lecture 33 antenna arrays and phase arrayscourses.cit.cornell.edu/ece303/lectures/lecture33.pdf ·...

8
1 ECE 303 – Fall 2007 – Farhan Rana – Cornell University Lecture 33 Antenna Arrays and Phase Arrays In this lecture you will learn: • Antenna arrays • Gain and radiation pattern for antenna arrays • Antenna beam steering with phase array antennas ECE 303 – Fall 2007 – Farhan Rana – Cornell University Two Hertzian Dipoles – A Two Element Array y z () ( ) 0 3 0 0 ˆ h r d I z r J r r r r = δ x 0 h r 1 h r 0 J r 1 J r () ( ) 1 3 1 1 ˆ h r d I z r J r r r r = δ () () [ ] () ( ) ( ) φ θ φ θ θ π η θ θ π η θ , , , sin 4 ˆ sin 4 ˆ 1 0 1 0 . ˆ 0 1 . ˆ 0 0 0 . ˆ 1 . ˆ 0 F r e I I e I I e r d I k j e I e I e r kd j r E h r k j h r k j r k j o h r k j h r k j r k j o ff Ε = + = + = r r r r r r r One can write the E-field in the far-field as a superposition of the E-fields produced by all the elements in the array: Consider first an array of just two Hertzian dipoles: Element Factor Array Factor Each antenna in the array is an “element” of the array • The “element factor” is just the E-field produced by the first element if it were sitting at the origin • The “array factor” captures all the interference effects

Upload: others

Post on 17-Mar-2020

17 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 33 Antenna Arrays and Phase Arrayscourses.cit.cornell.edu/ece303/Lectures/lecture33.pdf · Lecture 33 Antenna Arrays and Phase Arrays In this lecture you will learn: • Antenna

1

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Lecture 33

Antenna Arrays and Phase Arrays

In this lecture you will learn:

• Antenna arrays

• Gain and radiation pattern for antenna arrays

• Antenna beam steering with phase array antennas

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Two Hertzian Dipoles – A Two Element Array

y

z

( ) ( )03

00 ˆ hrdIzrJrrrr

−= δ

x

0hr

1hr0J

r1Jr

( ) ( )13

11 ˆ hrdIzrJrrrr

−= δ

( ) ( ) [ ]( )

( ) ( )φθφθ

θπ

ηθ

θπ

ηθ

,,,

sin4

ˆ

sin4

ˆ

10

10

0

1.ˆ

0

00

.ˆ1

.ˆ0

Fr

eIIe

IIe

rdIkj

eIeIerkdjrE

hrkjhrkjrkjo

hrkjhrkjrkjoff

Ε=

⎥⎦

⎤⎢⎣

⎡+=

+=

r

rr

rr

rr

One can write the E-field in the far-field as a superposition of the E-fields produced by all the elements in the array:

Consider first an array of just two Hertzian dipoles:

Element Factor Array Factor

Each antenna in the array is an “element” of the array

• The “element factor” is just the E-field produced by the first element if it were sitting at the origin

• The “array factor” captures all the interference effects

Page 2: Lecture 33 Antenna Arrays and Phase Arrayscourses.cit.cornell.edu/ece303/Lectures/lecture33.pdf · Lecture 33 Antenna Arrays and Phase Arrays In this lecture you will learn: • Antenna

2

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

An N-Element Antenna Array - IConsider an N-element antenna array where the elements are:

- all identical (all loops, or all Hertzian dipoles, or all Half-wave dipoles, etc) - all oriented in the same way- but with possibly different current phasors

Let the current phasor of the m-th antenna be Im

Let the position vector of the m-th antenna be mhr

y

x

mhr

z

mI

0I1I

1−NIzOne can write the E-field in the far-field as a superposition of the E-fields produced by all the elements in the array:

( ) ( )

( ) ( )φθφθ

φθ

,,,

,, 1

0

0

Fr

eIIrrE

N

m

hrkjmff m

Ε=

∑Ε=−

=r

rrr r

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

An N-Element Antenna Array - II

( ) ( )

( ) ( )φθφθ ,,,

1

0

0

Fr

eIIrrE

N

m

hrkjmff m

Ε=

∑Ε=−

=r

rrrr r

( )( )

( ) ( )222 ,, ofpart angular

4

ˆ.,, φθφθ

πφθ Fr,

rP

rtrSG ⎥⎦

⎤⎢⎣⎡ Ε∝=

rrr

( ) ( )( )max,

,,φθ

φθφθG

Gp =

Gain:

Pattern:

y

x

mhr

z

mI

0I1I

1−NIz

Page 3: Lecture 33 Antenna Arrays and Phase Arrayscourses.cit.cornell.edu/ece303/Lectures/lecture33.pdf · Lecture 33 Antenna Arrays and Phase Arrays In this lecture you will learn: • Antenna

3

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

An N-Element Hertzian Dipole Phase Array

x

z

y

N-element Hertzian dipole array

a

αjeα2je( )α1−Nje

• Current magnitude is the same for all the dipoles

• Current phase difference between successive dipoles is α

1

αj

m

m eI

I=+1

( ) ( ) ( )

( ) ( ) ( )( )21

0

cossin2

1

0

cossin.ˆ1

0

0

,

, 0

∑=⇒

∑=∑=

=

+

=

=

N

m

makj

N

m

makjmjhrkjN

m

hrkjm

eF

eeeeIIF m

αφθ

φθα

φθ

φθrr

( ) ( )( )

( ) ( )( )⎥⎦⎤

⎢⎣⎡ +

⎥⎦⎤

⎢⎣⎡ +

=φθα

φθα

cossin21sin

cossin2

sin

2

2

ka

kaN

Array Factor:

Element Factor:

( ) ( ) rkjo er

dIkjr −=Ε θπ

ηθφθ sin4

ˆ ,, 0r

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

x

z

y

N-element Hertzian dipole phase array antennaa

αjeα2je( )α1−Nje

1

( ) ( )( ) ( )( )

( ) ( )( )⎥⎦⎤

⎢⎣⎡ +

⎥⎦⎤

⎢⎣⎡ +

=φθα

φθαθφθ

cossin21sin

cossin2

sinsin1,

2

22

2ka

kaN

Np

Pattern:

Coming from the element factor

array factor

( ) ( ) ( )222 ,sin1, φθθφθ F

Np =

An N-Element Hertzian Dipole Phase Array

NdIkP o 2012π

η=

( )( )

( ) ( )222 ,sin

23

4

ˆ.,, φθθ

πφθ F

NrP

rtrSG ==

rr

Coming from the element factor

array factor

Page 4: Lecture 33 Antenna Arrays and Phase Arrayscourses.cit.cornell.edu/ece303/Lectures/lecture33.pdf · Lecture 33 Antenna Arrays and Phase Arrays In this lecture you will learn: • Antenna

4

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

An N-Element Hertzian Dipole Phase Array: Maxima

Lets look at radiation in the x-y plane:

φ

a

( )φcosa

y

x

Radiation going in the φ direction from adjacent elements will add in-phase, and one will have a big maximum in the radiation pattern, provided:

( ){ KK,3,2,1,0

2cos=

±=+n

nak παφ

( )φπθ ,2=p

φ

2

4

20

π

πα

=

−=

=

ka

N

( )2,2 φπθ =F

2

4

20

π

πα

=

−=

=

ka

N

(degrees) φ

nulls

smallmaxima(side lobes)

bigmaxima(main lobes)

main lobes

side lobes

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

An N-Element Hertzian Dipole Phase Array: Maxima

φ

a

( )φcosa

y

x

Condition for a big maximum in the x-yplane:

( ){ KK,3,2,1,0

2cos=

±=+n

nak παφ

At a big maximum the value of the array factor is:

( )( )( )

( )( )

2

2

22max

cos21sin

cos2

sin,2

N

ka

kaN

F

=

⎥⎦⎤

⎢⎣⎡ +

⎥⎦⎤

⎢⎣⎡ +

==φα

φαφπθ

And the value of the antenna gain is:

( )2,2 φπθ =F

2

4

20

π

πα

=

−=

=

ka

N

(degrees) φ

nulls

smallmaxima(side lobes)

bigmaxima(main lobes)

( ) ( ) ( )

NG

FN

G

23,

2

,sin23,

max

22

=⎟⎠⎞

⎜⎝⎛ =⇒

=

φπθ

φθθφθ

Page 5: Lecture 33 Antenna Arrays and Phase Arrayscourses.cit.cornell.edu/ece303/Lectures/lecture33.pdf · Lecture 33 Antenna Arrays and Phase Arrays In this lecture you will learn: • Antenna

5

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

An N-Element Hertzian Dipole Phase Array: Nulls

φ

a

y

x

Radiation in the x-y plane:

( )( )( )

( )( )⎥⎦⎤

⎢⎣⎡ +

⎥⎦⎤

⎢⎣⎡ +

==φα

φαφπθ

cos21sin

cos2

sin,2

2

22

ka

kaN

F

The array factor will give a null in the radiation pattern provided:

( )φcosa

( )

{ KK,3,2,,0

2cos

NNNnN

nak

±=+παφ

( )2,2 φπθ =F

2

4

20

π

πα

=

−=

=

ka

N

(degrees) φ

nulls

smallmaxima(side lobes)

bigmaxima(main lobes)

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

An N-Element Hertzian Dipole Phase Array: Width of Big Maxima

( )2,2 φπθ =F

2

4

20

π

πα

=

−=

=

ka

N

φ

φ

a

y

x

φ∆Angular width of a lobe associated with a big maxima:

For a big maxima: ( ) {

,3,2,1,022cos KK±±±===+ nN

nNnak ππαφ

At the nulls nearest to the above maxima we must have:

122

cosN

nNak ±=+⎟

⎠⎞

⎜⎝⎛ ∆

+ παφφ

Which can be solved for ∆φ – and for N large (N >> 1) one gets approximately: ( )

sin14

φπφ

kaN≈∆

Page 6: Lecture 33 Antenna Arrays and Phase Arrayscourses.cit.cornell.edu/ece303/Lectures/lecture33.pdf · Lecture 33 Antenna Arrays and Phase Arrays In this lecture you will learn: • Antenna

6

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

x

z

y

aka = π

αjeα2je( )α1−Nje

Phase difference between successive elements is α

N = 2 N = 10

( )φθ ,p ( )φθ ,p

1

N-element Hertzian dipole array

An N-Element Hertzian Dipole Phase Array: Examples

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

x

z

y

aka = π / 2

αjeα2je( )α1−Nje

Phase difference between successive elements is α

N = 2 N = 10

( )φθ ,p ( )φθ ,p

1

N-element Hertzian dipole array

An N-Element Hertzian Dipole Phase Array: Examples

Page 7: Lecture 33 Antenna Arrays and Phase Arrayscourses.cit.cornell.edu/ece303/Lectures/lecture33.pdf · Lecture 33 Antenna Arrays and Phase Arrays In this lecture you will learn: • Antenna

7

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

An (N+1)-Element Hertzian Dipole Binomial Array

x

z

y

(N+1)-element Hertzian dipole array

a • Current phase is the same for all the dipoles

• Currents magnitudes in the dipoles follow a binomial distribution

( )!!!

0 mNmN

IIm

−=

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )⎥⎦⎤

⎢⎣⎡=+=⇒

∑−

=∑===

φθφθ

φθ

φθ

φθ

cossin2

cos21,

!!!,

222cossin2

0

cossin.ˆ

0

00

akeF

emNm

NeeIIF

NNNakj

N

m

makjhrkjN

m

hrkjm mrr

Array Factor:

Element Factor:

( ) ( ) rkjo er

dIkjr −=Ε θπ

ηθφθ sin4

ˆ ,, 0r

π

λ

=⇒

=

ka

a2

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Lets look at radiation in the x-y plane:

φ

a

( )φcosay

x

Radiation going in the φ direction from adjacent elements will add in-phase, and one will have a big maximum in the radiation pattern, provided:

( ){

( ) n

nnak

πφπ

πφ

±=⇒

=±=

cos2

,3,2,1,0 2cos

KK

An (N+1)-Element Hertzian Dipole Binomial Array: Maxima and Nulls

( ) ( )⎥⎦⎤

⎢⎣⎡== φπφπθ cos2

cos2,2 222 NNF

( ) ( )⎥⎦⎤

⎢⎣⎡== φπφπθ cos2

cos,2 2Np

N+1=2

N+1=40

N+1=2N+1=40

( )φπθ ,2=p ( )φπθ ,2=p

Note:

• No side lobes• Two nulls at φ = 0,π

(degrees) φ

(degrees) φ

Page 8: Lecture 33 Antenna Arrays and Phase Arrayscourses.cit.cornell.edu/ece303/Lectures/lecture33.pdf · Lecture 33 Antenna Arrays and Phase Arrays In this lecture you will learn: • Antenna

8

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Phased Array TRack to Intercept Of Target

Alaska

Applications of Antenna Arrays - I

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Communication satellite with two phase array antenna panels MRI system with phase array

RF receivers

Applications of Antenna Arrays - II

Jicamarca facility (Peru) with an array of half-wave dipoles

SETI