lecture 2 2013 jan 21

Upload: ahmed-m

Post on 04-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Lecture 2 2013 Jan 21

    1/98

    Lecture of January 21

    ENGR 4680U

    Nuclear Materials

  • 8/13/2019 Lecture 2 2013 Jan 21

    2/98

    Topics I

    1. Structure of Crystalline Solids

    2. Solidification and Defects

    3. Alloys and Phase Diagrams

  • 8/13/2019 Lecture 2 2013 Jan 21

    3/98

  • 8/13/2019 Lecture 2 2013 Jan 21

    4/98

    Atoms in the Crystals

    Want to give the position of atoms

    Want to describe directions Want to describe planes of atoms

  • 8/13/2019 Lecture 2 2013 Jan 21

    5/98

    Atom Position

  • 8/13/2019 Lecture 2 2013 Jan 21

    6/98

  • 8/13/2019 Lecture 2 2013 Jan 21

    7/98

    Bracket Convention

    specific Family or

    of a classdirection [ ] < >

    plane ( ) { }

  • 8/13/2019 Lecture 2 2013 Jan 21

    8/98

    Specific vs Family~Directions~

    family of directions is

    the following 8 specific directions:

    [111], [111], [111], [111], [111], [111], [111], [111]

  • 8/13/2019 Lecture 2 2013 Jan 21

    9/98

    Specific vs Family~Planes~

    {100} family of planes is

    the following 6 specific planes:

    (100), (010), (001), (100), (010), (001),

  • 8/13/2019 Lecture 2 2013 Jan 21

    10/98

    Indices of planes are h,k and l, the inverse of the intercepts on the a,b,and c axes respectively (0 for axis parallel to the plane, 1/)

    Miller indices - planes

  • 8/13/2019 Lecture 2 2013 Jan 21

    11/98

    Body-centred Cubic

  • 8/13/2019 Lecture 2 2013 Jan 21

    12/98

    Body-centred Cubic

    Inverse

    of

    intercepts

  • 8/13/2019 Lecture 2 2013 Jan 21

    13/98

    Face-centred Cubic

  • 8/13/2019 Lecture 2 2013 Jan 21

    14/98

    ]2011[

    ]0121[

    ]3121[]0001[

    ]0011[

    cph Crystal Structure

    Note that for

    cph structures

    there is also a4 coordinate

    system as well

  • 8/13/2019 Lecture 2 2013 Jan 21

    15/98

    Angle Between Directions

    given two directions [uvw] and [uvw]

    angle between them is

    let D be the vector of [uvw] and D is the vector of [uvw]

    so:

    cosD D D D

  • 8/13/2019 Lecture 2 2013 Jan 21

    16/98

    Angle Between Directions

    or

    Note: this only applies to a cubic system

    See handout for other systems

    cos

    cos

    D D D D

    D D

    D D

    2 2 2 2 2 2cos

    uu vv ww

    u v w u v w

  • 8/13/2019 Lecture 2 2013 Jan 21

    17/98

    Braggs Law

    2dhklsin= nl

  • 8/13/2019 Lecture 2 2013 Jan 21

    18/98

    Braggs Law

    2dhklsin= nl

    Incident Beam

    Reflected Beam

    2d

  • 8/13/2019 Lecture 2 2013 Jan 21

    19/98

    Neutron vs X-ray Diffraction

    Neutrons interact with nucleus while X-rays

    interact with electron cloud

    Neutrons penetrating; X-rays absorbed near

    surface

    Neutrons can probe bulk properties

  • 8/13/2019 Lecture 2 2013 Jan 21

    20/98

  • 8/13/2019 Lecture 2 2013 Jan 21

    21/98

  • 8/13/2019 Lecture 2 2013 Jan 21

    22/98

    Polycrystalline Zr

    Magnification is: 350X

  • 8/13/2019 Lecture 2 2013 Jan 21

    23/98

    Solid Solutions

  • 8/13/2019 Lecture 2 2013 Jan 21

    24/98

  • 8/13/2019 Lecture 2 2013 Jan 21

    25/98

    Solid Solutions

    Hume-Rothery rules for solid solution formation:

    less than about 15% difference in atomic radii

    the same crystal structure

    similar electronegativity values

    same valence

    all 4 rules must be satisfied; if any rule violated only

    partial solubility possible

  • 8/13/2019 Lecture 2 2013 Jan 21

    26/98

    Solid Solutions

  • 8/13/2019 Lecture 2 2013 Jan 21

    27/98

    Substitutional Solid Solution

  • 8/13/2019 Lecture 2 2013 Jan 21

    28/98

    Solid Solutions

  • 8/13/2019 Lecture 2 2013 Jan 21

    29/98

    Interstitial Solid Solution

  • 8/13/2019 Lecture 2 2013 Jan 21

    30/98

    Interstitial Solid Solution

  • 8/13/2019 Lecture 2 2013 Jan 21

    31/98

    Point Defects

    1. Vacancy

    2. Self interstitial

    3. Interstitial impurity

    4. Substitutional impurity

    under tension

    5. Substitutional impurity

    under compression

  • 8/13/2019 Lecture 2 2013 Jan 21

    32/98

    Two Types of Point Defects

    Schottky (German) defect involves a pair of

    oppositely charged ion vacancies

    Frenkel (Russian) defect is a vacancy-

    interstitialcy combination

  • 8/13/2019 Lecture 2 2013 Jan 21

    33/98

  • 8/13/2019 Lecture 2 2013 Jan 21

    34/98

    self-interstitialatom (SIA)

    Point Defects in Crystals

    vacancy solute atoms

    substitutional interstitial

  • 8/13/2019 Lecture 2 2013 Jan 21

    35/98

  • 8/13/2019 Lecture 2 2013 Jan 21

    36/98

    Thermal Production of Defects

    for many processes, the process rate rises

    exponentially with temperature

    diffusivity of elements in metal alloys

    rate of creep deformation

    electrical conductivity

    Diff i i S lid

  • 8/13/2019 Lecture 2 2013 Jan 21

    37/98

    Diffusion in Solids

  • 8/13/2019 Lecture 2 2013 Jan 21

    38/98

    General Equation

    Arrhenius (Swedish) Equation

    where:

    C is a preexponential constant; Q is the activation energy;

    R is the universal gas constant; T is the absolute temperature

    k is Boltzmanns constant; q = Q/NA

    kT

    q

    RT

    Q

    Cerate

    T1

    RQCln)rateln(

    Cerate

  • 8/13/2019 Lecture 2 2013 Jan 21

    39/98

    General Equation

    I i i l Diff i

  • 8/13/2019 Lecture 2 2013 Jan 21

    40/98

    Interstitial Diffusion

    Interstitial Diffusion

  • 8/13/2019 Lecture 2 2013 Jan 21

    41/98

    Interstitial Diffusion

    jump frequency

    flux to left/right

    net flux

    jump distance

    diffusion coefficientunits of m2s-1

    concentration gradient

    xC

    DJ

    xC

    61JJJ

    n

    6

    1J

    n6

    1J

    iii

    i2

    iiii

    2ii

    1ii

  • 8/13/2019 Lecture 2 2013 Jan 21

    42/98

    Interstitial Jump Frequency

  • 8/13/2019 Lecture 2 2013 Jan 21

    43/98

    InterstitialDiffusion

    entropy/enthalpy of migrationvibration frequency

    number of available sites

    jump distance

    kT

    HDD

    kT

    H

    k

    Sz

    mi

    iiii

    mimi

    iii

    exp

    6

    1

    expexp

    0

    2

  • 8/13/2019 Lecture 2 2013 Jan 21

    44/98

  • 8/13/2019 Lecture 2 2013 Jan 21

    45/98

  • 8/13/2019 Lecture 2 2013 Jan 21

    46/98

    Slip Lines

    Side View Front View

  • 8/13/2019 Lecture 2 2013 Jan 21

    47/98

    F di d h l l d

  • 8/13/2019 Lecture 2 2013 Jan 21

    48/98

    Forces to cause coordinated shear were calculated

    G

    shear modulus

    3 orders of

    magnitude too large

    shear strain

    62

    22sin

    Ga

    bG

    G

    b

    x

    b

    x

    m

    mm

    Sli S

  • 8/13/2019 Lecture 2 2013 Jan 21

    49/98

    Slip Systems

    At low temperatures / high stresses: Deformation of crystals

    occurs exclusively by slip of lattice planes

    Slip system is characterized by:

    slip plane normal

    slip direction

    slip vector (a lattice vector in the slip direction)

    often: slip planes are most densely packed lattice planes

    slip directions are most densely packed lattice directions

    n

    s

    Sli S

  • 8/13/2019 Lecture 2 2013 Jan 21

    50/98

    Slip Systems

    Sli S

  • 8/13/2019 Lecture 2 2013 Jan 21

    51/98

    Slip Systems

    Shear in close packed direction

    easy

    Shear in nonclose packed direction

    harder

    Sli S

  • 8/13/2019 Lecture 2 2013 Jan 21

    52/98

    Slip Systems

    slip frequency occurs on the most closelypacked planes, and almost invariably in the

    most closely packed direction:

    fcc ,{111}

    bcc ,{110}

    hcp ,{0002} and also {1010}

  • 8/13/2019 Lecture 2 2013 Jan 21

    53/98

  • 8/13/2019 Lecture 2 2013 Jan 21

    54/98

    Driving Force for Slip

    Tensile stress, s= F/A

    Resolved shear stress Rin

    slip system

    R= scos lcos fnsl

    f

    F

    F A

  • 8/13/2019 Lecture 2 2013 Jan 21

    55/98

    Driving Force for Slip

    R= 0 if l= 90oor f= 90o

    n

    sl

    F

    F A

    normal perpendicular

    f

  • 8/13/2019 Lecture 2 2013 Jan 21

    56/98

    Driving Force for Slip

    R= max when l= f= 45o

    n

    sl

    F

    F A

    f

  • 8/13/2019 Lecture 2 2013 Jan 21

    57/98

  • 8/13/2019 Lecture 2 2013 Jan 21

    58/98

    How does slip occur?

    Note: slip is not a simultaneous breaking of

    all bonds

    Involves the motion of defects- dislocations

  • 8/13/2019 Lecture 2 2013 Jan 21

    59/98

    Dislocations

    Edge dislocation

    Screw dislocation

    The presence of defects (dislocations,

    vacancies, etc.) explains the discrepancy

    between the computed (i.e., theoretical)and real yield stress.

  • 8/13/2019 Lecture 2 2013 Jan 21

    60/98

    Edge Dislocation

  • 8/13/2019 Lecture 2 2013 Jan 21

    61/98

    Edge Dislocation

  • 8/13/2019 Lecture 2 2013 Jan 21

    62/98

    Edge Dislocation

  • 8/13/2019 Lecture 2 2013 Jan 21

    63/98

    Movement of an ED

  • 8/13/2019 Lecture 2 2013 Jan 21

    64/98

    Movement of an ED

  • 8/13/2019 Lecture 2 2013 Jan 21

    65/98

    Movement of an ED

  • 8/13/2019 Lecture 2 2013 Jan 21

    66/98

    Movement of an ED

    Side view of edge dislocation

  • 8/13/2019 Lecture 2 2013 Jan 21

    67/98

    Dislocation Climb

    An example of positive climb

  • 8/13/2019 Lecture 2 2013 Jan 21

    68/98

    Burgers Vector

    Characterizes a dislocation

    Results from a mismatch in the closed

    circuit around a dislocation

  • 8/13/2019 Lecture 2 2013 Jan 21

    69/98

    Burgers Circuits

    Edge Dislocation Screw Dislocation

  • 8/13/2019 Lecture 2 2013 Jan 21

    70/98

    Burgers Vector

    disloc

    Burgers vector

  • 8/13/2019 Lecture 2 2013 Jan 21

    71/98

    Dislocations

    Edge dislocation

    line is perpendicular to Burgers vector

    Positive moves right; negative moves left

    Screw dislocation:

    line is parallel to Burgers vector

  • 8/13/2019 Lecture 2 2013 Jan 21

    72/98

    Screw Dislocation

  • 8/13/2019 Lecture 2 2013 Jan 21

    73/98

    Screw Dislocation

    Left Hand Screw Dislocation

  • 8/13/2019 Lecture 2 2013 Jan 21

    74/98

    Screw Dislocation

    Right Hand Screw Dislocation

  • 8/13/2019 Lecture 2 2013 Jan 21

    75/98

  • 8/13/2019 Lecture 2 2013 Jan 21

    76/98

    References

    R.E. Reed-Hill, Physical Metallurgy Principles, 2nd

    Edition, PWS-Kent Publishing Co., (1973), Chapter 4.

    D.A. Porter and K.E. Easterling, Phase Transformationsin Metals and Alloys, 2nd Edition, Stanley Thornes

    (Publishers) Ltd., Chapter 3

    J.F. Shackelford, Introduction to Materials Science for

    Engineers, 3rdEdition, Macmillan PublishingCo.,(1992).

  • 8/13/2019 Lecture 2 2013 Jan 21

    77/98

  • 8/13/2019 Lecture 2 2013 Jan 21

    78/98

    Gibbs Phase Rule

    P + F = C + 2

    P represents # of phases

    F represents # of degrees of freedom

    C represents # of components

    2 (limiting state variables: 1 for temperature, 1

    for pressure)

    Police Force = Cops + 2 Vehicles

  • 8/13/2019 Lecture 2 2013 Jan 21

    79/98

    Definitions

    Phasehomogeneous region

    chemically and structurally homogeneous

    Componentdistinct chemical substance fromwhich phase is formed

    Degrees of Freedomnumber of independent

    variables available to the system

  • 8/13/2019 Lecture 2 2013 Jan 21

    80/98

    Reduction of State Variables

    If pressure is fixed P + F = C + 1

    If temperature is fixed P + F = C + 1

    If both fixed P + F = C

  • 8/13/2019 Lecture 2 2013 Jan 21

    81/98

  • 8/13/2019 Lecture 2 2013 Jan 21

    82/98

    Unary Phase Diagrams

    Iron

  • 8/13/2019 Lecture 2 2013 Jan 21

    83/98

    Binary Phase Diagrams

    Partial Binary Diagram for Pd-Rh

  • 8/13/2019 Lecture 2 2013 Jan 21

    84/98

    y g

    XRh

    0.0 0.2 0.4 0.6 0.8 1.0

    Pd Rh

    1 atm

    T

    emperature(K)

    1500

    2000

    2500

    1500

    2000

    2500

    Liquid

    Solid solution (fcc)

    2236

    1827

    2200

    Liquid + fcc

    SolidusLiquidus

    C Ni Bi

  • 8/13/2019 Lecture 2 2013 Jan 21

    85/98

    Cu-Ni Binary

    Rh-Pd

  • 8/13/2019 Lecture 2 2013 Jan 21

    86/98

    Rh Pd

    Rh PdXPd

    0.0 0.2 0.6 0.8 1.0

    500

    1000

    1500

    2000

    2500

    3000

    500

    1000

    1500

    2000

    2500

    3000

    T

    emperature(K) 2236.4

    1827.1

    Rh (fcc) + Pd (fcc)

    0.4

    1182.8

    0.45

    Liquid

    Solid (fcc)

  • 8/13/2019 Lecture 2 2013 Jan 21

    87/98

  • 8/13/2019 Lecture 2 2013 Jan 21

    88/98

    T i l S lid S l ti

  • 8/13/2019 Lecture 2 2013 Jan 21

    89/98

    Terminal Solid Solutions

    T i l Mi l E l i

  • 8/13/2019 Lecture 2 2013 Jan 21

    90/98

    Typical Microstructural Evolution

    Binary Eutectic Phase Diagram

  • 8/13/2019 Lecture 2 2013 Jan 21

    91/98

    Binary Eutectic Phase Diagram

    T i l Mi t t l E l ti

  • 8/13/2019 Lecture 2 2013 Jan 21

    92/98

    Typical Microstructural Evolution

  • 8/13/2019 Lecture 2 2013 Jan 21

    93/98

    Peritectic Phase Diagram for Pd-Ru

  • 8/13/2019 Lecture 2 2013 Jan 21

    94/98

    g

    Liquid

    Pd (fcc)

    Pd (fcc) + Ru (cph)

    Ru(cph)

    e

    e

    Liquid + e

    Liquid +

    0.0 0.2 0.4 0.6 0.8 1.0

    500

    1000

    1500

    2000

    2500

    3000

    500

    1000

    1500

    2000

    2500

    3000

    2607.0

    1827.1

    1866.4

    Pd RuXRu

    T

    emperatu

    re(K)

    0.9230.185

    0.10

    Eutectic and Eutectoid

  • 8/13/2019 Lecture 2 2013 Jan 21

    95/98

    Eutectic and Eutectoid

    Fe-C

  • 8/13/2019 Lecture 2 2013 Jan 21

    96/98

    Eutectic and Eutectoid

  • 8/13/2019 Lecture 2 2013 Jan 21

    97/98

    Eutectic and Eutectoid

    T pical Microstr ct ral E ol tion

  • 8/13/2019 Lecture 2 2013 Jan 21

    98/98

    Typical Microstructural Evolution