lecture 39 welding

26
8/13/2019 Lecture 39 Welding http://slidepdf.com/reader/full/lecture-39-welding 1/26 Lecture 39: Welding ME 450 Modeling Materials Processing Professor Brian G. Thomas Department of Mechanical and Industrial Engineering University of Illinois at Urbana-Champaign Brian G. Thomas, ME450 2 Welding Welding microstructural phenomena  – Steel, age hardened, or cold worked metal Welding processes  – Solid state joining  – Liquid – solid state (soldering & brazing)  – Fusion welding (liquid state) Welding heat transfer Welding defects  – Residual stresses

Upload: raajeeradha

Post on 04-Jun-2018

234 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 1/26

Lecture 39: Welding

ME 450Modeling Materials Processing

Professor Brian G. ThomasDepartment of Mechanical and Industrial Engineering

University of Illinois at Urbana-Champaign

Brian G. Thomas, ME450 2

Welding

• Welding microstructural phenomena

 – Steel, age hardened, or cold worked metal

• Welding processes

 – Solid state joining

 – Liquid – solid state (soldering & brazing)

 – Fusion welding (liquid state)

• Welding heat transfer 

• Welding defects

 – Residual stresses

Page 2: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 2/26

Brian G. Thomas, ME450 4

From: W.D. Callister, Materials Science and Engineering,An

Introduction (6th Ed.) , Wiley and Sons, 2003, p. 357.

Temperature changes during metal welding produces heat treatmentCause microstructure and property changes in:

Fusion zone,

base metal (BM),

heat affected zone (HAZ).

Residual stresses (from thermal gradients)

Weld quality (penetration depth, shape, stress concentration, etc.)

 Atmospheric contamination: porosity, oxide particles, etc.

Welding Issues

Brian G. Thomas, ME450 5

Weld Microstructures

Columnar grains Mixed dendrites

with grains

Equiaxed

Recrystallized, no GG

Weld Metal

Fusion Zone Base MetalFusion Line HAZ

Page 3: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 3/26

Brian G. Thomas, ME450 6

Welding Processes:

solid state joining

• Weld strength depends on:pressure, temperature, contact time, cleanliness

• Atmospheric protection: from mechanical exclusion

• Diffusion bonding

 – Forge welding

 – Friction welding

 – Resistance welding

• Plastic deformation at interface

 – Cold roll bonding – Explosion welding

 – Ultra-sonic welding

Brian G. Thomas, ME450 7

Solid state welding processes:

Plastic deformation at interface

• Cold roll

bonding

Explosion

welding

Ultrasonic

welding

Eg: CladdingUS quarter:75 Cu – 25 Ni

Cu

75 Cu – 25 Ni

Shock wave

Large chemical

equipment

Vibrations remove oxides

Foil packaging,

electronics

Pressure causes bonding: similar metals only

Page 4: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 4/26

Brian G. Thomas, ME450 8

Solid state welding processes:

Diffusion Bonding

• Forge

welding

Friction

welding

Induction

welding

 Ancient process

Simple but effective

Rotate one end; push;

Stop and push

Induction heating

Called “resistance

welding” if interfaces

melt

 Apply heat & pressure – dissimilar metals diffuse together 

Brian G. Thomas, ME450 9

Welding Processes:

liquid – solid state

• Melt the filler metal only(no changes in base metal)

• Ancient process (<3000 BC)

• Good for repairs

• Liquid flows into joints by capillary action

• Cleanliness critical (relative to other processes)

• Large contact area better 

• Soldering (< 450 oC)

• Brazing (> 450 oC)

Page 5: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 5/26

Brian G. Thomas, ME450 10

Major Welding Processes:

fusion welding (liquid state)

• Thermochemical energy (flame welding):

 – Oxy-acetylene,

 – thermit,

 – Hydrogen welding

• Electric current energy

 – Arc welding, MIG, TIG, PAW, SAW, SMAW, GMAW, MCAW

• Electric resistance energy

 – Spot welding

 – flash-butt welding

 – seam welding

• Radiation energy beam

 – Laser,

 – electron beam welding

Brian G. Thomas, ME450 11From: H.B. Cary, Modern Welding Technology, Prentice-Hall, 1979, pp. 252,253.

often used for cutting

Oxy-acetylene welding

Page 6: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 6/26

Page 7: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 7/26

Brian G. Thomas, ME450 16

Transform to Eulerian frame

• B.C. at infinity T = T 0

• Transformation to moving frame fixed at beam

 – Define ζ = z - z b

 – Transform ( x, y, z ) → ( x, y, ζ)

Brian G. Thomas, ME450 17

Envision as a stationary heat source with moving

 plate ( velocity -v).

edgez   v t ζ   = −

Define a distance from the heat s ource, r, as:

2 2 2r x y   ζ = + +

Consider a hemispherical area of heat input

2(2 )

T Q k R

∂ π 

∂ 

= −

From: F.V. Lawrence, Welding Notes, 1989.

Rosenthal models of Heat transfer

during fusion welding

R ( )Q W 

2 2 R x   ζ = +

(point source)

(line source)

,vζ 

y

y

 x

Page 8: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 8/26

Brian G. Thomas, ME450 18

Solution: Steady Temperature

• Assume T is steady in moving frame

• Rosenthal's solution (point source)

 – Recast boundary condition

 – Consider hemispherical cap

 – Solution

Brian G. Thomas, ME450 19

Solution Behavior 

• Radial and axial part

 – Hemispherical pool for V  → 0

 – Stretched in axial direction

Page 9: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 9/26

Brian G. Thomas, ME450 20

Slower Travel Speed

• Reduce V from 100α to 10α

• What is T (0, 0, 0)?

Brian G. Thomas, ME450 21

For steel, “thin” is < ~5 mm thick whereas “thick” is > ~100 mm. From: F.V. Lawrence, Welding Notes, 1989.

Cooling rates along centerline:

Rosenthal Eqs. for thick & thin plates

= power input (W)

v = welding velocity (m/s)

Thin PlateThick Plate

( )2

02T v

k T T 

t Q

π   ∂

= − ∂  

  ( )2

3

02

 p

T vhk C T T  

t Q

π ρ   ∂

= − ∂  

k= thermal cond.

C p= specific heat

ρ = density

T = temperature in plate

T0 = initial temperature

h = plate thickness

Q

Page 10: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 10/26

Brian G. Thomas, ME450 22

From: J. Dantzig,

ME231, 1998.

Temperature changes during welding

Examine 650 and 750 C isothermsto find cooling rate at 700 C:

750 650

750 650

T T T v

t t 

v

ζ 

ζ ζ 

ζ ζ 

∂ ∂ ∂ ∂= =

∂ ∂ ∂ ∂

−=

y

x

Brian G. Thomas, ME450 23

Summary: Rosenthal welding

heat transfer models

• Point Source (thick plate solution for T)

• Line Source (thin plate solution for T)

0 0( , ) exp2 2 2

Q v vRT R T K  k h

ζ ζ π α α 

− = +

Bessel function off second kind

(zero order)

0( , ) exp exp2 2 2

Q vr vT r T 

k r 

ζ ζ 

π α α 

− − = +

thermal diffusivity

Page 11: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 11/26

Brian G. Thomas, ME450 24

Fusion Welding

microstructural changes

Brian G. Thomas, ME450 25

Welding microstructures:

Cold-worked metals

Page 12: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 12/26

Page 13: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 13/26

Brian G. Thomas, ME450 28

From: H.B. Cary, Modern Welding Technology, Prentice-Hall, 1979, p. 399.

Micro-hardness measurements

correlate strongly with microstructure

Brian G. Thomas, ME450 29

Welding microstructures:

Steel

Page 14: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 14/26

Brian G. Thomas, ME450 30

   M  a  x   T  e

  m  p .

Liquidus temperatureSolidus temperature

Pearlite

 

LStructure at

max temp

High

hardenability

steel

Low

hardenability

steel

Martensite

Welded Steel Microstructure

Austenite temperature

Eutectoid temperature

Brian G. Thomas, ME450 31

Weldability

•   Weldabil i ty : Ability of a particular alloy to bewelded without substantial embrittlement due tomartensite formation

 – Generally the opposite of hardenability

 – Of particular concern for high strength steels!

 – High strength steels are heavily alloyed, shifting TTTcurves

 – Some alloys, under severe thermal cycling, will

recrystallize, grow grains, and even age in heat-affectedzone

• Concept of effective carbon content: – Higher carbon content harder to weld

 – Carbon equivalent = %C+%Mn/6 + %Ni/15 + %Cr/5 +%Mo/4 +%V/5

Page 15: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 15/26

Brian G. Thomas, ME450 32

Recall: cooling rate at 700 oC is most

representative for TTT behavior .

Use welding temp histories & Jominy or

TTT data to predict microstructure

T (C)

400

800

1200

1600

0

 A

B

C

C

B

 A

0 30 60 90 120 150 180 210 240 270 300

Time (sec)

Typical TTT curves for the base metal.

Typical temperatures recorded near weld

0

10

20

30

40

50

60

1 10 100 1000

y = 79.577 * x^(-0.64633) R= 0.99839

   J  o  m   i  n  y   D   i  s   t  a  n  c  e   (  m  m   )

Cooling Rate at 700oC (oC/sec.)

Jominy Bar Cooling Rate

Brian G. Thomas, ME450 34

0

100

200

300

400

500

600

700

800

0.1 1 10 100 1000 10000 100000

SAE 6150 Steel

6150615061501 mm3 mm12 mm50 mm

   T  e  m  p   (   C   )

Time (sec)

50 mm from quenched end

30 mm from quenched end

10 mm from quenched end

20

30

40

50

60

70

0 10 20 30 40 50

SAE 6150 Steel, Hardenability Curve

Upper Lower 

   R   C ,

   R  o  c   k  w  e   l   l   H  a  r

   d  n  e  s  s

 Normalize @ 900 CAustenitize @ 870 C

Distance from Quenched End (mm)

Recall: distance along Jominy bar

indicates microstructure & hardness

α + P + B

α + P + B + M

Mainly M

P. Kurath, me231 S03

Page 16: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 16/26

Brian G. Thomas, ME450 36

   M  a  x   T  e  m  p

Liquidus temperature

Solidus temperature

Solvus temperature

L

  +L   +θ’   +θ ”

 

+θ’   +θ +θ  +θ ”

Base metalOveraged

zone

Fusion zone

Partial fusion zoneSolution treated zone

At peak temperature

After cooling

Precipitation Hardened Metals

Overaging temperature

Al – Cu Phase Diagram

L

 

Brian G. Thomas, ME450 37

Fusion welding Processes:

thermochemical energy

• Oxy-acetylene welding(manual, cheep, portable)

• Thermit welding

• Atomic hydrogen welding

3 4 2 35000 o powder 

C  Fe O Al Fe Al O heat + → + +

25500

2oinarcC 

 H H heat → +

2 2 2 2 2 23200

oC 

C H O CO H heat CO H O heat  + → + + → + +

Hot gases transport energy

nozzle core outer envelope

Page 17: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 17/26

Brian G. Thomas, ME450 38

Fusion welding processes:

electric (arc) current energy

Energy transmitted:V = voltage (V)

I = current (amps)

t = time (s)

v = velocity (m/s)

J = V I t

J/m = V I / v Energy input(per length of weld)

Many different types: according to

electrode (permanent or consumed)

shielding material

flux (slag)inert gas

plasma

Typical:

I = 200 Amps

V = 20 to 50 V-DC or 60 to 110 V-AC

Brian G. Thomas, ME450 39

Fusion welding -

arc welding with gas shielding

PAW

(Plasma Arc welding)

SAW(Submerged Arc Welding)

TIG (Tungsten Inert Gas arc-welding)

Page 18: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 18/26

Brian G. Thomas, ME450 40

From: H.B. Cary,

Modern Welding

Technology, Prentice-

Hall, 1979, p. 360.

GTAW~TIG

GMAW ~ Gas Metal Arc (MIG)

PAW~Plasma Arc Welding

SMAW~ Shielded Metal Arc

FCAW~Flux Cored Electrode Arc

EW~Electroslag Welding

SAW~Submerged Arc Welding

SW~Stud welding

CAW~Carbon Arc welding

Shielding gases:

protect weld metal from oxidation

Brian G. Thomas, ME450 41

Fusion welding –

arc welding with flux shielding

SMAW

(Shielded Metal Arc Welding)

most common

MIG(Metal Inert Gas)

GMAW(Gas Metal Arc Welding)

Page 19: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 19/26

Brian G. Thomas, ME450 42

Arc Welding (SMAW)

• Very cheap apparatus

• Simple to switchmaterials

• Use in many

environments

• Dirty

• Slow• Slag is a pain

Brian G. Thomas, ME450 43

MIG Welding (GMAW)

• High deposition

rate• Uninterrupted weld

• Low fumes, spatter 

• No slag!

• Higher skill (??)

• More complex

equipment

• Need controlled

environment

EP

Page 20: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 20/262

Brian G. Thomas, ME450 44

Fusion welding Processes:

Electric resistance energy

• Spot welding

•flash-butt welding

•seam welding

R = resistance (ohm)

I = current (amps)

t = time (s)

v = velocity (m/s)

J = I2 R tEnergy transmitted:

Brian G. Thomas, ME450 45

Fusion welding Processes:

Radiation energy

• Laser welding

• Electron Beam welding

Deeper penetration

Faster;

less energy input per length;

Narrower HAZ

Page 21: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 21/262

Brian G. Thomas, ME450 46

From: H.B. Cary,

Modern Welding

Technology, Prentice-

Hall, 1979, p. 397.

Typical arc weld

Rest From: Proceedings,Welded

High-Strength Structures,NESCO I,

EMAS Publishers, 1997, pp.

103,104.

Deeper penetration and smaller HAZ.

Laser & Electron Beam (EB) welding:

weld microstructures

Brian G. Thomas, ME450 47

• Huge thermal cycling in welding leads

to shrinkage and residual stress:

• In nearly all cases, weld metal and

HAZ end up under residual tension

Shrinkage in a butt weld

Shrinkage in a fillet weld

Residual Stress in Welds

Page 22: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 22/262

Brian G. Thomas, ME450 48

Residual Distortion in Welds(usually accompanies residual stress)

Taking advantage of residual distortion:

Flame straightening:

apply heat to a bent metal beaminitially: beam will bend toward the heat

after cooling: beam will bend away from the heat

Butt joints T- joints

Brian G. Thomas, ME450 49

Extensive Welding

Codes: Specify: weld

metal for different

base metals,

operating conditions,

and weld setup:

Example: Groove

Proportions for arc

welding

Page 23: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 23/262

Brian G. Thomas, ME450 50

From: H.B. Cary, Modern Welding Technology,

Prentice-Hall, 1979, p. 438.

Suggested filler metal for different

aluminum base metals

Brian G. Thomas, ME450 55

Explaining thermal distortion

1) Review thermal stress eqs

n ccr 

QA

RTexp ε = σ −

ε total = ε elastic + ε inelastic + ε thermal 

thermal final initial  (T T )ε α = −

Where:

elastic

σ ε    =

total 

 L

 L

∆ε    =

( )inelastic plastic cr  t ε ε ∆ ε  = +  

 F σ    =

Page 24: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 24/262

Brian G. Thomas, ME450 56

Thermal Stress Example #3

• Plate heated from top

 – Constrained

compression

tension

 – Unconstrained

compression

tension

cold

cold

heat

hot

cold

cold

cold

initial

heat

hot

cold

final

heat

hot

cold

slight compression

slight tension

Brian G. Thomas, ME450 57

Thermal Stress Example #4

• Residual stress in an elastic plate ?

• Plate bends and unbends:

zero

stress• If all elastic

NO!

cold

cold

initial

1)

compression

tension

heat

hot

cold

2)

cold

cold

3)

Page 25: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 25/262

Brian G. Thomas, ME450 58

compression

tension

4)

cold

cold

• Residual Stress - needs inelastic strain

Thermal Stress Example #5

time

cold

cold

initial

1)

compression

tension

heat

hot

cold

2)

  = 0 

3)

hot

cold

Brian G. Thomas, ME450 59

ABAQUS steady

temperature results

Stress

results

Create

mesh

Problem:

Crack in auto

exhaust manifold

Application 4: thermal fatigue

From www.abaqus.com(HKS)

Page 26: Lecture 39 Welding

8/13/2019 Lecture 39 Welding

http://slidepdf.com/reader/full/lecture-39-welding 26/26

Brian G. Thomas, ME450 60

From: D.F. Socie, Lectures, 2001

Weld quality matters!

Brian G. Thomas, ME450 61

Advanced Topics:

Example Applications of

Computational Models

TAM 470, ME412,

ME471, ME554 ?

Professor Brian G. ThomasDepartment of Mechanical and Industrial Engineering

University of Illinois at Urbana-Champaign

© University of Illinois Board of Trustees, All Rights Reserved

BGT1