linear system theory 2 e sol

Upload: shruti-mahadik

Post on 05-Jul-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/15/2019 Linear System Theory 2 e Sol

    1/106

    Solutions Manual

    LINEAR SYSTEM THEORY, 2/E

    Wilson J. Rugh

     Department of Electrical and Computer Engineering

     Johns Hopkins University

  • 8/15/2019 Linear System Theory 2 e Sol

    2/106

    PREFACE

    With some lingering ambivalence about the merits of the undertaking, but with a bit more dedication than

    the first time around, I prepared this Solutions Manual for the second edition of  Linear System Theory. Roughly

    40% of the exercises are addressed, including all exercises in Chapter 1 and all others used in developments in the

    text. This coverage complements the 60% of those in an unscientific survey who wanted a solutions manual, andperhaps does not overly upset the 40% who voted no. (The main contention between the two groups involved the

    inevitable appearance of pirated student copies and the view that an available solution spoils the exercise.)

    I expect that a number of my solutions could be improved, and that some could be improved using only

    techniques from the text. Also the press of time and my flagging enthusiasm for text processing impeded the

    crafting of economical solutions—some solutions may contain too many steps or too many words. However I

    hope that the error rate in these pages is low and that the value of this manual is greater than the price paid.

    Please send comments and corrections to the author at  [email protected] or ECE Department, Johns Hopkins

    University, Baltimore, MD 21218 USA.

  • 8/15/2019 Linear System Theory 2 e Sol

    3/106

    CHAPTER 1

    Solution 1.1

    (a)   For   k  = 2, ( A + B)2

     =  A2

    + AB + BA + B2

    . If   AB =  BA, then ( A + B)2

     =  A2

    + 2 AB + B2

    . In general if  AB =  BA, then the k -fold product ( A + B)k  can be written as a sum of terms of the form A j Bk − j, j  = 0, . . . , k . The

    number of terms that can be written as  A j Bk − j is given by the binomial coefficient   

        jk    

       

    . Therefore  AB =  BA

    implies

    ( A + B)k  = j=0Σk 

       

         jk    

       

     A j Bk − j

    (b) Write

    det [λ I  − A (t )] = λn + an−1(t )λn−1 +  . . . + a1(t )λ + a 0(t )

    where invertibility of  A (t ) implies a 0(t ) ≠ 0. The Cayley-Hamilton theorem implies

     An(t ) + an−1(t ) An−1(t ) +  . . . + a0(t ) I = 0

    for all t . Multiplying through by A−1(t ) yields

     A−1(t ) =a0(t )

    −a1(t ) I  −   . . . − an−1(t ) An−2(t ) − An−1(t )_________________________________

    for all t . Since a 0(t ) = det [− A (t )], a 0(t ) = det A (t ). Assume ε > 0 is such that det A (t ) ≥ ε for all t . Since A (t ) ≤ α we have aij (t ) ≤ α, and thus there exists a γ  such that a j(t ) ≤ γ  for all t . Then, for all t ,

     A−1(t ) =det A (t )

    a 1(t ) I +  . . . + An−1(t )______________________

    ≤ε

    γ + γ α +  . . . + αn−1_________________=∆ β

    Solution 1.2(a) If  λ  is an eigenvalue of  A, then recursive use of  Ap  = λ p shows that λk  is an eigenvalue of  A k . However toshow multiplicities are preserved is more difficult, and apparently requires Jordan form, or at least results on

    similarity to upper triangular form.

    (b)   If  λ   is an eigenvalue of invertible   A, then   λ   is nonzero and  Ap = λ p  implies  A−1 p  = (1 / λ) p. As in   (a),addressing preservation of multiplicities is more difficult.

    (c) AT  has eigenvalues λ1 , . . . , λn since det (λ I  − AT ) = det (λ I  − A)T  = det (λ I  − A).(d) A H  has eigenvalues λ1

    __, . . . , λn

    __using (c) and the fact that the determinant (sum of products) of a conjugate is

    the conjugate of the determinant. That is

    -1-

  • 8/15/2019 Linear System Theory 2 e Sol

    4/106

    Linear System Theory, 2/E Solutions Manual

    det (λ I  − A H ) = det (λ_ I  − A) H  = det (λ

    _ I  − A)

    __________

    (e) α A has eigenvalues α λ1 , . . . , αλn since Ap  = λ p implies (α A) p = (αλ) p.(f) Eigenvalues of  AT  A are not nicely related to eigenvalues of  A. Consider the example

     A =   

        00

       

       

    ,   AT  A =   

        00

    α0

       

       

    where the eigenvalues of  A  are both zero, and the eigenvalues of  AT  A are 0, α. (If  A  is symmetric, then   (a)applies.)

    Solution 1.3(a) If the eigenvalues of  A are all zero, then det (λ I  − A) = λn and the Cayley-Hamilton theorem shows that A  isnilpotent. On the other hand if one eigenvalue, say  λ1  is nonzero, let  p be a corresponding eigenvector. Then Ak  p = λ1

    k  p ≠ 0 for all k  ≥ 0, and A cannot be nilpotent.(b) Suppose  Q  is real and symmetric, and  λ  is an eigenvalue of  Q. Then λ

    _also is an eigenvalue. From the

    eigenvalue/eigenvector equation   Qp  = λ p   we get   p H Qp  = λ p H  p. Also   Qp_

     = λ

    _

     p

    _, and transposing gives

     p H Qp  = λ_ p H  p. Subtracting the two results gives (λ − λ

    _) p H  p  = 0. Since p  ≠ 0, this gives λ = λ

    _, that is, λ is real.

    (c) If  A is upper triangular, then λ I  − A is upper triangular. Recursive Laplace expansion of the determinant aboutthe first column gives

    det (λ I  − A) = (λ − a11)   . . . (λ − ann)

    which implies the eigenvalues of  A are the diagonal entries a 11 , . . . , ann .

    Solution 1.4(a)

     A =   

       10

    00    

       

    implies   AT  A =   

       01

    00    

       

    implies    A = 1

    (b)

     A =   

        13

    31    

       

    implies   AT  A =   

        610

    106    

       

    Then

    det (λ I  − AT  A) = (λ − 16)(λ − 4)

    which implies  A = 4.(c)

     A =   

       0

    1−i1+i0    

       

    implies   A H  A =   

       0

    (1+i)(1−i)(1−i)(1+i)

    0       

    =   

       02

    20    

       

    This gives  A = √   2 .

    Solution 1.5   Let

     A =   

       0

    1 / α1 / αα

       

       

    ,   α > 1

    Then the eigenvalues are 1 / α and, using an inequality on text page 7,

     A ≥1 ≤ i, j ≤ 2max   aij  = α

    -2-

  • 8/15/2019 Linear System Theory 2 e Sol

    5/106

    Linear System Theory, 2/E Solutions Manual

    Solution 1.6   By definition of the spectral norm, for any α ≠ 0 we can write

     A = x = 1

    max    A x = x = 1

    max x

     A x_______

    =α x = 1

    maxα x

     Aα x________=

     x = 1 / αmax

    α xα A x__________

    Since this holds for any α ≠ 0,

     A = x ≠ 0max

     x

     A x_______=

     x ≠ 0max

     x

     A x_______

    Therefore

     A ≥ x

     A x_______

    for any x  ≠ 0, which gives

     A x ≤  A x

    Solution 1.7   By definition of the spectral norm,

     AB = x = 1max   ( AB) x =

     x = 1max    A ( Bx)

    ≤ x = 1max   { A Bx} , by Exercise 1.6

    =  A x = 1max    Bx =  A B

    If  A is invertible, then A A−1 =  I  and the obvious  I  = 1 give

    1 =  A A−1 ≤  A A−1

    Therefore

     A−1 ≥ A

    1_____

    Solution 1.8   We use the following easily verified facts about partitioned vectors:

       

       

       

     x 2

     x 1   

       

       

     ≥  x 1,   x 2 ;      

       

       

    0

     x1   

       

       

     =  x 1 ,      

       

       

     x2

    0   

       

       

     =  x 2

    Write

     Ax =   

       

       

     A21 A11

     A22 A12

       

       

       

       

       

       

     x2 x1

       

       

       

    =   

       

       

     A21 x1 + A22 x 2 A11 x1 + A12 x 2

       

       

       

    Then for A11 , for example,

     A = x = 1max    A x ≥

     x = 1max    A11 x 1 + A12 x 2

    ≥ x1 = 1

    max    A11 x 1 =  A11

    The other partitions are handled similarly. The last part is easy from the definition of induced norm. For example

    if 

    -3-

  • 8/15/2019 Linear System Theory 2 e Sol

    6/106

    Linear System Theory, 2/E Solutions Manual

     A =   

       

       

    0

    0

    0

     A12   

       

       

    then partitioning the vector x similarly we see that

     x = 1max    A x =

     x 2 = 1max    A12 x 2 =  A12

    Solution 1.9   By the Cauchy-Schwarz inequality, and  x T  =  x,

     x T  A x ≤  x T  A x =  AT  x x

    ≤  AT  x2 =  A x2

    This immediately gives

     x T  A x ≥ − A x2

    If  λ is an eigenvalue of  A and x is a corresponding unity-norm eigenvector, then

    λ = λ x = λ x =  A x ≤  A x =  A

    Solution 1.10   Since Q  = QT ,  QT Q  = Q2 , and the eigenvalues of  Q2 are λ12 , . . . , λn

    2 . Therefore

    Q = √   λmax(Q2)  =1 ≤ i ≤ nmax   λi

    For the other equality Cauchy-Schwarz gives

     x T Qx |  ≤  xT Q x = Qx x

    ≤ Q x2 =

    [ 1 ≤ i ≤ nmax  λ

    i

    ] x T  x

    Therefore | x T Qx | ≤ Q for all unity-norm x. Choosing xa as a unity-norm eigenvector of  Q corresponding tothe eigenvalue that yields

    1 ≤ i ≤ nmax λi gives

     xaT Qxa = xa

    T  [1 ≤ i ≤ nmax   λi ] xa =

    1 ≤ i ≤ nmax   λi

    Thus x = 1max  x T Qx = Q.

    Solution 1.11   Since  A x = √   ( A x)T ( A x) = √    x T  AT  A x ,

     A = x = 1max   √    x T  AT  A x

    =   

         x = 1max   x T  AT  A x

       

       

    1 / 2

    The Rayleigh-Ritz inequality gives, for all unity-norm x,

     x T  AT  A x ≤ λmax( AT  A) xT  x =  λmax( AT  A)

    and since A T  A ≥ 0, λmax( AT  A) ≥ 0. Choosing xa to be a unity-norm eigenvector corresponding to λmax( AT  A) gives

     xaT  AT  A xa = λmax( A

    T  A)

    Thus

    -4-

  • 8/15/2019 Linear System Theory 2 e Sol

    7/106

    Linear System Theory, 2/E Solutions Manual

     x = 1max   x T  AT  A x =  λmax( A

    T  A)

    so we have  A = √   

    λmax( AT 

     A) .

    Solution 1.12   Since A T  A > 0 we have λi( AT  A) > 0, i = 1, . . . , n, and ( AT  A)−1 > 0. Then by Exercise 1.11,

     A−12 = λmax(( AT  A)−1) =

    λmin( AT  A)

    1_________

    =λmin( A

    T  A) . det ( AT  A)

    i =1Πn

    λi( AT  A)

    __________________ ≤(det A)2

    [λmax( AT  A)]n −1______________

    =(det A)2

     A2(n−1)_________

    Therefore

     A−1 ≤det A

     An−1________

    Solution 1.13   Assume A ≠ 0, for the zero case is trivial. For any unity-norm x and y,

     yT  A x ≤  y T  A x

    ≤  y A x =  A

    Therefore

     x,   y = 1max    yT 

     A x ≤  A

    Now let unity-norm xa be such that  A xa =  A, and let

     ya = A

     Axa_____

    Then  ya = 1 and

     yaT  A xa =

     A

     xaT  AT  A xa___________

    = A

     A xa2

    ________=

     A

     A2______=  A

    Therefore

     x,   y = 1max    yT  A x =  A

    Solution 1.14   The coefficients of the characteristic polynomial of a matrix are continuous functions of matrixentries, since determinant is a continuous function of the entries (sum of products). Also the roots of a

    polynomial are continuous functions of the coefficients.   (A proof is given in Appendix A.4 of  E.D. Sontag,

     Mathematical Control Theory, Springer-Verlag, New York, 1990.) Since a composition of continuous functions

    is a continuous function, the pointwise-in-t  eigenvalues of  A (t ) are continuous in t .

    This argument gives that the (nonnegative) eigenvalues of  A T (t ) A (t ) are continuous in t . Then the maximum at

    each t  is continuous in t  — plot two eigenvalues and consider their pointwise maximum to see this. Finally since

    square root is a continuous function of nonnegative arguments, we conclude  A (t ) is continuous in t .However for continuously-differentiable A (t ),  A (t ) need not be continuously differentiable in t . Consider the

    -5-

  • 8/15/2019 Linear System Theory 2 e Sol

    8/106

  • 8/15/2019 Linear System Theory 2 e Sol

    9/106

    Linear System Theory, 2/E Solutions Manual

    Solution 1.17   Using the product rule to differentiate A (t ) A−1(t ) =  I  yields

     A.(t ) A−1(t ) + A (t )

    dt 

    d ___ A−1(t ) = 0

    which gives

    dt 

    d ___ A−1(t ) = − A−1(t ) A

    .(t ) A−1(t )

    Solution 1.18   Assuming differentiability of both  x (t ) and    x (t ), and using the chain rule for scalarfunctions,

    dt 

    d ___  x (t )2 = 2 x (t )dt 

    d ___  x (t )

    = 2 x (t )dt 

    d ___  x (t )

    Also we can write, using the product rule and the Cauchy-Schwarz inequality,

    dt 

    d ___ x (t )2 = 

    dt 

    d ___ x T (t ) x (t ) =  x

    . T (t ) x (t ) + x T (t ) x

    .(t ) = 2 x T (t ) x

    .(t )

    ≤ 2 x (t ) x.(t )

    For t  such that x (t ) ≠ 0, comparing these expressions gives

    dt 

    d ___  x (t ) ≤  x.(t )

    If  x (t ) = 0 on a closed interval, then on that interval the result is trivial. If  x (t ) = 0 at an isolated point, then

    continuity arguments show that the result is valid. Note that for the differentiable function x (t ) = t ,  x (t ) = t is not differentiable at   t  = 0. Thus we must make the assumption that    x (t )  is differentiable.   (While thisinequality is not explicitly used in the book, the added differentiability hypothesis explains why we always

    differentiate  x (t )2  = xT (t ) x (t ) instead of   x (t ).)

    Solution 1.19   To prove the contrapositive claim, suppose for each i,  j there is a constant βij such that

    0

    ∫ t 

     f ij (σ) d σ ≤ βij ,   t  ≥ 0

    Then by the inequality on page 7, noting thati, j

    max  f ij (t ) is a continuous function of  t  and taking the pointwise-

    in-t  maximum,

    0∫ t 

    F (σ) d σ ≤0∫ t 

    √   mni, j

    max  f ij (σ) d σ

    ≤ √   mn0

    ∫ t 

    i =1Σm

     j=1Σn

    | f ij (σ) d σ

    ≤ √   mni=1Σn

     j=1Σm

    βij 

  • 8/15/2019 Linear System Theory 2 e Sol

    10/106

    Linear System Theory, 2/E Solutions Manual

    Solution 1.20   If  λ(t ), p (t ) are a pointwise-in-t  eigenvalue/eigenvector pair for A−1(t ), then

     A−1(t ) p (t ) = λ(t ) p (t ) = λ(t ) p (t )

    Therefore, for every t ,

    λ(t ) = p (t )

     A−1(t ) p (t )_____________ ≤ p (t )

     A−1(t ) p (t )_______________ ≤ α

    Since this holds for any eigenvalue/eigenvector pair,

    det A (t ) =det A −1(t )

    1___________=

    λ1(t )   . . . λn(t )1_________________ ≥

    αn1___

    > 0

    for all t .

    Solution 1.21   Using Exercise 1.10 and the assumptions Q (t ) ≥ 0, t b  ≥ t a,

    t a

    ∫ t b

    Q (σ) d σ =t a

    ∫ t b

    λmax[Q (σ)] d σ ≤t a

    ∫ t b

    tr [Q (σ)] d σ = trt a

    ∫ t b

    Q (σ) d σ

    Note that

    t a

    ∫ t b

    Q (σ) d σ ≥ 0

    since for every x

     xT 

    t a

    ∫ t b

    Q (σ) d σ x =t a

    ∫ t b

     xT Q (σ) x d σ ≥ 0

    Thus, using a property of the trace on page 8 of Chapter 1, we have

    t a

    ∫ t b

    Q (σ) d σ ≤ trt a

    ∫ t b

    Q (σ) d σ ≤ nt a

    ∫ t b

    Q (σ) d σ

    Finally,

    t a

    ∫ t b

    Q (σ) d σ ≤ ε I 

    implies, using Rayleigh-Ritz,

    t a

    ∫ t b

    Q (σ) d σ ≤ ε

    Therefore

    t a

    ∫ t b

    Q (σ) d σ ≤ nε

    -8-

  • 8/15/2019 Linear System Theory 2 e Sol

    11/106

    CHAPTER 2

    Solution 2.3   The nominal solution for ũ (t ) = sin (3t ) is  ỹ (t ) = sin t . Let x 1(t ) =  y (t ), x 2(t ) =  y.(t ) to write the

    state equation

     x.(t ) =

       

       

       

    −(4 / 3) x13 (t ) − (1 / 3)u (t ) x 2(t )

       

       

       

    Computing the Jacobians and evaluating gives the linearized state equation

     x δ.

    (t ) =   

       

       

    −4 sin2t 0

    01

       

       

       

     x δ(t ) +   

       

       

    −1 / 30    

       

       

    u δ(t )

     y δ(t ) =         1 0

       

         x δ(t )

    where

     xδ(t ) = x (t ) −

       

       

       

    cos t 

    sin t        

       

    ,   uδ(t ) = u (t ) − sin (3t ) ,   y

    δ(t ) = y (t ) − sin t  ,   x

    δ(0) = x (0) −

       

       

       

    1

    0       

       

    Solution 2.5   For ũ = 0 constant nominal solutions are solutions of 

    0 = x̃2 − 2 x̃ 1 x̃ 2 = x̃ 2(1−2 x̃ 1)

    0 = − x̃1 + x̃12

    + x̃22

    = x̃1( x̃ 1−1) + x̃22

    Evidently there are 4 possible solutions:

     x̃a =   

        00

       

       

    ,   x̃b =   

        01

       

       

    ,   x̃c =   

        1 / 21 / 2    

       

    ,   x̃d  =   

        −1 / 21 / 2    

       

    Since

    ∂ x∂ f ___

    =   

       

       

    −1+2 x1−2 x 2

    2 x 2

    1−2 x1       

       

    ,∂u∂ f ___

    =   

       

       

    1

    0       

       

    evaluating at each of the constant nominals gives the corresponding 4 linearized state equations.

    Solution 2.7   Clearly   x̃ is a constant nominal if and only if 

    0 = A x̃ + bũ

    that is, if and only if   A x̃ = −bũ. There exists such an   x̃   if and only if   b  ∈  Im [ A ], in other words

    -9-

  • 8/15/2019 Linear System Theory 2 e Sol

    12/106

    rank   A = rank  [ A  b ].Also, x̃   is a constant nominal with c x̃  = 0 if and only if 

    0 = A x̃ + bũ

    0 = c x̃

    that is, if and only if 

       

        c A    

       

     x̃ =   

       

       

    0−bũ    

       

       

    As above, this holds if and only if 

    rank    

        c A

       

       

    = rank    

        c A

    0b

       

       

    Finally, x̃ is a constant nominal with c x̃  = ũ if and only if 

    0 = A x̃ + bũ = ( A + bc ) x̃

    and this holds if and only if 

     x̃ ∈ Ker [ A + bc ]

    (If A is invertible, we can be more explicit. For any ũ  the unique constant nominal is x̃  = − A−1bũ . Then ỹ  = 0 for ũ  ≠ 0 if and only if c A−1b = 0 , and ỹ  = ũ  if and only if c A−1b = −1.)

    Solution 2.8(a)  Since

       

        C  A

    0 B    

       

    is invertible, for any K 

       

        C  A + BK 

    0 B

       

       

    =   

        C  A

    0 B

       

       

       

        K  I 

     I 0

       

       

    is invertible. Let

       

       

       

     A + BK 

    0

     B       

       

       

       

       

     R3

     R1 R4

     R2   

       

       

    =   

       

       

    0

     I 

     I 

    0       

       

    Then the 1, 2-block gives R 2  = −( A + BK )−1 BR4 and the 2, 2-block gives CR 2 =  I , that is, I  = −C ( A + BK )−1 BR4Thus [ C ( A + BK )−1 B ]−1 exists and is given by  − R4 .

    (b)  We need to show that there exists N  such that

    0 = ( A + BK ) x̃ + BNũ

    ũ = Cx̃

    The first equation gives

     x̃ = −( A + BK )−1 BN ũ

    Thus we need to choose N  such that

    −C ( A + BK )−1 BN ũ = ũ

    From part (a) we take N  = [−C ( A + BK )−1 B ]−1  =  R4 .

    -10-

  • 8/15/2019 Linear System Theory 2 e Sol

    13/106

    Linear System Theory, 2/E Solutions Manual

    Solution 2.10   For u (t ) = ũ,  x̃ is a constant nominal if and only if 

    0 = ( A + Dũ) x̃ + bũ

    This holds if and only if  bũ  ∈  Im [ A + Dũ], that is, if and only if 

    rank  ( A + Dũ ) = rank    

         A+Dũ   bũ   

       

    If  A +Dũ is invertible, then

     x̃ = −( A + Dũ)−1bũ   (+)

    If  A  is invertible, then by continuity of the determinant  det  ( A + Dũ) ≠ 0 for all   ũ  such that   ũ is sufficientlysmall, and (+) defines a corresponding constant nominal. The corresponding linearized state equation is

     x.

    δ(t ) = ( A + Dũ) x δ(t ) + [ b − D ( A + Dũ)−1bũ ] u δ(t )

     y δ(t ) = C x δ(t )

    Solution 2.12   For the given nominal input, nominal output, and nominal initial state, the nominal solutionsatisfies

     x̃

    .

    (t ) =

       

       

       

       

     x̃ 2(t ) − 2 x̃3(t ) x̃ 1(t ) − x̃ 3(t )

    1       

       

       

    ,   x̃(0) =   

       

        −2−30    

       

       

    1 = x̃2(t ) − 2 x̃3(t )

    Integrating for x̃ 1(t ) and then x̃ 3(t ) easily gives the nominal solution   x̃1(t ) = t , x̃ 2(t ) = 2 t  − 3, and x̃ 3(t ) = t  − 2.The corresponding linearized state equation is specified by

     A =

       

       

       01

    0

    10

    0

    −2−10    

       

       

    ,   B (t )=

       

       

       0t 

    0       

       

    ,   C =       

      0 1   −2   

       

    It is unusual that the nominal input and nominal output are constants, but the linearization is time varying.

    Solution 2.14   Compute

     z.(t ) = x

    .(t ) − q

    .(t ) = A x (t ) + Bu (t ) + A−1 Bu

    .(t )

    = A x (t ) − A[− A−1 Bu (t )] + A−1 Bu.(t )

    = A z (t ) + A−1 Bu.(t )

    If at any value of  t a  > 0 we have  x (t a) = q (t a), that is z (t a) = 0, and u.(t ) = 0 for t  ≥ t a, that is u (t ) = u (t a) for

    t  ≥ t a , then   z (t ) = 0 for   t  ≥ t a . Thus   x (t ) = q (t a) for   t  ≥ t a , and   q (t ) represents what could be called an‘instantaneous constant nominal.’

    -11-

  • 8/15/2019 Linear System Theory 2 e Sol

    14/106

    CHAPTER 3

    Solution 3.2   Differentiating term k +1 of the Peano-Baker series using Leibniz rule gives

    ∂τ∂___

       

       

       

       

    τ∫ t 

     A (σ1)τ∫ 

    σ1

     A (σ2)τ∫ 

    σ2. . .

    τ∫ 

    σk 

     A (σk +1) d σk +1 . . . d σ1

       

       

       

       

    =

       

       

       

       

      A (t )τ∫ t 

     A (σ2)τ∫ 

    σ2. . .

    τ∫ σk 

     A (σk +1) d σk +1 . . . d σ2

       

       

       

       

    d τd ___

    t  −   

       

       

      A (τ)τ∫ τ

     A (σ2)τ∫ τ

    . . . d σk +1 . . . d σ2   

       

       

    d τd ___ τ

    +τ∫ t 

     A (σ1) ∂τ∂___

       

       

       

       

    τ∫ 

    σ1

     A (σ2)τ∫ 

    σ2. . .

    τ∫ 

    σk 

     A (σk +1)

       

       

       

       

      d σk +1 . . . d σ1

    =τ∫ t 

     A (σ1) ∂τ∂___

       

       

       

       

    τ∫ 

    σ1

     A (σ2)τ∫ 

    σ2

    . . .τ∫ 

    σk 

     A (σk +1)

       

       

       

       

      d σk +1 . . . d σ1

    Repeating this process k  times gives

    ∂τ∂___

       

       

       

       

    τ∫ t 

     A (σ1)τ∫ 

    σ1

     A (σ2)τ∫ 

    σ2. . .

    τ∫ 

    σk 

     A (σk +1) d σk +1 . . . d σ1

       

       

       

       

    =τ∫ t 

     A (σ1)τ∫ 

    σ1. . .

    τ∫ 

    σk −1

     A (σk ) ∂τ∂___    

       

       

    τ∫ σk 

     A (σk +1) d σk +1   

       

       

      d σk   . . . d σ1

    =τ∫ 

     A (σ1)τ∫ 

    σ1

    . . .τ∫ 

    σk −1

     A (σk )   

       

       

      0 − A (τ) + τ∫ 

    σk 

    0 d σk +1   

       

       

      d σk   . . . d σ1

    =τ∫ t 

     A (σ1)τ∫ 

    σ1

     A (σ2)τ∫ 

    σ2. . .

    τ∫ 

    σk −1

     A (σk ) d σk   . . . d σ1   

       

      − A (τ)       

    Recognizing this as term k  of the uniformly convergent series for −Φ(t , τ) A (τ) gives

    ∂τ∂___ Φ(t , τ) = −Φ(t , τ) A (τ)

    (Of course it is simpler to use the formula for the derivative of an inverse matrix given in Exercise 1.17 .)

    -12-

  • 8/15/2019 Linear System Theory 2 e Sol

    15/106

    Linear System Theory, 2/E Solutions Manual

    Solution 3.6   Writing the state equation as a pair of scalar equations, the first one is

     x.

    1

    (t ) =1 + t 2

    −t ______ x 1(t )

    and an easy computation gives

     x 1(t ) =(1 + t 2)1 / 2

     x1o_________

    Then the second scalar equation then becomes

     x.

    2(t ) =1 + t 2

    −4t ______ x 2(t ) +

    (1 + t 2)1 / 2

     x1o_________

    The complete solution formula gives, with some help from Mathematica,

     x.

    2(t ) =

    (1 + t 

    2

    )

    2

    1________ x 2o +

    0

    ∫ t 

    (1 + t 2)2(1 + σ2)3 / 2_________

    d σ x 1o

    =(1 + t 2)2

    1________ x 2o +

    (1 + t 2)2√   1+t 2 (t 3 / 4+5t / 8)+(3 / 8) sinh−1(t )_____________________________

     x1o

    If  x 1o  = 1, then as t  →∞, x2(t ) → 1 / 4, not zero.

    Solution 3.7   From the hint, letting

    r (t ) =t o

    ∫ t 

    v (σ)φ(σ) d σ

    we have r .(t ) = v (t )φ(t ), and

    φ(t ) ≤ ψ (t ) + r (t ) (*)

    Multiplying (*) through by the nonnegative v (t ) gives

    v (t )φ(t ) ≤ v (t )ψ (t ) + v (t )r (t )

    or

    r .(t ) − v (t )r (t ) ≤ v (t )ψ (t )

    Multiply both sides by the positive quantity

    e

    −t o

    ∫ t 

    v (τ) d τ

    to obtain

    dt 

    d ___   

       

       

    r (t )e

    −t o

    ∫ t 

    v (τ) d τ   

       

       

    ≤ v (t )ψ (t )e−

    t o

    ∫ t 

    v (τ) d τ

    Integrating both sides from t o to t , and using r (t o) = 0 gives

    r (t )e

    −t o

    ∫ t 

    v (τ) d τ

    ≤t o

    ∫ t 

    v (σ)ψ (σ)e−

    t o

    ∫ σ

    v (τ) d τ

    d σ

    Multiplying through by the positive quantity

    -13-

  • 8/15/2019 Linear System Theory 2 e Sol

    16/106

    Linear System Theory, 2/E Solutions Manual

    et o

    ∫ t 

    v (τ) d τ

    gives

    r (t ) ≤t o

    ∫ t 

    v (σ)ψ (σ)e σ∫ t 

    v (τ) d τ

    d σ

    and using (*) yields the desired inequality.

    Solution 3.10   Multiply the state equation by 2 zT (t ) to obtain

    2 zT (t ) z.(t ) =

    dt 

    d ___  z (t )2

    =i=1Σ

    n

     j=1Σ

    n

    2 zi(t )aij (t ) z j(t )

    ≤i=1Σn

     j =1Σn

    2aij (t ) zi(t ) z j(t ) ,   t  ≥ t o

    At each t  ≥ t o let

    a (t ) = 2n21 ≤ i,  j  ≤ n

    max   aij (t )

    Note a (t ) is a continuous function of  t , as a quick sample sketch indicates. Then, since  zi(t ) ≤  z (t ),

    dt 

    d ___  z (t )2 ≤ a (t ) z (t )2 ,   t  ≤ t o

    Multiplying through by the positive quantity

    e

    −t o

    ∫ t 

    a (σ) d σ

    gives

    dt 

    d ___   

       

       

    e

    −t o

    ∫ t 

    a (σ) d σ

     z (t )2   

       

       

    ≤ 0 ,   t  ≤ t o

    Integrating both sides from t o to t  and using  z (t o) = 0 gives

     z (t ) = 0 ,   t  ≥ t o

    which implies z (t ) = 0 for t  ≥ t o .

    Solution 3.11   The vector function x (t ) satisfies the given state equation if and only if it satisfies

     x (t ) = xo +t o

    ∫ t 

     A (σ) x(σ) d σ +t o

    ∫ t 

    t o

    ∫ τ

     E (τ, σ) x(σ) d σd τ +t o

    ∫ t 

     B (σ)u (σ) d σ

    Assuming there are two solutions, their difference z (t ) satisfies

     z (t ) =t o

    ∫ t 

     A (σ) z(σ) d σ +t o

    ∫ t 

    t o

    ∫ τ

     E (τ, σ) z(σ) d σd τ

    Interchanging the order of integration in the double integral (Dirichlet’s formula) gives

    -14-

  • 8/15/2019 Linear System Theory 2 e Sol

    17/106

    Linear System Theory, 2/E Solutions Manual

     z (t ) =t o

    ∫ t 

     A (σ) z(σ) d σ +t o

    ∫ t 

    σ∫ t 

     E (τ, σ) d τ z(σ) d σ

    =t o

    ∫ t 

       

       

       

     A (σ) +σ∫ t 

     E (τ, σ) d τ   

       

       

      z(σ) d σ

    =∆

    t o

    ∫ t 

     Â(t ,  σ) z (σ) d σ

    Thus

     z (t ) = t o

    ∫ t 

     Â(t ,  σ) z (σ) d σ ≤t o

    ∫ t 

     Â(t ,  σ) z (σ) d σ

    By continuity, given T  > 0 there exists a finite constant α such that  Â(t , σ) ≤ α for t o  ≤ σ ≤ t  ≤ t o + T . Thus

     z (t ) ≤t o∫ t 

    α  z (t ) d σ ,   t  ∈ [t o , t o+T ]

    and the Gronwall-Bellman inequality gives  z (t ) = 0 for  t  ∈ [t o, t o+T ], implying that there can be no morethan one solution.

    Solution 3.13   From the Peano-Baker series,

    Φ(t ,  τ) −   

       

       

       

      I +τ∫ t 

     A (σ1) d σ1 +   . . . +τ∫ t 

     A (σ1)τ∫ 

    σ1. . .

    τ∫ 

    σk −1

     A (σk ) d σk   . . . d σ1

       

       

       

       

    = j=k +1Σ

    τ∫ 

     A (σ1)τ∫ 

    σ1

    . . .τ∫ 

    σ j−1

     A (σ j) d σ j   . . . d σ1

    For any fixed T  > 0 there is a finite constant α such that  A (t ) ≤ α for t  ∈ [−T , T ], by continuity. Therefore

     j=k +1Σ∞

    τ∫ t 

     A (σ1)τ∫ 

    σ1. . .

    τ∫ 

    σ j−1

     A (σ j) d σ j   . . . d σ1 ≤ j=k +1Σ∞

    τ∫ t 

     A (σ1)τ∫ 

    σ1. . .

    τ∫ 

    σ j−1

     A (σ j) d σ j   . . . d σ1

    ≤ j=k +1Σ∞

    τ∫ t 

     A (σ1)τ∫ 

    σ1. . .

    τ∫ 

    σ j−1

     A (σ j)  d σ j   . . . d σ1

    .

    .

    .

    ≤ j=k +1Σ∞ α j

    τ∫ t 

    . . .

    τ∫ 

    σ j−1

    1 d σ j   . . . d σ1

    ≤ j=k +1Σ∞

    α j j !

    t  − τ j_______

    ≤ j=k +1Σ∞

     j !

    (α2T ) j______,   t ,  τ ∈ [−T , T ]

    We need to show that given ε > 0 there exists K  such that

    -15-

  • 8/15/2019 Linear System Theory 2 e Sol

    18/106

    Linear System Theory, 2/E Solutions Manual

     j=K +1Σ∞

     j !

    (α2T ) j_______ α2T , then

     j=k +1Σ∞

     j !

    (α2T ) j_______ ≤(k +1)!

    (α2T )k +1________ .1 − α2T/k 

    1_________=

    (k −1)!(k +1)(k −α2T )(α2T )k +1__________________

    Because of the factorial in the denominator, given  ε > 0 there exists a K  > α2T  such that (*) holds.

    Solution 3.15   Writing the complete solution of the state equation at t  f , we need to satisfy

     H o xo + H  f 

       

       

       

       

      Φ(t  f , t o) xo +t o

    ∫ t  f 

    Φ(t  f , σ) f  (σ) d σ   

       

       

       

      = h   (+)

    Thus there exists a solution that satisfies the boundary conditions if and only if 

    h − H  f t o

    ∫ t  f 

    Φ(t  f , σ) f  (σ) d σ ∈ Im[ H o + H  f  Φ(t  f , t o) ]

    There exists a unique solution that satisfies the boundary conditions if  H o + H  f  Φ(t  f , t o) is invertible. To computea solution x (t ) satisfying the boundary conditions:

    (1)  Compute Φ(t , t o) for t  ∈ [t o, t  f ]

    (2)  Compute H o +   H  f  Φ(t  f , t o)

    (3)  Computet o

    ∫ t  f 

     Φ(t  f , σ) f  (σ) d σ

    (4)  Solve (+) for xo

    (5)  Set x (t ) = Φ(t , t o) xo +t o

    ∫ t 

     Φ(t , σ) f  (σ) d σ, t  ∈ [t o, t  f ]

    -16-

  • 8/15/2019 Linear System Theory 2 e Sol

    19/106

    CHAPTER 4

    Solution 4.1   An easy way to compute A (t ) is to use A (t ) = Φ.

    (t , 0)Φ(0, t ). This gives

     A (t ) =   

        1−2t  −2t −

    1       

    This A (t ) commutes with its integral, so we can write Φ(t , τ) as the matrix exponential

    Φ(t ,  τ) = exp   

       

       

    τ∫ t 

     A (σ) d σ   

       

       

      = exp   

       

       

    (t −τ)−(t −τ)2

    −(t −τ)2−(t −τ)    

       

       

    Solution 4.4   A linear state equation corresponding to the n th-order differential equation is

     x

    .

    (t ) =

       

       

       

       

       

       

       

    −a0(t )0

    .

    .

    .

    00

    −a1(t )0

    .

    .

    .

    01

    . . .

    . . .

    .

    ..

    . . .

    . . .

    −an−1(t )1

    .

    ..

    00    

       

       

       

       

       

       

     x (t )

    The corresponding adjoint state equation is

     z.(t ) =

       

       

       

       

       

       

       

       

    0

    0

    .

    .

    .

    −10

    . . .

    . . .

    .

    .

    .

    . . .

    . . .

    −10

    .

    .

    .

    0

    0

    an−1(t )

    an−2(t )

    .

    .

    .

    a 1(t )

    a 0(t )   

       

       

       

       

       

       

       

     z (t )

    To put this in the form of an  n th-order differential equation, start with

     z.n(t ) = − zn−1(t ) + an−1(t ) zn(t )

     z.n−1(t ) = − zn−2(t ) + an−2(t ) zn(t )

    These give

     z..

    n(t ) = − z.n−1(t ) +

    dt 

    d ___[ an−1(t ) zn(t ) ]

    = zn−2(t ) − an−2(t ) zn(t ) +dt 

    d ___[ an−1(t ) zn(t ) ]

    Next,

    -17-

  • 8/15/2019 Linear System Theory 2 e Sol

    20/106

    Linear System Theory, 2/E Solutions Manual

     z.n−2(t ) = − zn−3(t ) + an−3(t ) zn(t )

    gives

    dt 3d 3____

     zn(t ) = z.n−2(t ) −

    dt 

    d ___[ an−2(t ) zn(t ) ] +

    dt 2d 2____

    [ an−1(t ) zn(t ) ]

    = − zn−3(t ) + an−3(t ) zn(t ) −dt 

    d ___[ an−2(t ) zn(t ) ] +

    dt 2d 2____

    [ an−1(t ) zn(t ) ]

    Continuing gives the n th-order differential equation

    dt nd n____

     zn(t ) =dt n−1d n−1_____

    [ an−1(t ) zn(t ) ] −dt n−2d n−2_____

    [ an−2(t ) zn(t ) ]

    +  . . . + (−1)ndt 

    d ___[ a 1(t ) zn(t ) ] + (−1)n +1a0(t ) zn(t )

    Solution 4.6   For the first matrix differential equation, write the transpose of the equation as (transpose anddifferentiation commute)

     X . T 

    (t ) = AT (t ) X T (t ) ,   X T (t o) = X oT 

    This has the unique solution X T (t ) = Φ AT (t )(t , t o) X oT , so that

     X (t ) = X oΦ AT (t )T  (t , t o)

    In the second matrix differential equation, let  Φk (t , τ) be the transition matrix for Ak (t ), k  = 1, 2. Then it is easyto verify (Leibniz rule) that a solution is

     X (t ) = Φ1(t , t o) X oΦ2T (t , t o) +t o

    ∫ t 

    Φ1(t ,  σ)F (σ)Φ2T (t ,  σ) d σ

    Or, one can generate this expression by using the obvious integrating factors on the left and right sides of the

    differential equation. (To show this is a unique solution, show that the difference Z (t ) between any two solutions

    satisfies  Z .(t ) =  A1(t ) Z (t ) + Z (t ) A2

    T (t ), with  Z (t o) = 0. Integrate both sides and apply the Bellman-Gronwall

    inequality to show Z (t ) is identically zero.)

    Solution 4.9   Clearly A (t ) commutes with its integral. Thus we compute

    exp   

       

       

       

        −10

    01

       

       

    τ   

       

       

    and then replace τ by0

    ∫ t 

     a (σ) d σ. From the power series for the exponential,

    exp   

       

       

       

        −10

    01    

       

    τ   

       

       

      =k =0Σ∞

    k !

    1___        −1

    001    

       

      k 

    τk 

    =k =0Σ∞

    (2k )!

    1_____        −1

    001    

       

      2k 

    τ2k +k =0Σ∞

    (2k +1)!

    1________        −1

    001

       

       

      2k +1

    τ2k +1

    =k =0Σ∞

    (2k )!

    1_____   

       

       

    0(−1)k 

    (−1)k 0

       

       

       

    τ2k +k =0Σ∞

    (2k +1)!

    1________   

       

       

    (−1)k +10

    0(−1)k     

       

       

    τ2k +1

    -18-

  • 8/15/2019 Linear System Theory 2 e Sol

    21/106

    Linear System Theory, 2/E Solutions Manual

    =   

        0cos τ

    cos τ0    

       

    +   

        −sin τ0

    0sin τ    

       

    =

       

        −sin τcos τ

    cos τsin τ    

       

    Replacing τ as noted above gives Φ(t , 0).

    Solution 4.10   For sufficiency, suppose   Φ x(t , 0) = T (t )e Rt . Then   T (0) =  I   and   T (t ) is continuouslydifferentiable. Let z (t ) = T −1(t ) x (t ) so that

    Φ z(t , 0) = T −1(t )Φ x(t , 0)T (0) = T −1(t )T (t )e Rt  = e Rt 

    Thus z.(t ) =  R z (t ).

    For necessity, suppose P (t ) is a variable change that gives

     z.(t ) = Ra z (t )

    Then

    Φ z(t , 0) = e Ra t  = P−1(t )Φ x(t , 0)P (0)

    that is,

    Φ x(t , 0) = P (t )e Ra t P−1(0)

    Let T (t ) = P (t )P−1(0) and R  = P (0) RaP−1(0). Then

    Φ x(t , 0) = T (t )P (0) e P−1(0) RP (0)t  P−1(0)

    = T (t )P (0) [ P−1(0)e Rt P (0) ] P−1(0)

    = T (t )e Rt 

    Solution 4.11   Suppose

    Φ(t , 0) = e A1t  e A2t 

    Then

    Φ.

    (t , 0) =dt 

    d ___       

    e A1t  e

     A2t     

       

    = e A1t  ( A1+A2 ) e

     A2t 

    = e A1t  ( A1+A2 ) e

    − A1t  . e A1t  e

     A 2t 

    This implies A (t ) = e A1t [ A1+A2 ] e

    − A 1t . Therefore A (0) =  A1+A2 is clear, and

     A.(t ) = A1e

     A1t  ( A1+A2 ) e− A1t + e

     A1t  ( A1+A2 ) e− A1t (− A1)

    = A1 A (t ) − A (t ) A1

    Conversely, assume A1 and A2 are such that

     A.(t ) = A1 A (t ) − A (t ) A1 ,   A (0) = A1 + A2

    This matrix differential equation has a unique solution (by rewriting it as a linear vector differential equation), and

    from the calculation above this solution is

     A (t ) = e A 1t ( A1 + A2 ) e

    − A1t 

    Since

    -19-

  • 8/15/2019 Linear System Theory 2 e Sol

    22/106

    Linear System Theory, 2/E Solutions Manual

    dt 

    d ___       

    e A1t  e

     A2t     

       

    = A (t )e A1t e

     A2t  ,   e A10e

     A20 = I 

    we have that Φ(t , 0) = e A1t 

    e A2t 

    .

    Solution 4.13   Writing

    ∂t ∂___ Φ A(t ,  τ) = A (t )Φ A(t , τ) ,   Φ(τ, τ) = I 

    in partitioned form shows that

    ∂t ∂___ Φ21(t ,  τ) = A22(t )Φ21(t , τ) ,   Φ21(τ, τ) = 0

    Thus Φ21(t , τ) is identically zero. But then

    ∂t 

    ∂___ Φii

    (t ,  τ) = Aii

    (t )Φii

    (t ,  τ) ,   Φii

    (τ, τ) = I 

    for i  = 1, 2, and

    ∂t ∂___ Φ12(t ,  τ) = A11(t )Φ12(t , τ) + A12(t )Φ22(t ,  τ) ,   Φ12(τ, τ) = 0

    Using Exercise 4.6 with F (t ) =  A12(t ) Φ22(t , τ) gives

    Φ12(t ,  τ) =τ∫ t 

    Φ11(t ,  σ) A12(σ) Φ22(σ, τ) d σ

    Solution 4.17   We need to compute a continuously-differentiable, invertible P (t ) such that

       

       

       

    1t 

    1   

       

       

    = P−1(t )   

       

       

    2−t 20

    2 t 1

       

       

       

    P (t ) − P−1(t )P. (t )

    Multiplying on the left by P (t ), the result can be written as a dimension-4 linear state equation. Choosing the

    initial condition corresponding to P (0) =  I , some clever guessing gives

    P (t ) =   

        t 1

    10

       

       

    Solution 4.23   Using the formula for the derivative of an inverse matrix given in Exercise 1.17,

    ∂t ∂___ Φ A(−τ, −t ) = ∂t 

    ∂___ Φ A−1(−t , −τ) = −Φ A−1(−t , −τ)   

       

       

    ∂t ∂___ Φ A(−t , −τ)

       

       

       

      Φ A−1(−t , −τ)

    = −Φ A−1(−t , −τ)   

       

       

      −∂(−t )

    ∂_____ Φ A(−t , −τ)   

       

       

      Φ A−1(−t , −τ)

    = −Φ A−1(−t , −τ)   

       

      − A (−t )Φ A(−t , −τ)   

       

      Φ A−1(−t , −τ)

    = Φ A−1(−t , −τ) A (−t ) = Φ A(−τ, −t ) A (−t )

    Transposing gives

    -20-

  • 8/15/2019 Linear System Theory 2 e Sol

    23/106

    Linear System Theory, 2/E Solutions Manual

    ∂t ∂___ Φ AT (−τ, −t ) = AT (−t )Φ AT (−τ, −t )

    Since Φ(−τ, −τ) =  I , we have F (t ) =  AT 

    (−t ).

    Or we can use the result of Exercise 3.2 to compute:

    ∂t ∂___ Φ A(−τ, −t ) =− ∂(−t )

    ∂_____ Φ A(−τ, −t ) = Φ A(−τ, −t ) A (−t )

    This implies

    ∂t ∂___ Φ AT (−τ, −t ) = AT (−t )Φ A(−τ, −t )

    Since Φ(−τ, −τ) =  I , we have F (t ) =  AT (−t ).

    Solution 4.25   We can write

    Φ(t + σ, σ) = I +σ∫ 

    t+σ

     A (τ) d τ +k =2Σ∞

    σ∫ 

    t+σ

     A (τ1)σ∫ τ1

     A (τ2)   . . .σ∫ 

    τk −1

     A (τk ) d τk   . . . d τ1

    and

    e A

    __

    t (σ)t  = I + A_

    t (σ)t +k =2Σ∞

    k !

    1___ A_

    k (σ)t k 

    Then

     R (t ,  σ) = Φ(t + σ, σ) − e A__

    t (σ)t 

    = k =2

    Σ

    ∞   

       

        σ∫ 

    t +σ

     A (τ1)σ∫ τ1

     A (τ2)   . . .

    σ∫ 

    τk −1

     A (τk ) d τk   . . . d τ1 −k !

    1___ A_

    k (σ)t k 

       

       

       

    From  A (t ) ≤ α and the triangle inequality,

     R (t ,  σ) ≤ 2k =2Σ∞

    αk k !

    t k ___= α2t 2

    k =2Σ∞

    k !

    2___ αk −2 t k −2

    Using

    k !

    2___ ≤(k −2)!

    1______,   k  ≥ 2

    gives

     R (t ,  σ) ≤ α2t 2k =2Σ∞

    (k −2)!1______ αk −2 t k −2

    = α2t 2e α t 

    -21-

  • 8/15/2019 Linear System Theory 2 e Sol

    24/106

    CHAPTER 5

    Solution 5.3   Using the series definition, which involves talent in series recognition,

     A2k +1 =   

        10

    01    

       

    ,   A2k  =   

        01

    10    

       

    ,   k = 0, 1,   . . .

    gives

    e At  = I +   

       

       

    0

    0

    t        

       

    +2!

    1___   

       

       

    0

    t 2

    t 20    

       

       

    +3!

    1___   

       

       

    t 30

    0

    t 3       

       

    +  . . .

    =   

       

       

    (e t −e −t ) / 2(e t +e−t ) / 2

    (e t +e −t ) / 2

    (e t −e−t ) / 2       

       

    =   

       

       

    sinh t 

    cosh t 

    cosh t 

    sinh t        

       

    Using the Laplace transform method,

    (sI  − A)−1

    =

       

        −1s

    s

    −1       

      −1

    =

       

       

       

       

       

    s2−1s_____

    s2−11_____

    s2−11_____

    s2−1s_____    

       

       

       

       

    which gives again

    e At  =   

       sinh t cosh t 

    cosh t sinh t     

       

    Using the diagonalization method, computing eigenvectors for A and letting

    P =   

        11

    −11    

       

    gives

    P−1 AP =   

        01

    −10

       

       

    Then

    e At  = P   

       

       

    0

    et 

    e −t 0    

       

       

    P−1 =   

       

       

    sinh t 

    cosh t 

    cosh t 

    sinh t        

       

    Solution 5.4   Since

     A (t ) =   

       1t 

    t 1    

       

    commutes with its integral,

    -22-

  • 8/15/2019 Linear System Theory 2 e Sol

    25/106

    Linear System Theory, 2/E Solutions Manual

    Φ(t , 0) = e 0∫ t 

     A (σ) d σ

    = exp   

       

       

    t t 2 / 2

    t 2 / 2t 

       

       

       

    And since

       

       

       

    0

    t 2 / 2

    t 2 / 2

    0       

       

    ,   

       

       

    0

    0

    t        

       

    commute,

    Φ(t , 0) = exp   

       

       

       

        01

    10

       

       

    t 2 / 2   

       

       

      . exp   

       

       

       

        10

    01

       

       

    t    

       

       

    Using Exercise 5.3 gives

    Φ(t , 0) =   

       

        0

    e t 2 / 2

    e

    t 2 / 2

    0   

       

       

       

       

        sinh t 

    cosh t 

    cosh t 

    sinh t        

       

    =   

       

       

    e

    t 2 / 2

    sinh t 

    e t 2 / 2 cosh t 

    e

    t 2 / 2

    cosh t 

    e t 2 / 2 sinh t 

       

       

       

    Solution 5.7   To verify that

     A0

    ∫ t 

    e Aσ d σ = e At − I 

    note that the two sides agree at t  = 0, and the derivatives of the two sides with respect to t  are identical.

    If  A is invertible and all its eigenvalues have negative real parts, then lim t  → ∞ e At  = 0. This gives

     A0

    ∫ ∞

    e Aσ d σ = − I 

    that is,

     A−1 = −0

    ∫ ∞

    e Aσ d σ =∞∫ 0

    e Aσ d σ

    Solution 5.9   Evaluating the given expression at t  = 0 gives x (0) = 0. Using Leibniz rule to differentiate theexpression gives

     x.(t ) =

    dt 

    d ___

    0

    ∫ t 

    e A (t −σ)e D

    σ∫ t 

    u (τ) d τ

    bu (σ) d σ

    = bu (t ) +0

    ∫ t 

    ∂t ∂___    

       

       

    e A (t −σ)e D

    σ∫ 

    u (τ) d τbu (σ)

       

       

       

      d σ

    Using the product rule and differentiating the power series for e D 

    σ∫ t 

     u (τ) d τ

    gives

     x.(t ) = bu (t ) +

    0

    ∫ t 

       

       

       

     Ae A (t −σ)e D

    σ∫ t 

    u (τ) d τ

    bu (σ) + e A (t −σ) Du (t )e D

    σ∫ t 

    u (τ) d τ

    bu (σ)   

       

       

      d σ

    If we assume that AD  =  DA, then e A (t −σ) D =  De A (t −σ) and

    -23-

  • 8/15/2019 Linear System Theory 2 e Sol

    26/106

    Linear System Theory, 2/E Solutions Manual

     x.(t ) = bu (t ) + A

    0

    ∫ t 

    e A (t −σ)e D

    σ∫ t 

    u (τ) d τ

    bu (σ) d σ + Du (t )

    0

    ∫ t 

    e A (t −σ)e D

    σ∫ t 

    u (τ) d τ

    bu (σ) d σ

    = A x (t ) + Dx (t )u (t ) + bu (t )

    Solution 5.12   We will show how to define β0(t ), . . . , βn−1(t ) such that

    k =0Σn−1

    β.k (t )Pk  =

    k =0Σn−1

    βk (t ) APk  ,k =0Σn−1

    βk (0)Pk  = I    (*)

    which then gives the desired expression by Property 5.1. From the definitions,

    P1 = AP 0 − λ1 I  ,   P2 = AP1 − λ2P1 , . . . ,   Pn−1 = APn−2 − λn−1Pn−2

    Also Pn = ( A−λn I )Pn−1 = 0 by the Cayley-Hamilton theorem, so APn−1  = λnPn−1. Now we equate coefficients of like Pk ’s in (*), rewritten as

    k =0Σn−1

    β.

    k (t )Pk  =k =0Σn−1

    βk (t )[Pk+1 + λk +1Pk ]

    to get equations for the desired βk (t )’s:

    P0 :   β.

    0(t ) = λ1β0(t )

    P1 :   β.

    1(t ) = β0(t ) + λ2β1(t )...

    Pn−1 :   β.

    n−1(t ) = βn−2(t ) + λnβn−1(t )

    that is,

       

       

       

       

       

       

       

    β.

    n−1(t )

    .

    .

    .

    β.

    1(t )

    β.

    0(t )   

       

       

       

       

       

       

    =

       

       

       

       

       

       

       

       

    0

    0

    .

    .

    .

    1

    λ1

    0

    0

    .

    .

    .

    λ2

    0

    . . .

    . . .

    .

    .

    .

    . . .

    . . .

    1

    λn−1

    .

    .

    .

    0

    0

    λn

    0

    .

    .

    .

    0

    0       

       

       

       

       

       

       

       

       

       

       

       

       

    βn−1(t )

    .

    .

    .

    β1(t )β0(t )    

       

       

       

       

       

    With the initial condition provided by  β0(0) = 1, βk (0) = 0, k  = 1, . . . , n−1, the analytic solution of this stateequation provides a solution for (*). (The resulting expression for e At  is sometimes called Putzer’s formula.)

    Solution 5.17   Write, by Property 5.11,Φ(t , t o) = P−1(t )e

     R (t −t o)P (t o)

    where P (t ) is continuous, T -periodic, and invertible at each t . Let

    S = P −1(t o) RP (t o) ,   Q (t , t o) = P−1(t )P (t o)

    Then Q (t , t o) is continuous and invertible at each t , and satisfies

    Q (t +T , t o) = P−1(t +T )P (t o) = P

    −1(t )P (t o) = Q (t , t o)

    with Q (t o , t o) =  I . Also,

    -24-

  • 8/15/2019 Linear System Theory 2 e Sol

    27/106

    Linear System Theory, 2/E Solutions Manual

    Φ(t , t o) = P−1(t ) eP (t o)SP

    −1(t o) (t −t o)P (t o) = P−1(t )P (t o) e

    S (t −t o)P−1(t o)P (t o)

    = Q (t , t o)eS (t −t o)

    Solution 5.19   From the Floquet decomposition and Property 4.9,

    det Φ(T , 0) = det e RT  = e 0∫ T 

    tr [ A (σ)] d σ

    Because the integral in the exponent is positive, the product of eigenvalues of  Φ(T , 0) is greater than unity, whichimplies that at least one eigenvalue of  Φ(T , 0) has magnitude greater than unity.Thus by the argument followingExample 5.12 there exist unbounded solutions.

    Solution 5.20   Following the hint, define a real matrix S  by

    eS 2T  = Φ2(T , 0)

    and set

    Q (t ) = Φ(t , 0)e −St 

    Clearly Q (t ) is real and continuous, and

    Q (t +2T ) = Φ(t +2T , 0)e−S (t+2T ) = Φ(t +2T , T )Φ(T , 0)e−S 2T e −St 

    = Φ(t +T , 0)Φ(T , 0)e−S 2T e −St  = Φ(t +T , T )Φ2(T , 0)e −S 2T e−St 

    = Φ(t +T , T )e −St  = Φ(t , 0)e−St 

    = Q (t )

    That is,  Q (t ) is 2T -periodic.   (For a proof of the hint, see Chapter 8 of  D.L. Lukes,   Differential Equations:Classical to Controlled , Academic Press, 1982.)

    Solution 5.22   The solution will be T -periodic for initial state  xo  if and only if  xo  satisfies (see text equation(32))

    [ Φ−1(t o+T , t o) − I  ] xo =t o

    ∫ t o+T 

    Φ(t o , σ) f (σ) d σ

    This linear equation has a solution for xo if and only if 

     zoT 

    t o

    ∫ t o+T 

    Φ(t o , σ) f (σ) d σ = 0 (*)

    for every nonzero vector zo that satisfies

    [ Φ−1(t o+T , t o) − I  ]T  zo = 0 (**)

    The solution of the adjoint state equation can be written as

     z (t ) = [ Φ−1(t , t o) ]T  zo

    Then by Lemma 5.14, (**) is precisely the condition that z (t ) be T -periodic. Thus writing (*) in the form

    -25-

  • 8/15/2019 Linear System Theory 2 e Sol

    28/106

    Linear System Theory, 2/E Solutions Manual

    0 =t o

    ∫ t o+T 

     zoT Φ(t o , σ) f (σ) d σ =

    t o

    ∫ t o+T 

     zT (σ) f  (σ) d σ

    completes the proof.

    Solution 5.24   Note A  = − AT , and from Example 5.9,

    e At  =   

        −sin t cos t 

    cos t sin t     

       

    Therefore all solutions of the adjoint equation are periodic, with period of the form  k 2π, where k  is a positiveinteger. The forcing term has period T  =  2π / ω, where we assume ω > 0. The rest of the analysis breaks downinto 3 cases.

    Case 1: If  ω ≠ 1, 1 / 2, 1 / 3, . . . then the adjoint equation has no T -periodic solution, so the condition (Exercise5.22)

    0∫ T 

     zT (σ) f  (σ) d σ = 0 (+)

    holds vacuously. Thus there will exist corresponding periodic solutions.

    Case 2: If  ω = 1, then

    0

    ∫ T 

     zT (σ) f  (σ) d σ =0

    ∫ T 

     zoT e Aσ f  (σ) d σ

    = − zo 10

    ∫ T 

    sin2(σ) d σ + zo 20

    ∫ T 

    cos σ sin σ d σ

    ≠ 0

    so there is no periodic solution.

    Case 3: If  ω = 1 /k , k  = 2, 3, . . . , then since

    0

    ∫ T 

    cos σ sin (σ /k ) d σ =0

    ∫ T 

    sin σ sin (σ /k ) d σ = 0

    the condition (+) will hold, and there exist periodic solutions.

    In summary, there exist periodic solutions for all  ω > 0 except ω = 1.

    -26-

  • 8/15/2019 Linear System Theory 2 e Sol

    29/106

    CHAPTER 6

    Solution 6.1   If the state equation is uniformly stable, then there exists a positive γ  such that for any  t o and xo

    the corresponding solution satisfies

     x (t ) ≤ γ  xo ,   t  ≥ t o

    Given a positive ε, take δ = ε / γ . Then, regardless of  t o ,  xo ≤ δ implies

     x (t ) ≤ γ δ = ε ,   t  ≥ t o

    Conversely, given a positive ε suppose positive δ is such that, regardless of  t o ,  xo ≤ δ implies  x (t ) ≤ ε,t  ≥ t o . For any t a  ≥ t o let xa be such that

     xa = 1 ,   Φ(t a , t o) xa = Φ(t a , t o)

    Then xo  = δ  xa satisfies  xo = δ, and the corresponding solution at t  = t a satisfies

     x (t a) = Φ(t a, t o) xo = δΦ(t a, t o) ≤ ε

    Therefore

    Φ(t a , t o) ≤ ε / δ

    Such an xa can be selected for any t a , t o such that t a  ≥ t o . Therefore

    Φ(t , t o) ≤ ε / δ

    for all t  and t o with t  ≥ t o , and we can take γ  = ε / δ to obtain

     x (t ) = Φ(t , t o) xo ≤ Φ(t , t o) xo ≤ γ  xo ,   t  ≥ t o

    This implies uniform stability.

    Solution 6.4   Using the fact that A (t ) commutes with its integral,

    Φ(t ,  τ) = e τ∫ t 

     A (σ) d σ

    = I +   

       

       

    e −(t −τ)t −τ

    t −τ−e −(t −τ)    

       

       

    +2!

    1___   

       

       

    e−(t −τ)t −τ

    t −τ−e−(t −τ)    

       

       

      2

    +  . . .

    For any fixed  τ, φ11(t , τ) clearly grows without bound as  t  → ∞, and thus the state equation is not uniformlystable.

    Solution 6.6   Using elementary properties of the norm,

    -27-

  • 8/15/2019 Linear System Theory 2 e Sol

    30/106

    Linear System Theory, 2/E Solutions Manual

    Φ(t ,  τ) =  I +τ∫ t 

     A (σ) d σ +τ∫ t 

     A (σ1)τ∫ 

    σ1

     A (σ2) d σ2d σ1 +  . . .

    =  I  + τ∫ t 

     A (σ) d σ + τ∫ t 

     A (σ1)τ∫ 

    σ1

     A (σ2) d σ2d σ1 +   . . .

    = 1 + τ∫ t 

     A (σ) d σ + τ∫ t 

     A (σ1) τ∫ 

    σ1

     A (σ2) d σ2d σ1 +  . . .

    (Be careful of  t   0 by assumption, so that

    t  eλt 

     = t e−ηt 

    ,   t  ≥ 0A simple maximization argument (setting the derivative to zero) gives

    t e −ηt  ≤η e1___

    =∆ β ,   t  ≥ 0

    so that

    t  e λt  ≤ β ,   t  ≥ 0

    Using this bound we can write

    t  eλt  = t e−ηt  = t e−(η / 2)t e −(η / 2)t  ≤η e2___

    e−(η / 2)t  ,   t  ≥ 0

    Similarly,

    t 2 eλt  = t 2 e −ηt  ≤η e2___

    t e−(η / 2)t  =η e2___

    t e −(η / 4)t e−(η / 4)t  ≤η e2___ .

    η e4___

    e−(η / 4)t  ,   t  ≥ 0

    and continuing we get, for any j  ≥ 0,

    t  j e λt  ≤(η e) j

    2 j+( j −1)+ . . . +1

    ____________e−(η / 2

     j)t  ,   t  ≥ 0

    Therefore

    -28-

  • 8/15/2019 Linear System Theory 2 e Sol

    31/106

    Linear System Theory, 2/E Solutions Manual

    0

    ∫ ∞

    t  j e λt  dt  ≤(η e) j

    2 j +( j−1)+ . . . +1

    ____________

    0

    ∫ ∞

    e−(η / 2 j)t  dt 

    ≤(η e) j

    2 j+( j−1)+ . . . +1____________ .η2 j___

    =e j Re [λ] j +122 j+( j−1)+

     . . . +1_____________

    Solution 6.12   By Theorem 6.4 uniform stability is equivalent to existence of a finite constant  γ  such thate At  ≤ γ  for all t  ≥ 0. Writing

    e At  =k =1Σm

     j=1Σσk 

    W kj( j−1)!

    t  j−1______e

    λk t 

    where λ1, . . . , λm are the distinct eigenvalues of  A, supposeRe[λk ] ≤ 0 ,   k = 1, . . . ,  m   (*)

    Re[λk ] = 0 implies σk  = 1

    Since   t  j−1eλk t   is bounded if Re[λk ]  0 for some k , the proof of Theorem 6.2 shows that e At  grows without bound as t  → ∞. The gap

    between this necessary condition and the sufficient condition is illustrated by the two cases

     A =   

       

    0

    0

    0

    0       

    ,   A =   

       

    0

    0

    0

    1       

    Both satisfy the necessary condition, neither satisfy the sufficient condition, and the first case is uniformly stable

    while the second case is not (unbounded solutions exist, as shown by easy computation of the transition matrix).

    (It can be shown that a necessary and sufficient condition for uniform stability is that each eigenvalue of A has

    nonpositive real part and any eigenvalue of A with zero real part has algebraic multiplicity equal to its geometric

    multiplicity.)

    Solution 6.14   Suppose γ , λ > 0 are such that

    Φ(t , t o) ≤ γ e−λ(t −t o)

    for all t , t o such that t  ≥ t o . Then given any xo , t o , the corresponding solution at t  ≥ t o satisfies

     x (t ) = Φ(t , t o) xo ≤ Φ(t , t o) xo ≤ γ e−λ(t −t o)

     xoand the state equation is uniformly exponentially stable.

    Now suppose the state equation is uniformly exponentially stable, so that there exist  γ , λ > 0 such that

     x (t ) ≤ γ e−λ(t −t o) xo ,   t  ≥ t o

    for any xo and t o . Given any t o and t a  ≥ t o , choose xa such that

    Φ(t a , t o) xa = Φ(t a , t o) ,    xa = 1

    Then with xo  =  xa the corresponding solution at t a satisfies

    -29-

  • 8/15/2019 Linear System Theory 2 e Sol

    32/106

    Linear System Theory, 2/E Solutions Manual

     x (t a) = Φ(t a , t o) xa = Φ(t a , t o) ≤ γ e−λ(t a−t o)

    Since such an xa can be selected for any t o and t a > t o, we have

    Φ(t ,  τ) ≤ γ e−λ(t −τ)

    for all t , τ such that t  ≥ τ, and the proof is complete.

    Solution 6.18   The variable change z (t ) = P−1(t ) x (t ) yields z.(t ) = 0 if and only if 

    P−1(t ) A (t )P (t ) − P−1(t )P.(t ) = 0

    for all t . This clearly is equivalent to P.(t ) =  A (t )P (t ), which is equivalent to Φ A(t , τ) = P (t )P−1(τ). Now, if  P (t )

    is a Lyapunov transformation, that is P (t ) ≤ ρ  0 for all t , then

    Φ A(t ,  τ) ≤ P (t )P−1(τ) ≤ P (t )det P (τ)P (τ)n−1__________

    ≤ ρn / η =∆ γ 

    for all t  and τ.Conversely, suppose   Φ A(t , τ) ≤ γ  for all t  and τ. Let P (t ) = Φ A(t , 0). Then P (t ) ≤ γ  and

    P (t ) ≤det P−1(t )

    P−1(t )n−1___________= P−1(t )n−1det P (t )

    for all t . Using P (t ) ≥ 1 / P−1(t ) gives

    det P (t ) ≥P−1(t )n

    1__________

    and since P−1(t ) = Φ A(0, t ) ≤ γ ,

    det P (t ) ≥ γ n1___

    Thus P (t ) is a Lyapunov transformation, and clearly

    P−1(t ) A (t )P (t ) − P−1(t )P.(t ) = 0

    for all t .

    -30-

  • 8/15/2019 Linear System Theory 2 e Sol

    33/106

    CHAPTER 7

    Solution 7.3   Let Â = FA, and take Q  = F −1 , which is positive definite since F  is positive definite. Then since F 

    is symmetric,

     ÂT Q +QÂ = AT FF −1 + F −1FA = AT + A

  • 8/15/2019 Linear System Theory 2 e Sol

    34/106

    Linear System Theory, 2/E Solutions Manual

    η ≤ a (t ) ≤ 1 / (2η)

    for all t . Then

    2a (t ) + 1 − η ≥ η + 1 > 1

    a (t )

    a (t )+1_______ − η ≥ 1 +1 / (2η)

    1______= 1 + η > 1

    and Q (t )−η I  ≥ 0, for all t , follows easily. Similarly, with ρ = (2η+1) / η we can show ρ I −Q (t ) ≥ 0 using

    ρ − 2a (t ) − 1 ≥η

    2η+1______ − 22η1___ − 1 = 1

    ρ −a (t )

    a (t )+1_______ ≥η

    2η+1______ − 1 −a (t )

    1____ ≥ 1

    Next consider

     AT (t )Q (t ) + Q (t ) A (t ) + Q.

    (t ) =

       

       

       

       

    0

    2a.(t )−2a(t )

    −2a(t )−a2(t )

    a. (t )_____

    0       

       

       

    ≤ − ν I 

    This gives that for uniform exponential stability we also need existence of a small, positive constant ν such that

     νa2(t ) − 2a3(t ) ≤ a.(t ) ≤ a (t )− ν / 2

    for all t . For example, a (t ) = 1 satisfies these conditions.

    Solution 7.11   Suppose that for every symmetric, positive-definite   M   there exits a unique, symmetric,positive-definite Q such that

     AT Q + QA + 2µQ = − M    (*)

    that is,

    ( A + µ I )T Q + Q ( A + µ I ) = − M    (**)

    Then by the argument above Theorem 7.11 we conclude that all eigenvalues of  A +µ I  have negative real parts.That is, if 

    0 = det [ λ I  − ( A +µ I ) ]  = det [ (λ − µ) I  − A ]

    then Re [λ]  0, this gives Re [λ − µ]

  • 8/15/2019 Linear System Theory 2 e Sol

    35/106

  • 8/15/2019 Linear System Theory 2 e Sol

    36/106

    Linear System Theory, 2/E Solutions Manual

     x T e F T t e Ft  x ≤ 2 ( A+µ−ε) x T Qx ,   t  ≥ 0

    which gives

    eFt  ≤ √   2 ( A+µ−ε)Q  ,   t  ≥ 0

    Thus the desired inequality follows from (*).

    Solution 7.19   To show uniform exponential stability of  A (t ), write the 1,2-entry of  A (t ) as  a (t ), and letQ (t ) = q (t ) I , where

    q (t ) =

       

       

       

       

       

    3 ,   t  ≤ −1 / 2q ⁄ 1 2(t ) ,   −1 / 2 < t

  • 8/15/2019 Linear System Theory 2 e Sol

    37/106

    CHAPTER 8

    Solution 8.3   No. The matrix

     A =   

       

       

    0−2

    −1√   8

       

       

       

    has negative eigenvalues, but

     A + AT  =   

       

       

    √   8−4

    −2√   8

       

       

       

    has an eigenvalue at zero.

    Solution 8.6   Viewing F (t ) x (t ) as a forcing term, for any t o, xo , and t  ≥ t o we can write

     x (t ) = Φ A +F (t , t o) xo = Φ A(t , t o) xo + t o∫ 

    Φ A(t ,  σ)F (σ) x(σ) d σ

    which gives, for suitable constants γ , λ > 0,

     x (t ) ≤ γ  e−λ(t −t o) xo +t o

    ∫ t 

    γ  e−λ(t −σ)F (σ) x(σ) d σ

    Thus

    e λt  x (t ) ≤ γ  eλt o  xo +t o

    ∫ t 

    γ F (σ) eλσ x(σ) d σ

    and the Gronwall-Bellman inequality (Lemma 3.2) implies

    e λt  x (t ) ≤ γ  eλt o  xoet o∫ t 

    γ F (σ) d σ

    Therefore

    -35-

  • 8/15/2019 Linear System Theory 2 e Sol

    38/106

    Linear System Theory, 2/E Solutions Manual

     x(t ) ≤ γ  e−λ(t −t o)e t o∫ t 

    γ F (σ) d σ

     xo

    ≤ γ  e−λ(t −t o)e t o∫ ∞

    γ F (σ) d σ

     xo

    ≤ γ  e−λ(t −t o) e γ β  xo

    and we conclude the desired uniform exponential stability.

    Solution 8.8   We can follow the proof of Theorem 8.7 (first and last portions) to show that the solution

    Q (t ) =0

    ∫ ∞

    e AT (t )σ e A (t )σ d σ

    of 

     AT (t )Q (t ) + Q (t ) A (t ) = − I 

    is continuously-differentiable and satisfies, for all t ,

    η I  ≤ Q (t ) ≤ ρ I 

    where η and ρ are positive constants. Then with

    F (t ) = A (t ) −   ⁄ 1 2Q−1(t )Q.

    (t )

    an easy calculation shows

    F T (t )Q (t ) + Q (t )F (t ) + Q.

    (t ) = AT (t )Q (t ) + Q (t ) A (t ) = − I 

    Thus x.(t ) = F (t ) x (t )

    is uniformly exponentially stable by Theorem 7.4.

    Solution 8.9   As in Exercise 8.8 we have, for all t ,

    η I  ≤ Q (t ) ≤ ρ I 

    which implies

    Q−1(t ) ≤η1__

    Also, by the middle portion of the proof of Theorem 8.7,

    Q.

    (t ) ≤ 2 A.(t )Q (t )2

    Therefore

     ⁄ 1 2Q−1(t )Q.

    (t ) ≤η

    βρ2____

    for all t . Write

     x.(t ) = A (t ) x (t ) = [ A (t ) −   ⁄ 1 2Q−1(t )Q

    .(t ) ] x (t ) +   ⁄ 1 2Q−1(t )Q

    .(t ) x (t )

    =∆

    F (t ) x (t ) +   ⁄ 1 2Q−1(t )Q.

    (t ) x (t )

    -36-

  • 8/15/2019 Linear System Theory 2 e Sol

    39/106

    Linear System Theory, 2/E Solutions Manual

    Then the complete solution formula gives

     x (t ) = ΦF (t , t o) xo + t o∫ 

    ΦF (t ,  σ) ⁄ 1

    2Q−1

    (σ)Q

    .

    (σ) x(σ) d σ

    and the result of Exercise 8.8 implies that there exists positive constants γ , λ such that, for any t o and t  ≥ t o ,

     x (t ) ≤ γ  e−λ(t −t o) xo +t o

    ∫ t 

    γ  e−λ(t −σ)η

    βρ2____ x(σ) d σ

    Therefore

    e λt  x (t ) ≤ γ  eλt o  xo +t o

    ∫ t 

    ηγβρ2_____

    e λσ x(σ) d σ

    and the Gronwall-Bellman inequality (Lemma 3.2) implies

    e λt  x (t ) ≤ γ  eλt o  xoet o∫ 

    γβρ2 / η d σ

    Thus

     x (t ) ≤ γ  e−(λ−γβρ2 / η)(t −t o) xo

    Now, writing the left side as Φ A(t , t o) xo and for any t o and t  ≥ t o choosing the appropriate unity-norm xo gives

    Φ A(t , t o) ≤ γ  e−(λ−γβρ2 / η)(t −t o)

    For β sufficiently small this gives the desired uniform exponential stability.   (Note that Theorem 8.6 also can beused to conclude that uniform exponential stability of x

    .(t ) = F (t ) x (t ) implies uniform exponential stability of 

     x.(t ) = [ F (t ) +   ⁄ 1 2Q−1(t )Q

    .(t ) ] x (t ) = A (t ) x (t )

     for  β sufficiently small.)

    Solution 8.10   With F (t ) =  A (t ) + (µ / 2) I  we have that  F (t ) ≤ α + µ / 2, F .(t ) =  A

    .(t ), and the eigenvalues of 

    F (t ) satisfy Re [λF (t )] ≤ −µ / 2. The unique solution of 

    F T (t )Q (t ) + Q (t )F (t ) = − I 

    is

    Q (t ) =0

    ∫ ∞

    eF T (t )σ e F (t )σ d σ

    As in the proof of Theorem 8.7, there is a constant ρ such that Q (t ) ≤ ρ for all t . Now, for any n  × 1 vector z,

    d σd ___ zT e F 

    T (t )σ e F (t )σ z = z T e F T (t )σ[ F T (t ) + F (t ) ] e F (t )σ z

    ≥ −(2α + µ) zT e F T (t )σ eF (t )σ z

    Thus for any τ ≥ 0,

    -37-

  • 8/15/2019 Linear System Theory 2 e Sol

    40/106

    Linear System Theory, 2/E Solutions Manual

    − zT e F T (t )τ e F (t )τ z =

    τ∫ ∞

    d σd ___    

       

     zT e F T (t )σ e F (t )σ z

       

       

      d σ

    ≥ −(2α + µ)τ∫ ∞

     zT e F T (t )σ e F (t )σ z d σ

    ≥ −(2α + µ)0

    ∫ ∞

     zT e F T (t )σ e F (t )σ z d σ

    ≥ −(2α + µ) zT Q (t ) z

    Thus

    e F T (t )τ e F (t )τ ≤ (2α + µ) Q (t ) ,   τ ≥ 0

    and using

    e F (t )τ = e A(t )τ e (µ / 2) τ ,   τ ≥ 0

    gives

    e A(t )τ ≤ √   (2α+µ)ρ  e (−µ / 2) τ ,   τ ≥ 0

    Solution 8.11   Write (the chain rule is valid since u (t ) is a scalar)

    q.(t ) = − A−1(u (t ))

       

       

       

    du

    dA___(u (t ))u

    .(t )

       

       

       

      A−1(u (t ))b (u (t )) − A−1(u (t ))du

    db___(u (t ))u

    .(t )

    =∆ − B̂(t )u

    .(t )

    Then

     x.(t ) = A (u (t )) x (t ) + b (u (t ))

    = A (u (t )) [ x (t ) − q (t ) ] + A (u (t ))q (t ) + b (u (t ))= A (u (t )) [ x (t ) − q (t ) ]

    gives

    dt 

    d ___[ x (t ) − q (t ) ] = A (u (t )) [ x (t ) − q (t ) ] + B̂(t )u

    .(t ) (*)

    Since

    dt 

    d ___ A (u (t )) = 

    du

    dA___(u (t ))u

    .(t ) = 

    du

    dA___(u (t ))u

    .(t )

    we can conclude from Theorem 8.7 that for  δ sufficiently small, and u (t ) such that  u.(t ) ≤ δ for all t , there exist

    positive constants γ  and η (depending on u (t )) such that

    Φ A (u (t ))(t ,  σ) ≤ γ  e−η (t −σ) ,   t  ≥ σ ≥ 0

    But the smoothness assumptions on A (.) and b (.) and the bounds on  u (t ) also give that there exists a positive

    constant β such that   B̂(t ) ≤ β for t  ≥ 0. Thus the solution formula for (*) gives

     x (t ) − q (t ) ≤ γ  x (0) − q (0) + γ βδ / η ,   t  ≥ 0

    for u (t ) as above, and the claimed result follows.

    -38-

  • 8/15/2019 Linear System Theory 2 e Sol

    41/106

    CHAPTER 9

    Solution 9.7   Write

       

       

     B   ( A−β I ) B   ( A−β I )2 B   . . .       

    =   

       

      B AB−β B A2 B−2β AB+β2 B   . . .       

    =   

       

      B AB A 2 B   . . .   

       

       

       

       

       

       

       

       

       

    .

    .

    .

    0

    0

    0

     I m

    .

    .

    .

    0

    0

     I m

    −β I m

    .

    .

    .

    0

     I m

    −2β I mβ2 I m

    .

    .

    .

    . . .

    . . .

    . . .

    . . .   

       

       

       

       

       

       

       

    Clearly the two controllability matrices have the same rank. (The solution is even easier using rank tests from

    Chapter 13.)

    Solution 9.8   Since A has negative-real-part eigenvalues,

    Q =0

    ∫ ∞

    e At  BBT e AT t  dt 

    is well defined, symmetric, and

     AQ + QAT  =0

    ∫ ∞

       

       

     Ae At  BBT e AT t  + e At  BBT e A

    T t  AT    

       

    dt 

    =0

    ∫ ∞

    dt 

    d ___       

    e At  BBT e AT t     

       

    dt 

    = − BBT 

    Also it is clear that Q is positive semidefinite. If it is not positive definite, then for some nonzero, n  × 1 x,

    0 = xT Qx =0

    ∫ ∞

     x T e At  BBT e AT t  x dt 

    =0

    ∫ ∞

     x T e At  B2 dt 

    Thus xT e At  B = 0 for all t  ≥ 0, and it follows that

    -39-

  • 8/15/2019 Linear System Theory 2 e Sol

    42/106

    Linear System Theory, 2/E Solutions Manual

    0 =dt  jd  j___    

       

     x T e At  B   

       

     

     

    t = 0= xT  A j B

    for j  = 0, 1, 2, . . . . But this implies

     x T    

       

     B AB   . . .  An−1 B   

       

      = 0

    which contradicts the controllability hypothesis. Thus Q is positive definite.

    Solution 9.9   Suppose λ is an eigenvalue of  A, and p is a corresponding left eigenvector. Then p  ≠ 0, and

     p T  A =  λ pT 

    This implies both

     p H  A =  λ_ p H  ,   AT  p =  λ p

    Now suppose Q is as claimed. Then

     p H  AQp + p H QAT  p =  λ_ p H Qp + λ p H Qp

    = − p H  BBT  p

    that is,

    2 Re [λ] p H Q p = − p H  BBT  p   (*)

    This gives Re [λ] ≤ 0 since Q is positive definite. Now suppose Re [λ] = 0. Then (*) gives p H  B = 0. Also, for j = 1, 2, . . . ,

     p H  A j B =  λ_ p H  A j−1 B =   . . . = λ

    _ j p H  B = 0

    Thus

     p H    

       

     B AB   . . .  An−1 B   

       

      = 0

    which contradicts the controllability assumption. Therefore Re [λ]

  • 8/15/2019 Linear System Theory 2 e Sol

    43/106

    Linear System Theory, 2/E Solutions Manual

    Now suppose the state equation is output controllable on [t o , t  f ], but that W  y(t o , t  f ) is not invertible. Then

    there exists a p  × 1 vector ya  ≠ 0 such that yaT W  y(t o, t  f ) ya  = 0. Using by now familiar arguments, this gives

     yaT C (t  f )Φ(t  f , t ) B (t ) = 0 ,   t  ∈ [t o , t  f ]

    Consider the initial state

     xo = Φ(t o , t  f )C T (t  f )[ C (t  f )C T (t  f ) ]−1 ya

    which is well defined and nonzero since rank  C (t  f ) =  p. There exists an input ua(t ) such that

    0 = C (t  f )Φ(t  f , t o) xo +t o

    ∫ t  f 

    C (t  f )Φ(t  f , σ) B (σ)ua(σ) d σ

    = ya +t o

    ∫ t  f 

    C (t  f )Φ(t  f , σ) B (σ)ua(σ) d σ

    Premultiplying by ya

    T  gives

    0= yaT  ya

    This contradicts ya  ≠ 0, and thus W  y(t o , t  f ) is invertible.The rank assumption on C (t  f ) is needed in the necessity proof to guarantee that  xo   is well defined. For

    m  =  p = 1, invertibility of  W  y(t o , t  f ) is equivalent to existence of a t a  ∈ (t o , t  f ) such that

    C (t  f )Φ(t  f , t a) B (t a) ≠ 0

    That is, there exists a t a  ∈ (t o , t  f ) such that the output response at t  f  to an impulse input at t a is nonzero.

    Solution 9.11   From Exercise 9.10, since rank  C  =  p, the state equation is output controllable if and only if forsome fixed t  f  > 0,

    W  y =∆

    0

    ∫ t  f 

    Ce A (t  f −t ) BBT e

     A T (t  f −t )C T  dt 

    is invertible. We will show this holds if and only if 

    rank    

       

      CB CAB   . . . CAn−1 B   

       

      = p

    by showing equivalence of the negations. If  W  y is not invertible, there exists a nonzero  p  × 1 vector ya such that ya

    T W  y ya  = 0. Thus

     yaT Ce

     A (t  f −t ) B = 0 ,   t  ∈ [0, t  f ]

    Differentiating repeatedly, and evaluating at t  = t  f  gives

     ya

    T CA j B = 0 ,   j = 0, 1, . . .

    Thus

     yaT     

       

    CB CAB   . . . CAn−1 B   

       

      = 0

    and this implies

    rank    

       

      CB CAB   . . . CAn−1 B   

       

      < p

    Conversely, if the rank condition fails, then there exists a nonzero   ya   such that   yaT CA j B = 0,

     j = 0, . . . , n−1. Then

    -41-

  • 8/15/2019 Linear System Theory 2 e Sol

    44/106

    Linear System Theory, 2/E Solutions Manual

     yaT Ce

     A (t  f −t ) B = y aT C 

    k =0Σn−1

    αk (t  f −t ) Ak  B = 0 ,   t  ∈ [0, t  f ]

    Therefore yaT W  y ya  = 0, which implies that W  y is not invertible.For m  =  p = 1 argue as in Solution 9.10 to show that a linear state equation is output controllable if and

    only if its impulse response (equivalently, transfer function) is not identically zero.

    Solution 9.17   Beginning with

     y (t ) = c (t ) x (t )

     y.(t ) = c

    .(t ) x (t ) + c (t ) x

    .(t )

    = [c.(t ) + c (t ) A (t )] x (t ) + c (t )b (t )u (t )

    = L1(t ) x (t ) + L0(t )b (t )u (t )

    it is easy to show by induction that

     y (k )(t ) = Lk (t ) x (t ) + j =0Σk −1

    dt k − j−1d k − j−1_______ [ L j(t )b (t )u (t ) ] ,   k = 1, 2, . . .

    Now if 

     Ln(t ) M __

    −1=∆

       

        α0(t )   α1(t )   . . . αn −1(t )       

    then

    i=0Σn −1

    αi(t ) Li(t ) =         α0(t )   . . . αn −1(t )    

       

       

       

       

       

       

     Ln −1(t )

    .

    .

    .

     L0(t )       

       

       

       

    = Ln(t )

    Thus we can write

     y (n)(t ) −i=0Σn −1

    αi(t ) y(i)(t ) = Ln(t ) x (t ) +

     j=0Σn−1

    dt n − j−1d n − j−1_______ [ L j(t )b (t )u (t ) ]

    −i=0Σn −1

    αi(t ) Li(t ) x (t ) −i =0Σn −1

    αi(t ) j=0Σi−1

    dt i − j −1d i− j−1______ [ L j(t )b (t )u (t ) ]

    = j =0Σn−1

    dt n − j−1d n − j −1_______ [ L j(t )b (t )u (t ) ] −

    i=0Σn −1

    αi(t ) j =0Σi−1

    dt i− j−1d i− j−1______ [ L j(t )b (t )u (t ) ]

    This is in the desired form of an n th-order differential equation.

    -42-

  • 8/15/2019 Linear System Theory 2 e Sol

    45/106

  • 8/15/2019 Linear System Theory 2 e Sol

    46/106

    Linear System Theory, 2/E Solutions Manual

    C (t ) B (σ) = H (t )F (σ) (*)

    for all t , σ, picking an appropriate t o and t  f  > t o ,

     M  x(t o , t  f )W  x(t o , t  f ) =t o

    ∫ t  f 

    C T (t ) H (t ) dt t o

    ∫ t  f 

    F (σ) BT (σ) d σ   (**)

    where the left side is a product of invertible matrices by minimality. Therefore the two matrices on the right side

    are invertible. Let

    P−1 = M  x−1(t o , t  f )

    t o

    ∫ t  f 

    C T (t ) H (t ) dt 

    Then multiply both sides of (*) by C T (t ) and integrate with respect to t  to obtain

     M  x(t o, t  f ) B (σ) =

    t o

    ∫ t  f 

    C T (t ) H (t ) dt F (σ)

    for all σ. That is,

     B (σ) = P−1F (σ)

    for all σ. Similarly, (*) gives

    C (t )W  x(t o , t  f ) = H (t )t o

    ∫ t  f 

    F (σ) BT (σ) d σ

    that is,

    C (t ) = H (t )t o

    ∫ t  f 

    F (σ) BT (σ) d σ W  x−1(t o , t  f )

    But (**) then gives

    t o

    ∫ t  f 

    F (σ) BT (σ) d σ W  x−1(t o, t  f ) =

       

       

       

       

    t o

    ∫ t  f 

    C T (t ) H (t ) dt 

       

       

       

       

    −1

     M  x(t o , t  f ) = P

    so we have

    C (t ) = H (t )P

    for all  t . Noting that 0 = P−1  . 0 . P, we have that P is a change of variables relating the two zero- A  minimal

    realizations. Since a change of variables always can be used to obtain a zero- A realization, this shows that any

    two minimal realizations of a given weighting pattern are related by a variable change.

    Solution 10.11   Evaluating

     X (t+σ) = X (t ) X (σ)

    at  σ  = −t  gives that  X (t ) is invertible, and  X −1(t ) =  X (−t ) for all   t . Differentiating with respect to  t , and withrespect to σ, and using

    ∂t ∂___

     X (t+σ) =∂σ∂___

     X (t+σ)

    gives

    -44-

  • 8/15/2019 Linear System Theory 2 e Sol

    47/106

    Linear System Theory, 2/E Solutions Manual

       

       

       

    dt 

    d ___ X (t )

       

       

       

      X (σ) = X (t )   

       

       

    d σd ___

     X (σ)   

       

       

    which implies

    d σd ___

     X (σ) = X (−t )   

       

       

    dt 

    d ___ X (t )

       

       

       

      X (σ)

    Integrate both sides with respect to t  from a fixed t o to a fixed t  f  > t o to obtain

    (t  f  − t o)d σd ___

     X (σ) =t o

    ∫ t  f 

     X (−t )   

       

       

    dt 

    d ___ X (t )

       

       

       

      dt X (σ)

    Now let

     A =t  f 

    −t o

    1_____

    t o

    ∫ t  f 

     X (−t )   

       

       

    dt 

    d ___ X (t )

       

       

       

      dt 

    to write

    d σd ___

     X (σ) = A X (σ) ,   X (0) = I 

    This implies X (σ) = e Aσ.