen,M.(2011a):Loess inEurasia.–QuaternaryInternational,xyxy,1–3.

Frechen, M. (2011b): Timing and Vegetation History of Interglacials innorthernEurasia.–QuaternaryInternational,141:1–2.

Frechen, M., Horváth, E. & Gábris, G. (1997): Geochronology of Mid-dleandUpperPleistoceneloesssectionsinHungary.–QuaternaryRe-search,48:291–312.

Frechen,M.&Schirmer,W.(thisissue):LuminescenceChronologyoftheSchwalbenbergIILoessintheMiddleRhineValley.–QuaternarySci-enceJournal(EuG),60(1).

Kruck, W., Helms, F., Geyh, M.A., Suriano, J.M., Marengo, H.G. &Pereyra,F.(thisissue):LatePleistocene-HoloceneHistoryofChaco-PampaSediments inArgentinaandParaguay.–QuaternaryScienceJournal(EuG),60(1).

Kukla,G. (1970):Correlationbetween loessesanddeep-seasediments.–GeologiskeForeningenFoerhandlingar,92:148–180;Stockholm.

Kukla,G.J.(1975):LoessstratigraphyofCentralEurope.–InK.W.ButzerandG.L. Isaac,Eds.,AftertheAustralopithecus,pp.99–188;Mouton,TheHague.

Kukla,G.J.(1977):PleistoceneLand-SeaCorrelationsI.Europe.EarthSci-enceReviews,13:307–374.

Leonhard, K.C. von (1823/24):Charakteristik der Felsarten. – 3Vols., J.EngelmannVerlagHeidelberg,pp.772.

Lyell,C.(1834):Observationsontheloamydepositscalled”loess”oftheba-sinoftheRhine.–EdinburghNewPhilosophicalJournal,17:110–113,118–120.

Meszner,S.,Fuchs,M.&Faust,D.(thisissue):Loess-Palaeosol-SequencesfromtheloessareaofSaxony(Germany).–QuaternaryScienceJour-nal(EuG),60(1).

Murray,A.S.&Wintle,A.G.(2000):Luminescencedatingofquartzus-ingan improved singlealiquot regenerative-doseprotocol.RadiationMeasurements32:57–73.

Novothny,A.,Horvath,E.&Frechen,M.(2002):TheloessprofileatAl-bertirsa,Hungary– improvements in loess stratigraphyby lumines-cencedating.–QuaternaryInternational,95–96:155–163.

Pawlik,A.F.&Thissen,J.(thisissue):The‘PalaeolithicProspectionintheIndeValley’Project.–QuaternaryScienceJournal(EuG),60(1).

Pécsi,M.(1990):Loessisnotjusttheaccumulationofdust.–QuaternaryInternational,7/8:1–21.

Pécsi,M.&Richter,G.(1996):Löss:Herkunft–Gliederung–Landschaf-ten.–ZeitschriftfürGeomorphologie,NeuFolgeSupplementband98,Berlin.

Pye,K.(1995):Thenature,originandaccumulationofloess.-QuaternaryScienceReviews,14:653–667.

Richthofen,F.von(1878):BemerkungenzurLößbildung.–VerhGeolRe-ichsanst,Berlin,pp1–13.

Schmidt,E.D.,Semmel,A.&Frechen,M.(thisissue):Luminescencedat-ingoftheloess/palaeosolsequenceatthegravelquarryGaul/Weilbach,SouthernHesse(Germany).–QuaternaryScienceJournal(EuG),60(1).

Schmidt,E.D.,Murray,A.S.,Sirocko,F.,Tsukamoto,S.&Frechen,M.(thisissue):IRSLSignalsfromMaarLakeSedimentsStimulatedatVari-ousTemperatures.–QuaternaryScienceJournal(EuG),60(1).

Smalley,I.(1995):Makingthematerial:theformationofsilt-sizedpromarymineralpariclesforloessdeposits.–QuaternaryScienceReviews,14:645–651.

Thiel, C., Buylaert, J.P., Murray, A.S., Terhorst, B., Tsukamoto, S.,Frechen,M.&Sprafke,T.(thisissue):Investigatingthechronostratig-raphy of prominent palaeosols in Lower Austria using post-IR IRSLdating.–QuaternaryScienceJournal(EuG),60(1).

Urban,B.,Kunz,A.,Gehrt,E.(thisissue):GenesisanddatingofLatePleis-tocene-Holocene soil sediment sequences from the Lüneburg Heath,NorthernGermany.–QuaternaryScienceJournal(EuG),60(1).

Virlet D'Aoust, P.T. (1857): Observations sur un terrain d`originemétéorique ou de transport aerien qui existe au Mexique et sur lephénomènedestrombesdepoussièreauquelildoitprincipalementsonorigine.–Geol.Soc.France,Full.,2d,Ser.2,129–139.

Wacha,L.,MikulcicPavlakovic,S.,Frechen,M.,Crnjakovic,M.(thisissue):TheLoessChronologyoftheIslandofSusak,Croatia.–Quater-naryScienceJournal(EuG),60(1).

Wagner,B. (this issue):Spatialanalysisof loessand loess-likesedimentsintheWeser-Allercatchment(LowerSaxonyandNorthernHesse,NWGermany).–QuaternaryScienceJournal(EuG),60(1).

Zech,M.,Zech,R.,Buggle,B.,Zöller,L.(thisissue):Novelmethodologi-calapproachesinloessresearch–interrogatingbiomarkersandcom-pound-specificstableisotopes.–QuaternaryScienceJournal(EuG),60(1).

Zöller,L.,Oches,E.A..&McCoy,W.D.(1994):Towardsarevisedchronos-tratigraphyofloessinAustriawithrespecttokeysectionsintheCzechRepublicand inHungary.–QuaternaryGeochronology(QuaternaryScienceReviews),13:465–472.