lecture notes 5.1-5.2

10
!"# %&'()(&) *)(+,-.(/0 %,12-/',)/ &3 45,'(./-0 2)# 6(&75,'(./-0 489: ;<;=  >2"" <?;@ AB..,)5&+,) ; C D2E, >&B)#2/(&). &3 45,'(./-0 F 4521/,- GH;IGH< GH; !"#$%& GH< ()# *+$,- ./0 12 ()#$314&"/3+5, "#$%&'J /5, 2K("(/0 /& #& L&-M &- /-2).3,-N.B11"0 5,2/  9),-E0 B.,# /& 72B., 2) &KO,7/ /52/ 52. '2.. /& '&+, (. 72"",# PPPPPPPPPPPPP  9),-E0 B.,# /& 72B., /5, /,' 1,-2/B-, &3 2) &KO,7/ /& - (., (. 72"",# PPPPPPPPPPPPPP  (#)*+, QF B)(/ &3 ,),-E0 (. /5, -./0$ 123R KB/ M("&O&B",. SMTU 2-, &3/,) B.,#  ; T V 1     1 calorie (cal) = 4.184 J (joule); “energy needed to heat 1 g of H < ! 3-&' ;@HG4 /& ;GHGC”  ; #(,/2-0 72"&-(, S42"U V ;??? 7 2" V ; M72" 45$%6.7'#86)9+J ./B#0 &3 ,),-E0 2)# (/. PPPPPPPPP PPPPP 3-&' &), 3&-' /& 2)&/5,- ()  PPPPPPPPPP 45$%6.95$6)+*%' J /5, 3(,"# &3 /5,-'&#0)2'(7. 211"(,# /& /5, PPPPPPPPPPPPPPPP PPPP #B-()E 75,'(72" -,27/(&).  45$%6.7'#86)9 :*8*$ 1;89%.+980$3J 2 #,.7-(1/(&) &3 2 .0./,' () /,-'. &3 3/5$1,516+5 +2-(2K",. "(M,  PPPPPPPPPP  ;.0$9/08% :*8*$ 1;)9%.+980$3J 2 #,.7-(1/(&) &3 2 .0./,' () /,-'. &3 /5, 1-&1 ,-/(,. &3 (/. '&",7B",. "(M,  PPPPPPPPPP <)#$*)9 "#$%&' 1" = 3J ,),-E0 2) &KO,7/ 1&..,..,. K0 +(-/B, &3 (/. PPPPPPPP = = ()()  !7/368#, J  ;$958#)980 J '&/(&) &3 '27-&.72", &KO,7 /.W PPPPPPPPPPPP PPPPPPPPP  45$%680 J -2)#&' '&/(&) &3 )2)&.72", &KO,7/.W  >9./+*)9J 1,-(&#(7 '&/(&) &3 )2)&.72", &KO,7/.W  PPP 4 X 8 G = X ! Y  S"U   PPP = < SEU  Z PPP 4!  SEU  Z PPP 8 < !  SEU  Z PPP ! < SEU  Z PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP [(),/(7 ,),-E0 2..&7(2/,# L(/5 '&/(&). &3 '&",7B",.  L5(75R () /5(. 72.,R 2-, .& +(&",)/ /52/ /5,0 -,.B"/ () 2 .5&7M L2+,\ !7/368#J 72"7B"2/, /5, M(),/(7 ,),-E0 S() TU &3 2 <GH? ME '2.. '&+()E 2/ ;H]^  S_@ '15UH ?.*$#*)80 "#$%&' 1" @ 3J ,),-E0 2) &KO,7/ 1&..,..,. K0 +(-/B, &3 (/. PPPPPPPPPPP PPPPPPPPPP SK&) # ,),-E(,.UW  PPPPPPPPPP P #B, /& PPPPPPPPP PPPPPP ()/,-27/(&). = =   9.81  ℎℎ   

Upload: jarzola11

Post on 02-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture Notes 5.1-5.2

8/11/2019 Lecture Notes 5.1-5.2

http://slidepdf.com/reader/full/lecture-notes-51-52 1/10

!"# %&'()(&) *)(+,-.(/0 %,12-/',)/ &3 45,'(./-0 2)# 6(&75,'(./-0 489: ;<;= – >2"" <?;@

AB..,)5&+,) ; C D2E,

>&B)#2/(&). &3 45,'(./-0 F

4521/,- GH;IGH<

GH; !"#$%&

GH< ()# *+$,- ./0 12 ()#$314&"/3+5,

"#$%&'J /5, 2K("(/0 /& #& L&-M &- /-2).3,-N.B11"0 5,2/

•  9),-E0 B.,# /& 72B., 2) &KO,7/ /52/ 52. '2.. /& '&+, (. 72"",# PPPPPPPPPPPPP

•  9),-E0 B.,# /& 72B., /5, /,'1,-2/B-, &3 2) &KO,7/ /& -(., (. 72"",# PPPPPPPPPPPPPP

•  (#)*+, QF B)(/ &3 ,),-E0 (. /5, -./0$ 123R KB/ M("&O&B",. SMTU 2-, &3/,) B.,#

•  ; T V 1 

   

•  1 calorie (cal) = 4.184 J (joule); “energy needed to heat 1 g of H<! 3-&' ;@HG4 /& ;GHGC”

•  ; #(,/2-0 72"&-(, S42"U V ;??? 72" V ; M72"

45$%6.7'#86)9+J ./B#0 &3 ,),-E0 2)# (/. PPPPPPPPPPPPPPPPPPPPPPPP 3-&' &), 3&-' /& 2)&/5,- ()

 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

45$%6.95$6)+*%'J /5, 3(,"# &3 /5,-'&#0)2'(7. 211"(,# /& /5, PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP #B-()E

75,'(72" -,27/(&).

•  45$%6.7'#86)9 :*8*$ 1;89%.+980$3J 2 #,.7-(1/(&) &3 2 .0./,' () /,-'. &3 3/5$1,516+5 +2-(2K",. "(M,

 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

•  ;.0$9/08% :*8*$ 1;)9%.+980$3J 2 #,.7-(1/(&) &3 2 .0./,' () /,-'. &3 /5, 1-&1,-/(,. &3 (/. '&",7B",. "(M,

 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

<)#$*)9 "#$%&' 1"=3J ,),-E0 2) &KO,7/ 1&..,..,. K0 +(-/B, &3 (/. PPPPPPPPPPPPPPPPPPP

= =

()() 

!7/368#,J

• 

;$958#)980J '&/(&) &3 '27-&.72", &KO,7/.W PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP•  45$%680J -2)#&' '&/(&) &3 )2)&.72", &KO,7/.W PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

•  >9./+*)9J 1,-(&#(7 '&/(&) &3 )2)&.72", &KO,7/.W PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

 PPP 4X8G=X!Y S"U  PPP =< SEU Z PPP 4! SEU Z PPP 8<! SEU Z PPP !< SEU  Z PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

[(),/(7 ,),-E0 2..&7(2/,# L(/5 '&/(&). &3 '&",7B",. – L5(75R () /5(. 72.,R 2-, .& +(&",)/ /52/ /5,0 -,.B"/ () 2 .5&7M L2+,

!7/368#J 72"7B"2/, /5, M(),/(7 ,),-E0 S() TU &3 2 <GH? ME '2.. '&+()E 2/ ;H]^  S_@ '15UH

?.*$#*)80 "#$%&' 1"@3J ,),-E0 2) &KO,7/ 1&..,..,. K0 +(-/B, &3 (/. PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP SK&)# ,),-E(,.UW

 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP #B, /& PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP ()/,-27/(&).

= ℎ =    9.81 

ℎℎ   

Page 2: Lecture Notes 5.1-5.2

8/11/2019 Lecture Notes 5.1-5.2

http://slidepdf.com/reader/full/lecture-notes-51-52 2/10

!"# %&'()(&) *)(+,-.(/0 %,12-/',)/ &3 45,'(./-0 2)# 6(&75,'(./-0 489: ;<;= – >2"" <?;@

AB..,)5&+,) < C D2E,

•  :&./ ('1&-/2)/ 3&-' &3 91 () '&",7B",. (. ,",7/-&./2/(7 1&/,)/(2" ,),-E0 S9,"U K,/L,,) /L& ()/,-27/()E

&KO,7/. L(/5 ,",7/-(72" 752-E,. S` ; a ` <U

= = .× 

        

!7/368#,J

•  A%8B)*8*).#80J &KO,7/. /52/ 2-, 5,"# () 2 52)# 2-, 2//-27/,# /& /5, 3"&&- K0 E-2+(/2/(&)2" 3&-7,

• 

"0$9*%.+*8*)9J PPPPPPPPP 752-E,# 12-/(7",. PPPPPPPPPPPPPR PPPPPPPPPPPPPPPPPP 752-E,# 12-/(7",. PPPPPPPPPPPPPP () (&)(7 7&'1&B)#.

•  C5$6)980J PPPPPPPPPPPPPPPPPPPPPPPP K,/L,,) 2/&'. () '&",7B"2- 7&'1&B)#.

"#$%&'J 72) K, 7&)+,-/,# 3-&' &), /01, /& 2)&/5,-

!7/368#J 707"(./ PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP S.(//()E &) /&1 &3 /5, 5(""UW 1&/,)/(2" ,),-E0 (. 7&)+,-/,# /&

 PPPPPPPPPPPPPPPPPPPPPPPPPPPP 2. .1,,# ()7-,2.,. S7&2./()E /& K&//&' &3 5(""U!7/368#,  #,.7-(K, /5, ,),-E0 /-2).3&-'2/(&). 2/ ,275 ./,1 () /5, #(+()E 15&/&.

2U 

%(+,- 52. PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP #B, /& '27-&.72", 1&.(/(&)

KU 

4&)+,-/. PPPPPPPPPPPPPPPPPPPPPPPPP /& '27-&.72", PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

7U 

4&)+,-/. PPPPPPPPPPPPPPPPPPP M(),/(7 ,),-E0 /& PPPPPPPPPPPPPPPPPP M(),/(7 ,),-E0 K0

 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 3-&' PPPPPPPPPPPPPPPPPP /& /5, PPPPPPPPPPPPPPPPPPPPPPP

Page 3: Lecture Notes 5.1-5.2

8/11/2019 Lecture Notes 5.1-5.2

http://slidepdf.com/reader/full/lecture-notes-51-52 3/10

!"# %&'()(&) *)(+,-.(/0 %,12-/',)/ &3 45,'(./-0 2)# 6(&75,'(./-0 489: ;<;= – >2"" <?;@

AB..,)5&+,) X C D2E,

:'+*$6J PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPW "(M, PPPPPPPPPPPPPPPPPPPPPPPPPP () 7"&.,# .0./,'

•  "D/)0)E%)/6,  2"" '27-&.7&1(7 1-&1,-/(,. SDR bR cU 2-, PPPPPPPPPPPPPPPPPPPPPPP 2)# -,'2() .& ,+,) (3

/5, .0./,' (. #(.7&)),7/,# 3-&' /5, .B--&B)#()E.

•  :*$87' :*8*$,  1-&1,-/(,. 2-, B)752)E()E KB/ 'B./ 52+, 2 PPPPPPPPPPPP () 2)# &B/ &3

 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

:/%%./#7)#&+J PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPW "(M, PPPPPPPPPPPPPPPPPPPPPP () 7"&.,# .0./,'(#)B$%+$J PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

F.%= 1G3J 2 ',752)(72" 1-&7,.. /52/ /-2).3,-. ,),-E0 /& &- 3-&' 2) &KO,7/ SPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPUW

,),-E0 B.,# /& PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP &+,- .&', #(./2)7, S#U /-2+,",#

= ×  

The part of the universe under study H2(g) and O2(g)

unchanging in time

flow

energy and/or matter

The rest of the universe outside the system cylinder and pistonsystem + surroundings

mass and energy

energy exchanged neither energy nor mass

a directed energy change

move an object against a resisting force (F)

Page 4: Lecture Notes 5.1-5.2

8/11/2019 Lecture Notes 5.1-5.2

http://slidepdf.com/reader/full/lecture-notes-51-52 4/10

!"# %&'()(&) *)(+,-.(/0 %,12-/',)/ &3 45,'(./-0 2)# 6(&75,'(./-0 489: ;<;= – >2"" <?;@

AB..,)5&+,) @ C D2E,

!7/368#, describe what happens to work and energy below…

C5$6)980 @%.9$++$+J L&-M &77B-. L5,),+,- .&',/5()E PPPPPPPPPPPPPPPPPPPPPPPP 9 

S1B.5,.N1B"". &) .B--&B)#()E 2(-U

!7/368#, L52/ 5211,). (3 /5, E2. ().(#, 2 K2""&&) (. 5,2/,#d

45$%680 "#$%&'J M(),/(7 ,),-E0 &3 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPR ',2.B-,# K0 3()#()E /5,

 PPPPPPPPPPPPPPPPPPPPPPPPP &3 2) &KO,7/

•  8(E5,- c,'1,-2/B-,. V PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

4$6@$%8*/%$ 1! 3J ',2.B-, &3 /5, PPPPPPPPPPPPPPPPPPPPPPPPPP &3 2 .2'1",

H$8* 1D3J /5, 2'&B)/ &3 /5,-'2" ,),-E0 /-2).3,--,# 3-&' &), &KO,7/ /& 2)&/5,-

SPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPU 2. /5, -,.B"/ &3 2 PPPPPPPPPPPPPPPPPPPPPPPPPP K,/L,,) /5, /L&

!7/368#J ,e1"2() 5&L 2 /5,-'&',/,- L&-M. L5,) /5, /,'1,-2/B-, &3 L2/,- (. '&)(/&-,# 2. /5, L2/,- 2)# 8E 2-,

5,2/,# K0 2 KB-),-

•  c,'1,-2/B-,J PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

• 

b&"B',J PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP•  f,)E/5J PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

H$8* I0.GJ #(-,7/(&) &3 ,),-E0 /-2).3,- (. 3-&' PPPPPPPPPPPPPP /& PPPPPPPPPPPPPP &KO,7/. B)/(" /5,0 -,275 *5$%680

$D/)0)E%)/6 SPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 9U

You do work against G

potential energy converts intokinetic energy

No work is done on

the floor (it doesntmove)

expands or contracts

Gas expands and balloon grows; gasdoes work pushing back the rubber

and air outside it

molecular/atomic/ionic motion

emperature

faster motion

thermal energy

between the system and surroundings emperature difference

increases and atoms move faster and become farther apart

of the material increasesof liquid in column increases (Hg^)

hotter colder

equal temperature

Page 5: Lecture Notes 5.1-5.2

8/11/2019 Lecture Notes 5.1-5.2

http://slidepdf.com/reader/full/lecture-notes-51-52 5/10

!"# %&'()(&) *)(+,-.(/0 %,12-/',)/ &3 45,'(./-0 2)# 6(&75,'(./-0 489: ;<;= – >2"" <?;@

AB..,)5&+,) G C D2E,

!7/368#,  "&&M()E 2/ /5, 15&/&. K,"&LR #,.7-(K, L52/ (. E&()E &) () /,-'. &3)#/-  2)# -#36#$/-:$# 2. 2 K2- &3 (-&) (.

L2-',# 2)# /5,) 1"27,# () /5, K,2M,- &3 L2/,-

J8G .I C.#+$%B8*).# .I "#$%&'J ,),-E0 72))&/ K, PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPW (/ 72) &)"0 K,

 PPPPPPPPPPPPPPPPPPP 3-&' &), 3&-' /& 2)&/5,-W /5, /&/2" ,),-E0 &3 /5, B)(+,-., (. 7&)./2)/

= =   2.99×10

 

•  K#*$%#80 "#$%&' 1"3J /-2).3,--,# 3-&' S&- /&U /5, PPPPPPPPPPPPPPPPPPPPPP 'B./ K, ,gB2" /& /52/ "&./

S&- E2(),#U K0 /5, PPPPPPPPPPPPPPPPPPPPPPPW /5, 72127(/0 /& PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

∆ = +  

K#*$%#80 "#$%&' 1"3J .B' &3 2"" M(),/(7 2)# 1&/,)/(2" ,),-E(,. &3 2"" .0./,' 7&'1&),)/. S,+,-0 '&",7B", &- (&)U

•  C58#&$ )# K#*$%#80 "#$%&' 1Δ"3J 3()2" ,),-E0 &3 /5, .0./,' '()B. /5, ()(/(2" ,),-E0 &3 /5, .0./,'

∆ = −  

• 

F3 Δ" L MR /5,) "I)#80 L ")#)*)80 

•  "#7$%&.#)9J /5, PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP () /5, 3&-' &3 L&-M

 PPPPPPPPPPPPPPPPPPPPPPPPPPPW )&)I.1&)/2),&B. 1-&7,..

•  F3 Δ" N MR /5,) "I)#80 N ")#)*)80 

•  "O$%&.#)9J /5, PPPPPPPPPPPPPPPPPPPPPPPP () /5, 3&-' &3 L&-M PPPPPPPPPPPPPPPPPPPPPPPPW

.1&)/2),&B. 1-&7,..

created or destroyed

converted

system

surroundings supply heat (q) or do work (w)

energy

heat exchange work done

system absorbed energy

from the surroundings

system released energy to the surroundings

Page 6: Lecture Notes 5.1-5.2

8/11/2019 Lecture Notes 5.1-5.2

http://slidepdf.com/reader/full/lecture-notes-51-52 6/10

!"# %&'()(&) *)(+,-.(/0 %,12-/',)/ &3 45,'(./-0 2)# 6(&75,'(./-0 489: ;<;= – >2"" <?;@

AB..,)5&+,) h C D2E,

!7/368#J ^?< MT (. %$0$8+$7 L5,) ; '&" &3 ',/52), S48@U -,27/. L(/5 < '&" &3 &e0E,) S!<U /& 1-&#B7, ; '&" &3 72-K&)

#(&e(#, S4!<U 2)# < '&" &3 L2/,- S8<!U

48@ SEU  Z < !< SEU   4!< SEU  Z < 8<! SEU  Z PPPPPPPPPPPPPPPPPPPPPPPPPPPP

∆ = − = −  

8,2/ /-2).3,- 1-&7,..,.J

•  "#7.*5$%6)9 1D L M3J 5,2/ S/5,-'2" ,),-E0U (. PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 3-&' /5, PPPPPPPPPPPPPPP

!7/368#J

•  "O.*5$%6)9 1D N M3J 5,2/ (. PPPPPPPPPPPPPPPPPPPPPPP SE(+,) &33U K0 /5, .0./,' ()/& /5, .B--&B)#()E.

!7/368#, 

802 KJ energy-802 KJ

absorbed by the system surroundings

releasedsteam condenses: H2O(g) -> H2O(l)

Page 7: Lecture Notes 5.1-5.2

8/11/2019 Lecture Notes 5.1-5.2

http://slidepdf.com/reader/full/lecture-notes-51-52 7/10

!"# %&'()(&) *)(+,-.(/0 %,12-/',)/ &3 45,'(./-0 2)# 6(&75,'(./-0 489: ;<;= – >2"" <?;@

AB..,)5&+,) ] C D2E,

!7/368#,  72"7B"2/, Δ9 3&- 2 .0./,' () L5(75 @h< T &3 L&-M (. #&), L5,) 2 E2. (. 7&'1-,..,#R 2)# ;<^ T &3 5,2/ (.

/-2).3,--,# /& /5, .B--&B)#()E.

>()2" ()/,-)2" ,),-E0 &3 /5, E2. (. PPPPPPPPPPPPPPPPPPPP SPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPU

K,72B., '&-, ,),-E0 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP /52) PPPPPPPPPPPPPPPPPPPPPPPPPPPPP

;$/5-+5#J 2 '(e/B-, &3 8< 2)# =< 52. 2 )+%)#$ +"-#$"/8 #"#$%&  /52) 2 .2'1", &3 =8XH %,/,-'(), /5, .(E) &3 /5, Δ9

S752)E, () ()/,-)2" ,),-E0U () /5, 3&""&L()E -,27/(&).J

∆ = −  

;$1<8#3J (#,)/(30 /5, .0./,'R .B--&B)#()E.R 2)# .(E). &3 gB2)/(/0 &3 ,),-E0 /-2).3,--,# K0 5,2/()EN7&&"()E SgU 2)#N&-

gB2)/(/0 &3 ,),-E0 /-2).3,--,# K0 L&-M #&), &) /5, .0./,' SL.0./,'UQ0./,' QB--&B)#()E. g &- L

•  :,/2" 3,,". 7&"# /& /5, /&B75J

•  4B1 &3 5&/ 7&33,, 7&&".J

•  4-2), "(3/. 2 12"",/ &3

'2-.5'2""&L. 2E2()./ E-2+(/0J

•  i(- 1B.5,. &B/L2-#. &) /5, L2"".

&3 2 K2""&&) 2. (/ ()3"2/,.J

;$/5-+5#J F/ /2M,. ;HG MT /& -2(., /5, (  &3 2 72) &3 4&M, 3-&' <GH?j4 /& <hH?j4H c5, 72) &3 4&M, (. /5,) 1"27,# () /5,

-,3-(E,-2/&- 2)# 7&&",# 3-&' <GH?j4 /& ;H?j4H

•  k52/ gB2)/(/0 &3 5,2/ /-2).3,- (. -,gB(-,# S() MTUd

∆T = T − T =1.0℃−25.0℃=−24℃q = (−24℃) 1.5 kJ

1℃ = −  

•  What constitutes the “system” and the “surroundings” in the qB,./(&)d

.0./,' V PPPPPPPPPPPPPPPPPPPPPPPPPP .B--&B)#()E. V PPPPPPPPPPPPPPPPPPPPPPPPPPPP

•  k52/ (. /5, +2"B, &3 /5, ()/,-)2" ,),-E0 752)E, SΔ9U 3&- /5, 7&&"()E &3 /5, 4&M,d

∆ E = q + w = (−36 kJ) + (0 kJ) = −  

work done on a system = +462Jheat released to the surroundings = exothermic = -128JDelta E = (-128J) + (+462J) = +334J

greater particles are moving faster in the final stateentered the system through work

departed as heat flow

Delta E = E(final) - E(initial) < 0 Delta E = E(final) - E(initial) > 0

metal hand q > 0

coffee cup/air q < 0

pallet of marshmellows crane w > 0

air balloon w < 0

1C - 25C = -24C

q = (-24C)(1.5KJ/1C) = -36KJ released to the surroundings

can and coke air around the can

Page 8: Lecture Notes 5.1-5.2

8/11/2019 Lecture Notes 5.1-5.2

http://slidepdf.com/reader/full/lecture-notes-51-52 8/10

!"# %&'()(&) *)(+,-.(/0 %,12-/',)/ &3 45,'(./-0 2)# 6(&75,'(./-0 489: ;<;= – >2"" <?;@

AB..,)5&+,) ^ C D2E,

;$/5-+5#J c5, ()/,-)2" ,),-E0 4#5$#/,#, K0 <@?? TR L5,) 2 '(e/B-, &3 8< 2)# !< E2.,. (. (E)(/,# 2)# KB-).H F3 /5,

.B--&B)#()E. 2-, 5,2/,# K0 ;H^Y MTR 5&L 'B75 01$=  L2. #&), &) /5(. .0./,'d

∆ E = q + w w = ∆ E − q 

Cooling the system … heat transfers out from system to surroundings, so q < 0w = (−2400 J) − (−1.89 kJ) 1000 J

1 kJ = −  

;$/5-+5#J 2 .0./,' #&,. G?H< T &3 L&-M &) (/. .B--&B)#()E. 2)# /5,-, (. 2 .('B"/2),&B. Y?H; T 5,2/ /-2).3,- 3-&' /5,surroundings to the system. What is Δ! .0./,'d

K#*$%#80 "#$%&' .I *5$ :'+*$6 1Δ"+'+3J B.B2""0 L, 52+, )& L20 &3 3()#()E /5(. +2"B, K,72B., (/ (. /&& 7&'1",e 2 1-&K",'

•  k, #& M)&L (/ (. PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP K0 L5(75 /5, .0./,' 275(,+,# /52/ ./2/,W

 PΔ9.0./,' #,1,)#. &)"0 &) 9()(/(2" 2)# 93()2" P

:*8*$ P/#9*).#J 1-&1,-/0 &3 2 .0./,' /52/ (. #,/,-'(),# K0 (/. 1-,.,)/ ./2/, &- 7&)#(/(&) 2)# )&/ 5&L /5, 7&)#(/(&) L2.

7-,2/,#

•  !7/368#,: pressure (P), volume (V), temperature (T), & internal energy (E)…anything with a

state function change (Δ) like PPPPPPPPPPPPPPPPPPPPPPPPPPP

!7/368#,  /5, PPPPPPPPPPPPPPPPPPPPPPPPPPP between Denver and Chicago doesn’t

#,1,)# &) 5&L 0&B E,/ /5,-, S3"0R #-(+,R /-2()UW /5, 2"/(/B#, &)"0 #,1,)#. &) /5,

 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

!7/368#, /5, PPPPPPPPPPPPPPPPPPPPPPPPPP &3 G? E &3 8<! S"U 2/ <Gj4 #&,. )&/ #,1,)# &)

L5,/5,- L, PPPPPPPPPPPP G? E &3 8<! S"U 2/ ;??j4R &- L, PPPPPPPPPPPPPPP G? E &3 8<! S"U 

2/ ?j4H

QRQS:*8*$ P/#9*).#+J PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 2-, 12/5I

#,1,)#,)/ 2)# 2-, =!c ./2/, 3B)7/(&). K,72B., /5,0 2-, &)"0

 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

•  k5,/5,- /5, K2//,-0 (. .5&-/,# &B/ &- (. #(.752-E,# K0 -B))()E

/5, 32)R (/. ()/,-)2" ,),-E0 #(33,-,)7, SΔ9U (. /5, .2',R KB/ 5,2/

SgU 2)# L&-M SLU 2-, #(33,-,)/ () ,275 72.,

"O@8#+).# F.%=J L&-M #&), 2. /5, -,.B"/ &3 2 PPPPPPPPPPPPPPPPPPPPPPPPPPPP

in the system; also known as “pressureIvolume” or “PV work” 

•  !1,) 7&)/2(),-J &)"0 L&-M #&), (. K0 2 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

•  k, 72) ',2.B-, /5, L&-M #&), K0 /5, E2. (3 /5, -,27/(&) (. #&), () 2 +,..," /52/ 52. K,,) 3(//,# L(/5 2 1(./&)

= − ∆ = − −  

w = delta E - q

cooling the system… heat transfers out from system to surroundings, so q < 0

w = (-2400J) - (-1.89KJ)(1000J/1KJ) = -510J

independent of the path

delta T = T(final) - T(initial)

altitude difference

elevation of the cities above sea level

internal energy

cool heat

heat (q) and work (w)

manifested during a process/reaction

volume change

gas pushing on the surroundings (or by the surroundings pushing on

he gas)

Page 9: Lecture Notes 5.1-5.2

8/11/2019 Lecture Notes 5.1-5.2

http://slidepdf.com/reader/full/lecture-notes-51-52 9/10

!"# %&'()(&) *)(+,-.(/0 %,12-/',)/ &3 45,'(./-0 2)# 6(&75,'(./-0 489: ;<;= – >2"" <?;@

AB..,)5&+,) Y C D2E,

G T  – " $O*$%#80  ΔV = – " $O*$%#80  1UI)#80  –  U)#)*)803 (#)*+,  STU SK2-U Sf(/,-.U Δ = “change in” = final – ()(/(2"

C.#B$%+).#+,  ; Sf K2-U V PPPPPPPPPPPPPPPP

•  "O@8#+).# 1ΔU L M3J L&-M #&), PPPPPPPPPPP /5, .0./,' PPPPPPPPPPPPP /5, .B--&B)#()E.

•  L V PPPPPPPPPPPPPPPPPPPPPP

•  C.6@%$++).# 1ΔU N M3J L&-M #&), PPPPPPPPPPPPP /5, .0./,' PPPPPPPPPPPPPP /5, .B--&B)#()E.

•  L V PPPPPPPPPPPPPPPPPPPP

"O86@0$, 2 E2. ,e12)#. 3-&' <h@ 'f /& Y]; 'f 2/ 2 7&)./2)/ /,'1,-2/B-,H 42"7B"2/, /5, L&-M #&), () >1:8#, K0 /5,

E2. (3 (/ ,e12)#. S2U 2E2()./ 2 +27BB' 2)# SKU 2E2()./ 2 1-,..B-, &3 @H?? K2-H

S2U

SKU

K%%$B$%+)E0$J 1-&7,.. -B) () /5, PPPPPPPPPPPPPP #(-,7/(&) PPPPPPPPPPPPPP K, /5, PPPPPPPPPPPPPPPPPPPPPP &3 /5,

1-&7,.. -B) () /5, PPPPPPPPPPPPPPPPPPP #(-,7/(&)

•  D,e/,-)2" ≠ P.0./,' 

1L * atm = 101.3J

1L * 1bar = 100J

100J

by on

negative(-)

on by

positive(+)

V(initial) = 0.264L V(final) = .971L

Delta V = 0.707L

w = -P Delta V = -(0 bar)(0.707L) = 0L bar (100J/1L bar) = 0J

forward will not exact opposite

reverse

Page 10: Lecture Notes 5.1-5.2

8/11/2019 Lecture Notes 5.1-5.2

http://slidepdf.com/reader/full/lecture-notes-51-52 10/10

!"# %&'()(&) *)(+,-.(/0 %,12-/',)/ &3 45,'(./-0 2)# 6(&75,'(./-0 489: ;<;= – >2"" <?;@

AB..,)5&+,) ;?

D2E,

V$B$%+)E0$J 1-&7,.. /52/ 1-&7,,#. .& PPPPPPPPPPPPPPPP /52/ /5, PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP -,'2()

7"&., /& PPPPPPPPPPPPPPPPPPPPPW 1-&7,.. -B) () /5, PPPPPPPPPPPPPPPPP #(-,7/(&) PPPPPPPPPPPPPP /5,

 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP &3 /5, 1-&7,.. -B) () /5, PPPPPPPPPPPPPPPPPPPP #(-,7/(&)

Δb7&'1-,..(&) SPPPPPPU V –Δb,e12).(&) SPPPPPPPPPU

D,e/ Z G L,(E5/. l D,e/ Z @ L,(E5/. 

"O@8#+).# 1%$6.B$ G$)&5*3,  PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPLSG@U V –D,e/R@ Δb,e12).(&) 

C.#*%89*).# 1877 G$)&5* E89=3,  PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

LS@GU V ZD,e/RG Δb7&'1-,..(&) 

LSG4) ≠ w(4GU

K%%$B$%+)E0$ @%.9$++, -,gB(-,. 31$# 01$= /& 7&'1-,.. /5, E2. K,72B.,

D7&'1-,..,# E2. l D,e12)#,# E2. 

!7/368#,  72"7B"2/, /5, L&-M () MT #&), #B-()E 2 .0)/5,.(. &3 2''&)(2 3-&' (/. ,",',)/. () L5(75 /5, +&"B', 7&)/-27/.

3-&' ^Hh f /& @HX f 2/ 2 7&)./2)/ ,e/,-)2" 1-,..B-, &3 @@ 2/'H k-(/, 2 K2"2)7,# 75,'(72" -,27/(&)H k5(75 #(-,7/(&) #&,.

/5, L&-M ,),-E0 3"&Ld k52/ (. /5, .(E) &3 /5, ,),-E0 752)E,d ?#862:8 51"@#$,+1",A B /-3 C BDEBFGH </$I B . </$ C BEE

 >I B . /-3 C BEBDFGH > 

K+.*5$%680J 1-&7,.. /52/ /2M,. 1"27, 2/ PPPPPPPPPPPPPPPPPPPPPPPPPPP

•  c,'1,-2/B-, 752)E,. /5, PPPPPPPPPPPPPPPPPPPP &3 '&",7B",.R KB/ #&,. )&/ 752)E, /5,

 PPPPPPPPPPPPPPPPPPP &3 2) (#,2" E2. K,72B., /5,0 52+, PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

•  Δc V PPPPPR .& Δ9 V PPPPP S3&- 2) (#,2" E2.U

K+.E8%)9J 1-&7,.. /52/ /2M,. 1"27, 2/ PPPPPPPPPPPPPPPPPPPPPPPPPPPP

• 

4&''&) () 75,'(./-0 L5,-, -,27/(&). 2-, &1,) /& PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP•  ΔD V PPPPP

K+.95.%)9J 1-&7,.. /52/ /2M,. 1"27, 2/ PPPPPPPPPPPPPPPPPPPPPP

•  Δb V PPPP

•  k5,) &)"0 PPPPPPPPPPPPPPPPPPPPPPPPP (. 1&..(K",J G T – ?$O* ΔU T WWWWWWWWWWWWWWWW T WWWWWW 

•  8,2/ ,+&"+,# ,gB2". PPPPPPPPPPPPPPPPPPPPPPPPPPJ Δ" T D X G T WWWWWWWWWWWWWWWWW T WWWWWWWW 

>7)8E8*)9J 1-&7,.. L5,-, PPPPPPPPPPPPPPPPPPPPPPPPPPPPP (. m,-&

•  g V PPPPPP

•   PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP .0./,' /52/ 2""&L. &)"0 3&- L&-M /& K, PPPPPPPPPPPPPPPPPPPPPPPPPPPJ

Δ" T D X G T WWWWWWWWWWWWW T WWWWWWWWWW w = (+) = “done .# system”

L V S –) = “done E' system” 

slowly system and surroundings

equilibrium forward will be

exact opposite reverse

+

work done by gas

work done on gas