lecture 4 jan 25

Upload: sudhakar-tpgit

Post on 04-Jun-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Lecture 4 Jan 25

    1/62

    11

    LECTURE 4

  • 8/13/2019 Lecture 4 Jan 25

    2/62

    22

    THE FINITE ELEMENT METHOD

    or NODAL APPROXIMATION METHOD:

    The basic concept behind the Finite

    element method is going from part to whole

    Name FINITE ELEMENTcoined by

    Clough

    Fitting of a number of piecewise continuous

    polynomials to approximate the variation of

    the field variable over the entire domain

  • 8/13/2019 Lecture 4 Jan 25

    3/62

    33

    STEPS INVOLVED IN THE FINITE ELEMENT

    METHOD:

    Discretisation of the structure

    Selection of suitable displacement model

    Derivation of elemental matrices and loadvectors

    Assembly of elemental equations to obtainoverall stiffness matrix

  • 8/13/2019 Lecture 4 Jan 25

    4/62

    44

    STEPS INVOLVED IN THE FINITE ELEMENT

    METHOD:contd

    Imposition of boundary conditions

    Solutions for the unknown nodal

    displacements

    Computation of elemental strains and

    stresses

  • 8/13/2019 Lecture 4 Jan 25

    5/62

    55

    1

    2

    3

    2

    1

    10 kN

    A 1= 2sq.cmA 2= 1sq.cm

    L 1= 10 cm

    L 2= 10cm

    E= 2x107N/cm2 BC:

    U1= 0

    Pl= 10kN

  • 8/13/2019 Lecture 4 Jan 25

    6/62

    6

    u1

    u2

    u3

    N1u1+ N2u2

    N1u2+ N2u3

  • 8/13/2019 Lecture 4 Jan 25

    7/62

    77

    u(x) = a1+ a2x

    u(x) = N1u1+ N2u2

    Here Nis are called Shape functions or

    Interpolation functionsShape functions are used to interpolate

    the field variable over the element in

    terms of nodal values of the field variable

    1=N+N

    1=)(N0.=)0(Nx/=(x)N

    0=)(N1.=)0(Nx/-1=(x)

    21

    121

    111

    N

  • 8/13/2019 Lecture 4 Jan 25

    8/62

    88

    It can be verified that

    = 0 i j= 1 i = j

    =

    (Kronecker Delta Function)

    .

    N xi j( )

    ij

    1 2 1 2

    u1

    u2N1 N2

    1

  • 8/13/2019 Lecture 4 Jan 25

    9/62

    99

    To provide for the possibility of a constant

    or uniform field when u is constant at all

    points in the domainWe have

    u1= u2= . = un= c

    (x)=u(x)==u(x)n

    1j=

    i

    n

    1j=

    ii NcNc

    1=(x)N

    NN

    i

    n

    1j=

    21

    or

    ccc

    The above properties are very important

    properties of shape functions.

  • 8/13/2019 Lecture 4 Jan 25

    10/62

    1010

    In FEA, we use the nodal approximation to

    specify the unknown function in terms of its

    values at selected nodal po ints, through a

    Nodal App rox imation

  • 8/13/2019 Lecture 4 Jan 25

    11/62

    1111

    Now let us consider the numerical example

    of the tapered beam whose area of crosssection varies uniformly from A1to A2at the

    free end and subjected to its own self

    weight and a point load at the end.

  • 8/13/2019 Lecture 4 Jan 25

    12/62

    1212

    A(x) = A1(A1- A2) x/l

    ie.A(x) = 80(80-20)x/300

    = (800.2x)

    Specific weight = 0.075 N/cm3Young's Modulus E = 2 x 107N/cm2

    Example

  • 8/13/2019 Lecture 4 Jan 25

    13/62

    1313

    The governing equation is

    in 0 < x < L

    With B.Cs i) u(0) = 0

    and

    ii)At x=lP]

    dx

    du[EA(x)

    0=A(x)+]dx

    du[EA(x)

    dx

    d

  • 8/13/2019 Lecture 4 Jan 25

    14/62

    1414

    Weak form is given by

    Substituting in the weak formu(x) = N1u1+N2u2

    And w(x) as N1first and then N2we get a

    system of two equations in two unknownsnamely u

    1and u

    2

    w(0)P(0)-))w(P(dxw(x)A(x)=dxdxdw

    dxdu)(

    00

    llxEA

    ll

  • 8/13/2019 Lecture 4 Jan 25

    15/62

    1515

    w(0)P(0)-))w(P(dxNA(x)

    =dx

    dx

    dN

    dx

    )d(N)(

    1

    0

    12211

    0

    ll

    uNuxEA

    l

    l

    w(0)P(0)-))w(P(dxNA(x)

    =dxdx

    dN

    dx

    )d(N)(

    2

    0

    22211

    0

    ll

    uNuxEA

    l

    l

    ----1

    ----2

  • 8/13/2019 Lecture 4 Jan 25

    16/62

    1616

    w(0)P(0)-))w(P(dxNA(x)

    =dx

    dx

    dN

    dx

    )d()(dx

    dx

    dN

    dx

    )d(N)(

    1

    0

    212

    0

    111

    0

    ll

    uN

    xEAuxEA

    l

    ll

    w(0)P(0)-))w(P(dxNA(x)

    =dxdx

    dN

    dx

    )d()(dx

    dx

    dN

    dx

    )d(N)(

    2

    0

    222

    0

    121

    0

    ll

    uN

    xEAuxEA

    l

    ll

  • 8/13/2019 Lecture 4 Jan 25

    17/62

    1717

  • 8/13/2019 Lecture 4 Jan 25

    18/62

    1818

    ee r=u][ eK

    dxdx

    dN

    dx

    dNEA(x)=

    ji

    0

    l

    e

    ijK

    dxN)(A= j0

    xrl

    e

    j

    These 2 equations can be written in matrix form a

    2

    1

    2

    1

    2221

    1211

    r

    r

    u

    u

    KK

    KK

    Where

  • 8/13/2019 Lecture 4 Jan 25

    19/62

    1919

    1N

    l

    xN =

    2l

    x

    = 1 -

    dN

    dx

    1

    l

    1 dN

    dx

    2

    l

    1

    == -

    We know that the shape functions for a

    two noded element are given by

  • 8/13/2019 Lecture 4 Jan 25

    20/62

    2020

    K11 dxdx

    dN

    dx

    dNEA(x) 11

    0

    l

    =

    xA-A

    -A 2110

    lE

    l

    dx1

    2

    l

    =

    l

    AAE

    l

    E

    2

    )()

    2

    A+

    2

    A( 2121

    =

  • 8/13/2019 Lecture 4 Jan 25

    21/62

    2121

    =

    K12dx

    dx

    dN

    dx

    dNA(x) 21

    0

    E

    l

    =

    = x

    l

    E

    l

    A-A

    -A 2110

    )2

    A+

    2

    A( 21

    l

    E

    K12 K21=

    1

    l

    dx1

    l

    l

    AAE

    2

    )( 21

  • 8/13/2019 Lecture 4 Jan 25

    22/62

    2222

    K22

    [ ]Ke

    11-

    1-1

    2

    A+A 21

    l

    E

    Therefore the element stiffness matrix will be

    =

    = dxdx

    dN

    dx

    dNA(x) 22

    0

    E

    l

    =

    =

    A-A

    -A 2110

    lE

    l

    )2

    A+

    2

    A( 21

    l

    E

    dx1

    2

    l

    l

    AAE

    2

    )( 21

  • 8/13/2019 Lecture 4 Jan 25

    23/62

    2323

    Similarly the element nodal load vector will be

    dxN)( 1

    0

    1 l

    xAr

    dxAl

    ])l

    x-(1

    l

    )A-(A-[ 211

    0

    =

    =

    =

    =

    ll 6

    A

    3

    A21

    dxN)( 20

    2 l

    xAr

    dxAl

    ])l

    x(l

    )A-(A-[ 2110

    ll

    3

    A

    6

    A 21

  • 8/13/2019 Lecture 4 Jan 25

    24/62

    2424

    Therefore the assembled load vector will be

    Case - I: Discretize the Tapered Bar into 3elements.

    The length of each element = 100 cm.''l

    =er

  • 8/13/2019 Lecture 4 Jan 25

    25/62

    2525

  • 8/13/2019 Lecture 4 Jan 25

    26/62

    2626

    7070

    7070

    10011-

    1-1

    2

    A+A 21

    1

    1 E

    l

    EK

    5050

    5050

    10011-

    1-1

    2

    A+A 32

    2

    2 E

    l

    EK

    3030

    3030

    10011-

    1-1

    2

    A+A

    43

    3

    3 E

    l

    E

    K

  • 8/13/2019 Lecture 4 Jan 25

    27/62

    2727

    [ ]

    ]

    ]

    K1

    [K

    [K

    2

    3

    =[K]

    The global stiffness matrix will become

    100

    E

    3030-

    30-30+5050-

    50-50+707070-70

    100

    E

    3030-00

    30-8050-0

    050-12070

    0070-70

  • 8/13/2019 Lecture 4 Jan 25

    28/62

    28

    12

    21

    2 2

    2

    61

    AA

    AAl

    r

    r

    6

    2006

    220

    100x

    680

    6

    100

    100x

    6

    1406

    160

    100x

    1r

    2

    r 3r

  • 8/13/2019 Lecture 4 Jan 25

    29/62

    29

    Similarly the assembled global load vector

    will become

    [R] = +

    |r|

    |r|

    ||

    3

    2

    1r

    3

    2

    1

    P

    P

    P

  • 8/13/2019 Lecture 4 Jan 25

    30/62

    3030

    The global load vector is

    [R] = +

    6

    80

    6

    100

    6

    140

    6

    160

    6

    200

    6

    220

    100x

    R

    O

    O

    P

    P

    O

    O

    R

    +

    80

    240

    360

    220

    6

    100x=

  • 8/13/2019 Lecture 4 Jan 25

    31/62

    3131

    Now the total system of equation will be

    E

    100

    - 70

    -70 120 - 50

    50 80 - 30

    - 30 30

    70

    u

    u

    u

    u

    1

    2

    3

    4

    P

    O

    O

    R

    80

    240

    360

    220

    6

    100x

    =

    Now applying the Boundary conditions i.e. u1 = 0 ..

    Delete the first row and first column of elements and

    the system of equation will reduce to

    120 - 50

    - 50 80 - 30

    30 30

    u

    u

    u

    2

    3

    4

    P

    O

    O

    80

    240

    360

    6

    100x=

  • 8/13/2019 Lecture 4 Jan 25

    32/62

    3232

    The data are E = 2 x 107N/cm2= 0.075 N/ccand P = 1 x 105N.

    On solving the above equation we get

    u4 = 0.035501997 cm

    u3 = 0.018818567 cmu2 = 0.008778557 cm

    The deflection at mid section of the bar by

    interpolation is

    = 0.01379856 cm2

    u+u=U

    32

    50x

  • 8/13/2019 Lecture 4 Jan 25

    33/62

    3333

    Example 2 Let us consider the discretization

    with 2 elements

    h = 150 cm

    The assembled stiffness matrix will be

    [K] =E

    150

    65 - 65

    65 + 35

    -35 35

    65

    Similarly the assembled load vector will be

    [R] = +x 150

    210

    6

    +120

    6

    90

    6

    180

    6

    R

    O

    P

  • 8/13/2019 Lecture 4 Jan 25

    34/62

    3434

    After applying the B.Cs the global system of

    equation will become

    =

    On solving the above set of simultaneous

    equations we get

    u3=0.033068406 cm (Tip displacement)

    u2=0.011607692 cm (Mid section

    displacement)

    E

    u150

    3

    100 - 35

    -35 35

    u2

    x 150

    240

    6

    80

    6

    O

    P

  • 8/13/2019 Lecture 4 Jan 25

    35/62

    3535

    [ ]Ke 11-1-1

    2A+A 21

    lE

    [ ]Ke

    11-

    1-1

    l

    EA

    For a bar of constant cross section A1= A2

    =

    1

    1

    2

    Aler

  • 8/13/2019 Lecture 4 Jan 25

    36/62

    3636

    Example 3

  • 8/13/2019 Lecture 4 Jan 25

    37/62

    3737

  • 8/13/2019 Lecture 4 Jan 25

    38/62

    3838

  • 8/13/2019 Lecture 4 Jan 25

    39/62

    3939

  • 8/13/2019 Lecture 4 Jan 25

    40/62

    4040

  • 8/13/2019 Lecture 4 Jan 25

    41/62

    41

  • 8/13/2019 Lecture 4 Jan 25

    42/62

    42

    WEAK FORM OF GOVERNING

    EQUATION FOR THERMAL

    PROBLEMS

  • 8/13/2019 Lecture 4 Jan 25

    43/62

    43

  • 8/13/2019 Lecture 4 Jan 25

    44/62

    44

    where

    k = Thermal conductivity coefficient

    h = Thermal convection coefficientA = Area of cross section subjected to

    CONDUCTION

    p= Perimeter is the area exposed to

    CONVECTION

    T = Atmospheric Temp. , T = Variable

    Q = Heat Source

  • 8/13/2019 Lecture 4 Jan 25

    45/62

    45

    (q + dq) q + hp dx(T - T)=0

    by dx we getdq + hp(T - T) = 0

    dx

    d(-kA(x) dT ) + hp(T - T)=0

    dx dx

  • 8/13/2019 Lecture 4 Jan 25

    46/62

    46

    Boundary conditions:

    i) At x= 0 T = To

    ii) At the free end any one of the following

    three possible boundary conditions could

    be specified

    1. If free end is insulated _ kA dT/dx = 0

    2. If free end is open to atmosphere_ kA dT/dx|=l = hA(T- T)

    3. Specified temperature T(l) = Tl

  • 8/13/2019 Lecture 4 Jan 25

    47/62

    47

    0)(

    TThp

    dx

    dTKA

    dx

    d

    0)()( dxxRxwThe weak form can be obtained by

    The governing equation for heat transfer in

    a one dimensional problem is given by

    For a bar of length l with wall temperature T

    the weak form of the governing equation

    becomes

  • 8/13/2019 Lecture 4 Jan 25

    48/62

    48

    l

    dxTThpdx

    dTKA

    dx

    dxw

    0

    0)()(

    l l

    dxTThpxwdxdx

    dTKA

    dx

    dxw

    0 0

    0)()()(

    1

    dxdx

    dTKA

    dx

    dxwI

    l

    0

    1 )(

    )(xwu dwdu

    dxdx

    dTKA

    dx

    ddv

    dx

    dTKAv

    Let

    and

  • 8/13/2019 Lecture 4 Jan 25

    49/62

    49

    vduuvI1

    dxdxdw

    dxdTKA

    dxdTKAxwI

    ll

    001 )(

    0)()()(000

    dxTThpxwdxdx

    dw

    dx

    dTKA

    dx

    dTKAxw

    lll

    Substituting the above term in equation 1,

    we get

  • 8/13/2019 Lecture 4 Jan 25

    50/62

    50

    0)()()()(0000

    dxTxhpwdxxTxhpwdxdx

    dw

    dx

    dTKA

    dx

    dTKAxw

    llll

    )()()()()(000

    TThAxwdxTxhpwdxxTxhpwdxdxdwdxdTKA L

    lll

    Boundary term B1(T,w) B2(T,w) l(w)

  • 8/13/2019 Lecture 4 Jan 25

    51/62

    51

    Substituting in the weak form

    T(x) = N1T1+N2T2

    And w(x) as N1first and then N2we get a

    system of two equations in two unknownsnamely T1and T2 which can be written as

  • 8/13/2019 Lecture 4 Jan 25

    52/62

    52

    2

    1

    2

    1

    2221

    1211

    2

    1

    2221

    1211

    q

    q

    T

    T

    KK

    KK

    T

    T

    KK

    KK

    convcond

    Where dxdx

    dN

    dxdNkA(x) =K ji

    l

    eijcond 0

    dxNhpT =q je

    j

    l

    0

    dxNNhp(x) =K ji

    l

    conv

    e

    ij 0

    L t th l t b f l l th l

  • 8/13/2019 Lecture 4 Jan 25

    53/62

    5353

    Let the elements be of equal length

    The element matrices are

    l

    hA

    +hP l

    +-

    -

    l

    KA] =[Ke

    0

    00

    21

    12

    611

    11

    hA T

    +hPl T] =[fe 011

    2

  • 8/13/2019 Lecture 4 Jan 25

    54/62

    54

  • 8/13/2019 Lecture 4 Jan 25

    55/62

    5555

    Boundary conditions:

    at x = 0, T(0) = T

    at x = L,

    conduction = convection loss

    For a typical linear element

    )- T= hA (Tdx

    dTKA ll

    (x/l) =N- (x/l) =N

    J

    I 1

    Let the elements be of equal length l 2

  • 8/13/2019 Lecture 4 Jan 25

    56/62

    56

    Let the elements be of equal length

    The element matrices are

    cml = 2

    hA

    +hp l

    +-

    -

    l

    kA] =[Ke

    0

    00

    21

    12

    611

    11

    hA T

    +Thpl

    ] =[qe0

    1

    1

    2

    Th l t t i f ELEMENT (1)

  • 8/13/2019 Lecture 4 Jan 25

    57/62

    57

    The element matrices for ELEMENT (1),

    (2) & (3) are

    20

    20

    66666675

    66756666} =; {q

    ..-

    . -.=][K e

    e

    therm

    20

    20

    66703330

    33306670} =; {q

    ..

    ..=][K econv

    e

    20

    20

    66

    66 } =; {q

    =][K econde

    Th l t t i f ELEMENT (4) i

  • 8/13/2019 Lecture 4 Jan 25

    58/62

    5858

    The element matrix for ELEMENT (4) is

    28

    20

    06676675

    66756666} =; {q

    ..-

    . -.=][K etherm

    e

    =][K conde

    66

    66

    400

    00

    66703330

    33306670

    .

    ..

    ..=][K conv

    e

    8

    0

    20

    20} ={qe

  • 8/13/2019 Lecture 4 Jan 25

    59/62

    59

    On assembly we get

    6.667 - 5.667 0 0 0

    -5.667 13.33 - 5.667 0 0

    0 - 5.667 13.33 - 5.667 0

    0 0 - 5.667 13.33 - 5.667 0 0 0 - 5.667 7.066

    *

    T1

    T2

    T3

    T4T5

    =

    20

    20+20

    20+20

    20+20 28

    B l i B d diti t

  • 8/13/2019 Lecture 4 Jan 25

    60/62

    6060

    By applying Boundary condition at

    at x = 0 T = T0 = 80

    By solving we get

    13.33 - 5.667 0 0

    -5.667 13.33 - 5.667 0

    0 - 5.667 13.33 - 5.667

    0 0 - 5.667 7.066

    *

    T2

    T3

    T4

    T5

    =

    40 + 5.667*80

    40

    40

    28

    C;.=T

    0

    2 9553C;.=T 0

    3

    8839

    C;.=T 04 8232 C;.=T0

    5 2930

  • 8/13/2019 Lecture 4 Jan 25

    61/62

    61

    Boundary condition: Free end insulated

  • 8/13/2019 Lecture 4 Jan 25

    62/62

    h = 10 W/cm2 oC

    K = 70 W /cm oC

    T0= 140oC

    T = 40oC

    = 5 cmRadius r = 1 cm

    Area A = r2 = cm2

    Perimeter p = 2r = 2