lithological and surface geometry joint inversions using ...farq/pdfs/egu2016_talk.pdf · egu...

41
Lithological and surface geometry joint inversions using multi-objective global optimization methods Peter G. Leli` evre 1 , Rodrigo Bijani 2 and Colin G. Farquharson 1 [email protected] http://www.esd.mun.ca/~peter/Home.html http://www.esd.mun.ca/~farq 1 Memorial University, Department of Earth Sciences, St. John’s, Canada 2 Observat´orio Nacional, Rio de Janeiro, Brasil EGU General Assembly 2016, SM5.2, EGU2016-4349

Upload: others

Post on 26-Sep-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Lithological and surface geometry joint inversionsusing multi-objective global optimization methods

Peter G. Lelievre1, Rodrigo Bijani2 and Colin G. Farquharson1

[email protected]

http://www.esd.mun.ca/~peter/Home.html

http://www.esd.mun.ca/~farq

1Memorial University, Department of Earth Sciences, St. John’s, Canada2Observatorio Nacional, Rio de Janeiro, Brasil

EGU General Assembly 2016, SM5.2, EGU2016-4349

Page 2: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Geophysical inversion primer

Earth model (e.g. density) Survey data (e.g. gravity)

Forward problem

Inverse problemLelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (1 / 17)

Page 3: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Typical numerical approach for mesh-based inversion (underdetermined)

• Local descent-based minimization

• Weighted aggregate objective function

minm

fa(m) =∑

i

wi fi (m) (1)

fd =1

N

N∑

j=1

(dpredj (m)− dobs

j

σ2j

)2

(2)

fa(m) =∑

i

λi fd ,i (mi ) +∑

j

αj fm,j(mj)

+∑

k

ρk fc,k(mk,1,mk,2)(3)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (2 / 17)

Page 4: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Typical numerical approach for mesh-based inversion (underdetermined)

• Local descent-based minimization

• Weighted aggregate objective function

minm

fa(m) =∑

i

wi fi (m) (1)

fd =1

N

N∑

j=1

(dpredj (m)− dobs

j

σ2j

)2

(2)

fa(m) =∑

i

λi fd ,i (mi ) +∑

j

αj fm,j(mj)

+∑

k

ρk fc,k(mk,1,mk,2)(3)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (2 / 17)

Page 5: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Typical numerical approach for mesh-based inversion (underdetermined)

• Local descent-based minimization

• Weighted aggregate objective function

minm

fa(m) =∑

i

wi fi (m) (1)

fd =1

N

N∑

j=1

(dpredj (m)− dobs

j

σ2j

)2

(2)

fa(m) =∑

i

λi fd ,i (mi ) +∑

j

αj fm,j(mj)

+∑

k

ρk fc,k(mk,1,mk,2)(3)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (2 / 17)

Page 6: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Typical numerical approach for mesh-based inversion (underdetermined)

• Local descent-based minimization

• Weighted aggregate objective function

minm

fa(m) =∑

i

wi fi (m) (1)

fd =1

N

N∑

j=1

(dpredj (m)− dobs

j

σ2j

)2

(2)

fa(m) =∑

i

λi fd ,i (mi ) +∑

j

αj fm,j(mj)

+∑

k

ρk fc,k(mk,1,mk,2)(3)

minm fa(m) = λfd(m) + fm(m)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (2 / 17)

Page 7: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Typical numerical approach for mesh-based inversion (underdetermined)

• Local descent-based minimization

• Weighted aggregate objective function

minm

fa(m) =∑

i

wi fi (m) (1)

fd =1

N

N∑

j=1

(dpredj (m)− dobs

j

σ2j

)2

(2)

fa(m) =∑

i

λi fd ,i (mi ) +∑

j

αj fm,j(mj)

+∑

k

ρk fc,k(mk,1,mk,2)(3)

minm fa(m) = λfd(m) + fm(m)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (2 / 17)

Page 8: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Typical numerical approach for mesh-based inversion (underdetermined)

• Local descent-based minimization

• Weighted aggregate objective function

minm

fa(m) =∑

i

wi fi (m) (1)

fd =1

N

N∑

j=1

(dpredj (m)− dobs

j

σ2j

)2

(2)

fa(m) =∑

i

λi fd ,i (mi ) +∑

j

αj fm,j(mj)

+∑

k

ρk fc,k(mk,1,mk,2)(3)

minm fa(m) = λfd(m) + fm(m)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (2 / 17)

Page 9: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Disadvantages of the typical inversion approach

1 Appropriate weights must be determined forthe aggregate objective function

2 All objective functions must be differentiable

3 Local minima entrapment may occur,providing suboptimal solutions

fa(m) =∑

i

λi fd,i (mi ) +∑

j

αj fm,j(mj)

+∑

k

ρk fc,k(mk,1,mk,2)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (3 / 17)

Page 10: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Disadvantages of the typical inversion approach

1 Appropriate weights must be determined forthe aggregate objective function

2 All objective functions must be differentiable

3 Local minima entrapment may occur,providing suboptimal solutions

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (3 / 17)

Page 11: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Disadvantages of the typical inversion approach

1 Appropriate weights must be determined forthe aggregate objective function

2 All objective functions must be differentiable

3 Local minima entrapment may occur,providing suboptimal solutions

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (3 / 17)

Page 12: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Disadvantages of the typical inversion approach

1 Appropriate weights must be determined forthe aggregate objective function

2 All objective functions must be differentiable

3 Local minima entrapment may occur,providing suboptimal solutions

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (3 / 17)

Page 13: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Pareto Multi-Objective Global Optimization (PMOGO)

• Multi-Objective Problem (MOP):

minm

f(m) =[f1(m), f2(m), . . . , fL(m)

]

• Concept of dominance:

fi () ≤ fi () for i = 1, . . . , L

fi () < fi () for at least one i

• We want to converge to the Pareto-optimalcurve/surface (related to Tikhonov curve)

• Non-dominated Sorting Genetic Algorithm(NSGA-II) of Deb et al. (2002)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (4 / 17)

Page 14: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Pareto Multi-Objective Global Optimization (PMOGO)

• Multi-Objective Problem (MOP):

minm

f(m) =[f1(m), f2(m), . . . , fL(m)

]

• Concept of dominance:

fi (ma) ≤ fi (mb) for i = 1, . . . , L

fi (ma) < fi (mb) for at least one i

• We want to converge to the Pareto-optimalcurve/surface (related to Tikhonov curve)

• Non-dominated Sorting Genetic Algorithm(NSGA-II) of Deb et al. (2002)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (4 / 17)

Page 15: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Pareto Multi-Objective Global Optimization (PMOGO)

• Multi-Objective Problem (MOP):

minm

f(m) =[f1(m), f2(m), . . . , fL(m)

]

• Concept of dominance:

fi (ma) ≤ fi (mb) for i = 1, . . . , L

fi (ma) < fi (mb) for at least one i

• We want to converge to the Pareto-optimalcurve/surface (related to Tikhonov curve)

• Non-dominated Sorting Genetic Algorithm(NSGA-II) of Deb et al. (2002)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (4 / 17)

Page 16: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Pareto Multi-Objective Global Optimization (PMOGO)

• Multi-Objective Problem (MOP):

minm

f(m) =[f1(m), f2(m), . . . , fL(m)

]

• Concept of dominance:

fi (ma) ≤ fi (mb) for i = 1, . . . , L

fi (ma) < fi (mb) for at least one i

• We want to converge to the Pareto-optimalcurve/surface (related to Tikhonov curve)

• Non-dominated Sorting Genetic Algorithm(NSGA-II) of Deb et al. (2002)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (4 / 17)

Page 17: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Pareto Multi-Objective Global Optimization (PMOGO)

• Multi-Objective Problem (MOP):

minm

f(m) =[f1(m), f2(m), . . . , fL(m)

]

• Concept of dominance:

fi (ma) ≤ fi (mb) for i = 1, . . . , L

fi (ma) < fi (mb) for at least one i

• We want to converge to the Pareto-optimalcurve/surface (related to Tikhonov curve)

• Non-dominated Sorting Genetic Algorithm(NSGA-II) of Deb et al. (2002)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (4 / 17)

Page 18: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Massive sulphide deposit scenario from Carter-McAuslan et al. (2015)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

0 1 2

Density (g/cc)

(a)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

−2 −1 0 1 2

Slowness (s/km)

(b)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

1 2 3

Rock unit ID

(c)

Rock types:

background (gneiss)intrusive (troctolite)lens (sulphide)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (5 / 17)

Page 19: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Joint inversion of gravity data and traveltimes

Aggregate objective function:

Data misfits Model roughness Coupling

fa(m1,m2) =[λ1fd1(m1) + λ2fd2(m2)

]+

[fm1(m1) + fm2(m2)

]+ ρfc(m1,m2)

Joint coupling term (fuzzy c-means):

fc(m1,m2) =C∑

i=1

M∑

k=1

w2ikz

2ik

z2ik = (m1,k − u1,i )

2 + (m2,k − u2,i )2

−2

−1

0

1

2

Slo

wne

ss (

s/km

)

0 1 2Density (g/cc)

−2

−1

0

1

2

Slo

wne

ss (

s/km

)

0 1 2Density (g/cc)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (6 / 17)

Page 20: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Joint inversion of gravity data and traveltimes

Aggregate objective function:

Data misfits Model roughness Coupling

fa(m1,m2) =[λ1fd1(m1) + λ2fd2(m2)

]+

[fm1(m1) + fm2(m2)

]+ ρfc(m1,m2)

Joint coupling term (fuzzy c-means):

fc(m1,m2) =C∑

i=1

M∑

k=1

w2ikz

2ik

z2ik = (m1,k − u1,i )

2 + (m2,k − u2,i )2

−2

−1

0

1

2

Slo

wne

ss (

s/km

)

0 1 2Density (g/cc)

−2

−1

0

1

2

Slo

wne

ss (

s/km

)

0 1 2Density (g/cc)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (6 / 17)

Page 21: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Independent inversion results (aggregate & local minimization)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

0 1 2

Density (g/cc)

(a)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

−2 −1 0 1 2

Slowness (s/km)

(b)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

1 2 3

Rock unit ID

(c)

−2

−1

0

1

2

Slo

wne

ss (

s/km

)

0 1 2Density (g/cc)

(d)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (7 / 17)

Page 22: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Joint inversion with careful local minimization (hand holding)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

0 1 2

Density (g/cc)

(a)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

−2 −1 0 1 2

Slowness (s/km)

(b)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

1 2 3

Rock unit ID

(c)

−2

−1

0

1

2

Slo

wne

ss (

s/km

)

0 1 2Density (g/cc)

(d)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (8 / 17)

Page 23: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Joint inversion with careless local minimization0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

0 1 2

Density (g/cc)

(a)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

−2 −1 0 1 2

Slowness (s/km)

(b)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

1 2 3

Rock unit ID

(c)

−2

−1

0

1

2

Slo

wne

ss (

s/km

)

0 1 2Density (g/cc)

(d)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (9 / 17)

Page 24: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Lithological inversion0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

1 2 3

Rock unit ID

• Define several a priori rock types (3 here)

• Define physical property distributions for each rock type(homogeneous here)

• PMOGO inversion assigns a rock type to each mesh cell

• Simple to add numerically complicated topologicalconstraints, e.g. the model must contain:• 4 contiguous regions• all 3 rock types• 2 regions corresponding to the background

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (10 / 17)

Page 25: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Lithological inversion: 3D Pareto front

Pareto surface vs curve

300

400

500

600

Reg

ular

izat

ion

1

2

3

Seismic

Misfit

0.8 1.0 1.2Gravity Misfit

30

04

00

50

06

00

Re

gu

lariza

tio

n

1

2

3

Seismic Misfit

0.81.0

1.2

Gravity Misfit

300

400

500

600

Reg

ular

izat

ion

1 2 3Seismic Misfit

0.81.0

1.2

Gravity Misfit

300

400

500

600

Regu

lariz

atio

n

1

2

3

Seism

ic Mi

sfit

0.8 1.0 1.2Gravity Misfit

300400

500600

Regul

arizatio

n

1

2

3

Seis

mic

Mis

fit

0.8 1.0 1.2Gravity Misfit

300400500

600Regular

ization

1

2

3

Sei

smic

Mis

fit

0.8 1.0 1.2Gravity Misfit

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (11 / 17)

Page 26: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Lithological inversion: 3D Pareto front30

040

050

060

0R

egul

ariz

atio

n

1

2

3

Seismic

Misfit

0.8 1.0 1.2Gravity Misfit

30

04

00

50

06

00

Re

gu

lariza

tio

n

1

2

3

Seismic Misfit

0.81.0

1.2

Gravity Misfit

300

400

500

600

Reg

ular

izat

ion

1 2 3Seismic Misfit

0.81.0

1.2

Gravity Misfit

300

400

500

600

Regu

lariz

atio

n

1

2

3

Seism

ic Mi

sfit

0.8 1.0 1.2Gravity Misfit

300400

500600

Regul

arizatio

n

1

2

3

Seis

mic

Mis

fit

0.8 1.0 1.2Gravity Misfit

300400500

600Regular

ization

1

2

3

Sei

smic

Mis

fit

0.8 1.0 1.2Gravity Misfit

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (11 / 17)

Page 27: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Lithological inversion: three models in the Pareto front0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

(a)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

(b)0

50

100

150

200

250

300

350

400D

epth

(m

)0 50 100 150 200

x (m)

(c)

Misfits:

(a) expected targets(b) high gravity(c) high seismic

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (12 / 17)

Page 28: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Lithological inversion: some rudimentary statistics0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

0 50 100

Percent

(a)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

0 50 100

Percent

(b)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

0 50 100

Percent

(c)

Rock types:

(a) background(b) intrusive(c) sulphide

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (13 / 17)

Page 29: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Surface-based inversion

• Parameterization defines interfaces between rock units• No mesh required (very fast forward problem)• PMOGO inversion moves vertices

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (14 / 17)

Page 30: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Surface-based inversion: 3D Pareto front

0.1

0.2

Cur

vatu

re

1.0

1.5

2.0

2.5

3.0

Seismic

Misfit

1.0 1.5 2.0 2.5Gravity Misfit

0.1

0.2

Cu

rva

ture

1.01.5

2.02.5

3.0

Seismic Misfit

1.01.5

2.02.5

Gravity Misfit

0.1

0.2

Cur

vatu

re

1.0 1.5 2.0 2.5 3.0Seismic Misfit

1.01.5

2.02.5

Gravity Misfit

0.1

0.2

Curv

atur

e

1.0

1.5

2.0

2.5

3.0

Seism

ic Mi

sfit

1.0 1.5 2.0 2.5Gravity Misfit

0.10.2

Curva

ture

1.0

1.5

2.0

2.5

3.0

Seis

mic

Mis

fit

1.0 1.5 2.0 2.5Gravity Misfit

0.10.2

Curvature

1.0

1.5

2.0

2.5

3.0

Sei

smic

Mis

fit

1.0 1.5 2.0 2.5Gravity Misfit

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (15 / 17)

Page 31: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Surface-based inversion: 3D Pareto front0.

10.

2C

urva

ture

1.0

1.5

2.0

2.5

3.0

Seismic

Misfit

1.0 1.5 2.0 2.5Gravity Misfit

0.1

0.2

Cu

rva

ture

1.01.5

2.02.5

3.0

Seismic Misfit

1.01.5

2.02.5

Gravity Misfit

0.1

0.2

Cur

vatu

re

1.0 1.5 2.0 2.5 3.0Seismic Misfit

1.01.5

2.02.5

Gravity Misfit

0.1

0.2

Curv

atur

e

1.0

1.5

2.0

2.5

3.0

Seism

ic Mi

sfit

1.0 1.5 2.0 2.5Gravity Misfit

0.10.2

Curva

ture

1.0

1.5

2.0

2.5

3.0

Seis

mic

Mis

fit

1.0 1.5 2.0 2.5Gravity Misfit

0.10.2

Curvature

1.0

1.5

2.0

2.5

3.0

Sei

smic

Mis

fit

1.0 1.5 2.0 2.5Gravity Misfit

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (15 / 17)

Page 32: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Surface-based inversion: three models in the Pareto front0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

Legend:

- - feasible region— true interfaces— expected target misfits— both misfits high— high seismic misfit

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (16 / 17)

Page 33: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Advantages and disadvantages of PMOGO

Advantages:

• Obviate the requirement of having to deal with trade-off parameters→ Joint inversion greatly simplified

• Automatically provide a suite of solutions across the Pareto front→ Opportunities to calculate statistics

• Any numerically complicated objective functions or constraints can be used

• Avoid local minima entrapment→ Fundamentally different model parameterizations

• Easy to parallelize

Disadvantages:

• Increased computing time (100-300x for mesh-based inversions, WITH CAVEATS)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (17 / 17)

Page 34: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Advantages and disadvantages of PMOGO

Advantages:

• Obviate the requirement of having to deal with trade-off parameters→ Joint inversion greatly simplified

• Automatically provide a suite of solutions across the Pareto front→ Opportunities to calculate statistics

• Any numerically complicated objective functions or constraints can be used

• Avoid local minima entrapment→ Fundamentally different model parameterizations

• Easy to parallelize

Disadvantages:

• Increased computing time (100-300x for mesh-based inversions, WITH CAVEATS)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (17 / 17)

Page 35: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Advantages and disadvantages of PMOGO

Advantages:

• Obviate the requirement of having to deal with trade-off parameters→ Joint inversion greatly simplified

• Automatically provide a suite of solutions across the Pareto front→ Opportunities to calculate statistics

• Any numerically complicated objective functions or constraints can be used

• Avoid local minima entrapment→ Fundamentally different model parameterizations

• Easy to parallelize

Disadvantages:

• Increased computing time (100-300x for mesh-based inversions, WITH CAVEATS)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (17 / 17)

Page 36: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Advantages and disadvantages of PMOGO

Advantages:

• Obviate the requirement of having to deal with trade-off parameters→ Joint inversion greatly simplified

• Automatically provide a suite of solutions across the Pareto front→ Opportunities to calculate statistics

• Any numerically complicated objective functions or constraints can be used

• Avoid local minima entrapment→ Fundamentally different model parameterizations

• Easy to parallelize

Disadvantages:

• Increased computing time (100-300x for mesh-based inversions, WITH CAVEATS)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (17 / 17)

Page 37: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Introduction Sulphide example Results from typical strategy Results from PMOGO strategy Conclusion

Advantages and disadvantages of PMOGO

Advantages:

• Obviate the requirement of having to deal with trade-off parameters→ Joint inversion greatly simplified

• Automatically provide a suite of solutions across the Pareto front→ Opportunities to calculate statistics

• Any numerically complicated objective functions or constraints can be used

• Avoid local minima entrapment→ Fundamentally different model parameterizations

• Easy to parallelize

Disadvantages:

• Increased computing time (100-300x for mesh-based inversions, WITH CAVEATS)

Lelievre1, Bijani2 and Farquharson1, [email protected] 1Memorial University, 2Observatorio Nacional

Lithological and surface geometry joint inversions using multi-objective global optimization methods (17 / 17)

Page 38: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Posters NP1.1, EGU2016-4375, Thursday 21 April 2016, 17:30 – 19:00

Geophysical Inversion With Multi-Objective Global Optimization MethodsPeter G. Lelievre1, Rodrigo Bijani2 and Colin G. Farquharson1

1Memorial University, Department of Earth Sciences, St. John’s, NL, Canada2Observatorio Nacional, Rio de Janeiro, Brasil

Summary

We are investigating the use of Pareto multi-objectiveglobal optimization (PMOGO) methods to solve nu-merically complicated geophysical inverse problems.PMOGO methods can be applied to highly nonlinear in-verse problems, to those where derivatives are discon-tinuous or simply not obtainable, and to those were mul-tiple minima exist in the problem space. PMOGO meth-ods generate a suite of solutions that minimize multipleobjectives (e.g. data misfits, regularization and joint cou-pling measures) in a Pareto-optimal sense. This allows amore complete assessment of the possibilities and pro-vides opportunities to calculate statistics regarding thelikelihood of particular model features. We are applyingPMOGO methods to several types of inverse problems.

Disadvantages of Typical Mesh-Based Inversion

The typical numerical approach for underdeterminedmesh-based inversion is to perform a local descent min-imization of a weighted aggregate objective function,subject to some constraints:

minm

fa(m) =∑

iwifi(m) s.t. fc(m) ≥ 0

Joint inverse problems are generally posed as:

fa(m) =∑

iλifd ,i(mi)+∑

jαjfm,j(mj)+∑

kρk fc,k(mk ,1,mk ,2)

This approach has several disadvantages:• appropriate weights must be determined• all objective functions must be differentiable• local minima entrapment may yield poor solutions

Pareto Multi-Objective Global Optimization

Multi-Objective Problem (MOP):

minm

f(m) =[f1(m), f2(m), . . . , fL(m)

]

Concept of dominance:

fi(ma) ≤ fi(mb) for i = 1, . . . ,Lfi(ma) < fi(mb) for at least one i

We want to converge to the Pareto curve/surface. Weuse the Non-dominated Sorting Genetic Algorithm of [3].

Figure 1 : Tikhonov curve, Pareto-optimal curve, and PMOGOsolution population including Pareto front and secondary front.

Mesh-Based Lithological Inversion

In standard mesh-based inverse problems, the physical property values in eachcell are treated as continuous variables. In lithological mesh-based inversions,the cells can only take discrete physical property values corresponding to knownor assumed rock units. Here we apply such an inversion to the massive sulphidedeposit scenario from [2] (joint inversion of gravity and seismic first arrival times).

0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

0 1 2

Density (g/cc)

(a)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

−2 −1 0 1 2

Slowness (s/km)

(b)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

1 2 3

Rock unit ID

(c)

Figure 2 : True model. Rock units in (c): background, intrusive, sulphide lens.

300

400

500

600

Reg

ular

izat

ion

1

2

3

Seismic

Misfit

0.8 1.0 1.2Gravity Misfit

300

400

500

600

Regula

rization

1

2

3

Seismic Misfit

0.81.0

1.2

Gravity Misfit

300

400

500

600

Reg

ular

izat

ion

1 2 3Seismic Misfit

0.81.0

1.2

Gravity Misfit

300

400

500

600

Regu

lariz

atio

n

1

2

3

Seism

ic Mi

sfit

0.8 1.0 1.2Gravity Misfit

300400

500600

Regul

arizatio

n

1

2

3

Seis

mic

Mis

fit

0.8 1.0 1.2Gravity Misfit

300400500

600Regular

ization

1

2

3

Sei

smic

Mis

fit

0.8 1.0 1.2Gravity Misfit

Figure 3 : 3D Pareto front from the lithological inversion.0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

(a)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

(b)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

(c)

Figure 4 : Three representative models in the Pareto front corresponding to the (a) red, (b)green and (c) blue points in Fig. 3.

Mesh-Based Lithological Inversion (continued)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

0 50 100

Percent

(a)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

0 50 100

Percent

(b)0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

0 50 100

Percent

(c)

Figure 5 : Some rudimentary statistics: likelihoods for the (a) background, (b) intrusive and (c)sulphide lens rock units.

Surface Geometry Inversion

In surface geometry inversions, we consider a fundamentally different type ofproblem in which a model comprises wireframe surfaces representing contactsbetween rock units. The physical properties of each rock unit can remain fixedwhile the inversion controls the position of the contact surfaces via control nodes.Surface geometry inversion can be used to recover the unknown geometry of atarget body or to investigate the viability of a proposed Earth model.

0.1

0.2

Cur

vatu

re

1.0

1.5

2.0

2.5

3.0

Seismic

Misfit

1.0 1.5 2.0 2.5Gravity Misfit

0.1

0.2

Curv

atu

re

1.01.5

2.02.5

3.0

Seismic Misfit

1.01.5

2.02.5

Gravity Misfit

0.1

0.2

Cur

vatu

re

1.0 1.5 2.0 2.5 3.0Seismic Misfit

1.01.5

2.02.5

Gravity Misfit

0.1

0.2

Curv

atur

e

1.0

1.5

2.0

2.5

3.0

Seism

ic Mi

sfit

1.0 1.5 2.0 2.5Gravity Misfit

0.10.2

Curva

ture

1.0

1.5

2.0

2.5

3.0

Seis

mic

Mis

fit

1.0 1.5 2.0 2.5Gravity Misfit

0.10.2

Curvature

1.0

1.5

2.0

2.5

3.0

Sei

smic

Mis

fit

1.0 1.5 2.0 2.5Gravity Misfit

Figure 6 : 3D Pareto front from the surface geometry inversion.0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

0

50

100

150

200

250

300

350

400

Dep

th (

m)

0 50 100 150 200x (m)

Legend- - feasible region— true interfaces— expected target misfits— both misfits high— high seismic misfit

Figure 7 : Three representative models in the Pareto front corresponding to the (a) red, (b)green and (c) blue points in Fig. 6.

Discrete Body Inversion

In discrete body inverse problems, the inversion determines values of severalparameters that define the location, orientation, size and physical properties of ananomalous body represented by a simple shape, for example a sphere, ellipsoid,cylinder or cuboid. A PMOGO inversion can simultaneously determine the optimalnumber of bodies, the optimal shapes and the optimal shape parameters.

True bodiesRecovered bodies

Figure 8 : Discrete body inversion for multiple source bodies (e.g. applicable to UXO problems).

y (km)

x (

km)

Gravity Anomaly (mGal)

5

13

213038

4654

−5 0 5

−6

−4

−2

0

2

4

6

0

10

20

30

40

50

Figure 9 : Discrete body inversion using multiple point mass elements with regularization basedon the minimum spanning tree concept. The true model is a stepped prism. Modified from [1].

Conclusion

PMOGO methods can solve numerically complicated problems that can not besolved with standard descent-based local minimization methods. This includesthree of the classes of inverse problem we have described. There are significantincreases in the computational requirements when PMOGO methods are usedbut these can be ameliorated using strategies such as parallelization and prob-lem dimension reduction. We think it likely that with future work it will not belong before PMOGO methods can be applied to 3D inverse problems of usefulsize, particularly potential field inversions, and PMOGO methods could becomean accepted standard approach for 2D inverse problems.

References[1] R. Bijani, C. F. Ponte-Neto, D. U. Carlos, and F. J. S. Silva Dias. Three-dimensional gravity inversion using graph

theory to delineate the skeleton of homogeneous sources. Geophysics, 80(2):G53–G66,doi:10.1190/GEO2014–0250.1, 2015.

[2] A. Carter-McAuslan, P. G. Lelievre, and C. G. Farquharson. A study of fuzzy c-means coupling for joint inversion,using seismic tomography and gravity data test scenarios. Geophysics, 80(1):W1–W15,doi:10.1190/geo2014–0056.1, 2015.

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEETransactions on Evolutionary Computation, 6(2):182–197, doi:10.1109/4235.996017, 2002.

Contact: [email protected]

Page 39: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Discrete body inversion

• Anomalous body represented by a simple shape: e.g. sphere, ellipsoid, cylinder, cuboid• Inversion determines values of several parameters: e.g. location, orientation, phys. props.

True bodies

Recovered bodies

Page 40: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

Discrete body inversion

• Regularization measures based on graph theory to control spacing of bodies(Bijani et al., 2015)

y (km)

x (

km)

Gravity Anomaly (mGal)

5

13

213038

4654

−5 0 5

−6

−4

−2

0

2

4

6

0

10

20

30

40

50

Page 41: Lithological and surface geometry joint inversions using ...farq/PDFs/EGU2016_talk.pdf · EGU General Assembly 2016, SM5.2, EGU2016-4349. Introduction Sulphide example Results from

References

• Bijani et al., 2015, Three-dimensional gravity inversion using graph theory to delineate theskeleton of homogeneous sources. Geophysics, 80, G53–G66

• Carter-McAuslan, Lelievre & Farquharson, 2015, A study of fuzzy c-means coupling forjoint inversion, using seismic tomography and gravity data test scenarios. Geophysics, 80,W1–W15

• Deb et al., 2002, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans.on Evol. Comp., 6, 182–197