lec 12 - pt.2 - rsystem

50
7/21/2019 Lec 12 - pt.2 - Rsystem http://slidepdf.com/reader/full/lec-12-pt2-rsystem 1/50 © 2013 Pearson Education, Inc. Henley Beach, South Australia

Upload: simon-hagos

Post on 04-Mar-2016

225 views

Category:

Documents


1 download

DESCRIPTION

r system

TRANSCRIPT

Page 1: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 1/50

© 2013 Pearson Education, Inc.

Henley Beach, South Australia

Page 2: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 2/50

  Slides includes material (direct or modified) from © 2013 Pearson Education, Inc. Human Anatomy & Physiology, Ninth Edition and materialsupplied by Dr J Carnegie and other sources as referenced

The Respiratory System

Lecs 3 & 4

ANP 1105A&EAnthony Krantis, [email protected]

These slides contain material to be presented in lecture*.The information from the lecture should be used in combination with the

relevant chapters of the recommended Text book(s).Throughout this presentation, there are references to and use of figures

from the text book. In addition, specific animations/videosare also referenced and can be used by the student forstudy purposes, if they wish.*Slides marked with a STAR will not be covered in the lecture but are

 provided as additional learning material

Page 3: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 3/50

Respiratory SystemRespiration

Respiration = the series of exchanges that leads to theuptake of oxygen by the cells, and the release of carbondioxide to the lungs

Step 1 = ventilation –

 

Inspiration & expiration

Step 2 = exchange between alveoli (lungs) and pulmonarycapillaries (blood)

 – 

Referred to as External Respiration

Step 3 = transport of gases in blood

Step 4 = exchange between blood and cells –  Referred to as Internal Respiration

 –   Cellular respiration = use of oxygen in ATP synthesis

Page 4: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 4/50

© 2013 Pearson Education, Inc.

Gas Exchanges Between Blood, Lungs, and Tissues

•  External respiration –diffusion of gases in lungs

 –  

Thickness and surface area of respiratory membrane –   Partial pressure gradients and gas solubilities

 –   Ventilation-perfusion coupling

• 

Internal respiration –diffusion of gases at body

tissues

•  Both involve

 –   Physical properties of gases

 –   Composition of alveolar gas

Page 5: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 5/50

External Respiration

Internal Respiration

Ventilation

Page 6: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 6/50

© 2013 Pearson Education, Inc.

Basic Properties of Gases:

Dalton's Law of Partial Pressures

• 

Total P exerted by mixture of gases

= sum of pressures exerted by each gas

• 

Partial pressure (PP)

 –   Pressure exerted by each gas inmixture

 –   Directly proportional to its % inmixture

Page 7: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 7/50© 2013 Pearson Education, Inc.

Table 22.4 Comparison of Gas Partial Pressuresand Approximate Percentages in theAtmosphere and in the Alveoli 

Page 8: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 8/50© 2013 Pearson Education, Inc.

Basic Properties of Gases:

Henry's Law

• Gas mixtures in contact with liquid

 –   Each gas dissolves in proportion to its PP

 –   At equilibrium, PP’s in two phases will be

equal –   Amount of each gas that will dissolve

depends on

• Solubility: CO2  20x more soluble in

water than O2; little N2 dissolves inwater

• Temperature: as T0 rises, solubility

decreases

Page 9: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 9/50© 2013 Pearson Education, Inc.

Partial Pressure Gradients and Gas Solubilities

•  Steep PP gradient for O2 in lungs

 –  

Venous blood Po2 = 40 mm Hg

 –   Alveolar Po2 = 104 mm Hg

• 

Drives O2 flow to blood• Equilibrium reached across respiratory

membrane in ~0.25 seconds, about 1/3time a red blood cell is in pulmonary

capillary! 

 –   Adequate oxygenation even if blood

flow increases 3X

Page 10: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 10/50

© 2013 Pearson Education, Inc.

Figure 22.18 Oxygenation of blood in the pulmonary capillaries at rest. 

100

5040

0 0 0.25 0.50 0.75

PO2 104 mm Hg

Time in thepulmonary capillary (sec)

End ofcapillary

Start ofcapillary

   P   O   2   (  m

  m    H  g   )

150

Page 11: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 11/50

© 2013 Pearson Education, Inc.

Partial Pressure Gradients and Gas Solubilities

• 

PP gradient for CO2 in lungs less steep –   Venous blood Pco2 = 45 mm Hg

 –   Alveolar Pco2 = 40 mm Hg

•  However CO2 diffuses in equal amounts with

oxygen

 –   CO2  is 20X more soluble in plasma than O2 

Page 12: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 12/50

© 2013 Pearson Education, Inc.

Ventilation-Perfusion Coupling

•  Perfusion- blood flow reaching alveoli

•  Ventilation- amount of gas reaching alveoli

•  Ventilation and Perfusion matched

(coupled) for efficient gas exchange

 –   Never balanced for all alveoli due to

• Regional variations due to effect ofgravity on blood and air flow

• Some alveolar ducts plugged with

mucus

Page 13: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 13/50

© 2013 Pearson Education, Inc.

Ventilation-Perfusion Coupling

Perfusion

 – 

Changes in gasses in alveoli cause changes in

diameters of arterioles

•  Where alveolar O2 is high, arterioles - dilate

•  Where alveolar O2 is low, arterioles - constrict

• 

Directs most blood where alveolar oxygen high

•  Where alveolar CO2 is high, bronchioles - dilate

• 

Where alveolar CO2 is low, bronchioles - constrict•  Allows elimination of CO2 more rapidly

Page 14: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 14/50

© 2013 Pearson Education, Inc.

Figure 22.19 Ventilation-perfusion coupling 

Ventilation less than perfusion Ventilation greater than perfusion

Mismatch of ventilation and perfusion ventilation and/or perfusion of alveoli

causes local P and PCO2  O2 

Mismatch of ventilation and perfusion ventilation and/or perfusion of alveoli

causes local P and PCO2  O2 

O2 autoregulatesarteriolar diameter

O2 autoregulatesarteriolar diameter

Pulmonary arteriolesserving these alveoli

constricts

Pulmonary arteriolesserving these alveoli

dilate

Match of ventilation

and perfusionventilation, perfusion 

Match of ventilation

and perfusionventilation, perfusion 

Page 15: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 15/50

© 2013 Pearson Education, Inc.

Internal Respiration

Capillary gas exchange in body tissues

• 

Partial pressures and diffusion gradients reversed

compared to external respiration

 –  Tissue Po2 always lower than in systemicarterial blood O2 from blood to tissues

 – 

CO2  from tissues to blood

 –  Venous blood Po2 40 mm Hg and Pco2 45 mm Hg

Page 16: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 16/50

© 2013 Pearson Education, Inc.

Figure 22.17 Partialpressure gradients

promoting gas

movements in thebody. 

Inspired air:

PO2 

PCO2 

160 mm Hg

0.3 mm Hg

Alveoli of lungs:

PO2 

PCO2 

104 mm Hg

40 mm Hg

Externalrespiration

Pulmonaryarteries

 AlveoliPulmonary

veins (PO2 

100 mm Hg)

Blood leaving

tissues andentering lungs:PO2

 

PCO2 40 mm Hg

45 mm Hg PO2 

PCO2 

Blood leaving

lungs andentering tissue

capillaries:

100 mm Hg

40 mm Hg

Systemicveins Systemicarteries

Internalrespiration

Tissues:PO2

 less than 40 mm Hg

PCO2

 greater than 45 mm Hg

Heart

Page 17: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 17/50

© 2013 Pearson Education, Inc.

O2 Transport in Blood

Molecular O2 carried in blood

 – 

1.5% dissolved in plasma

 –  98.5% loosely bound to each Fe of hemoglobin (Hb)in RBCs

•  Maximum 4 O2 per Hb = Oxyhemoglobin (HbO

2)

Reduced Hb(has released it’s O2 ) 

Page 18: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 18/50

© 2013 Pearson Education, Inc.

O2 and Hemoglobin

Rate of loading and unloading of O2 regulated to

ensure adequate oxygen delivery to cells

 –  Po2 

 –  Temperature

 –  Blood pH

 –  Pco2 

 –  Concentration of BPG–1,3-

bisphosphoglycerate, metabolite of glycolysis

in RBCs; levels rise when oxygen levels

chronically low promotes the release of the remainingoxygen molecules bound to the

hemoglobin, thus enhancing the ability ofRBCs to release oxygen near tissues that

need it most.

Figure 22 20 The amount of oxygen carried by hemoglobin depends on the P (the amount of oxygen) available

Page 19: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 19/50

© 2013 Pearson Education, Inc.

Figure 22.20 The amount of oxygen carried by hemoglobin depends on the PO2 (the amount of oxygen) available

locally.

This axis tells you how much

O2 is bound to Hb. At 100%,

each Hb molecule has 4 bound

oxygen molecules.

In the lungs, where PO2 is

high (100 mm Hg), Hb isalmost fully saturated

(98%) with O2.

If more O2 is present,more O2 is bound.

However, because of

Hb’s properties (O2 binding strength

changes with

saturation), this is an

S-shaped curve, not astraight line.

Hemoglobin

Oxygen

100

80

60

40

20

0

0 20 40 60 80 100

   P  e  r  c  e  n   t   O   2  s  a   t  u  r  a   t   i  o  n  o   f   h  e  m  o  g   l  o   b   i  n

P  (mm Hg)

This axis tells you the relative

Amount (partial pressure) of

O2 disslolved in the fluid

Surrounding the Hb.

In the tissues of other organs,where PO2

 is low (40 mm Hg), Hb

is less saturated (75%) with O2.

• 

• 

O2 

Page 20: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 20/50

© 2013 Pearson Education, Inc.

Influence of Po2 on Hemoglobin Saturation

• 

Venous blood

 – 

Po2 = 40 mm Hg

 – 

Contains 15 vol % oxygen

 – 

Hb is 75% saturated

 – 

Venous reserve 

• 

Oxygen remaining in venous blood

• 

Arterial blood

 – 

Po2 = 100 mm Hg

 – 

Contains 20 ml oxygen per 100 ml blood

(20 vol %)

 – 

Hb is 98% saturated

• 

Further increases in Po2 (e.g., breathing deeply) produce minimalincreases in O2 binding

Page 21: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 21/50

© 2013 Pearson Education, Inc.

In the lungs100

80

60

40

20

00 20 40 60 80

   P  e  r  c  e  n   t   O   2  s  a

   t  u  r  a   t   i  o  n  o   f   h  e  m  o  g   l  o   b   i  n

100

PO2 (mm Hg)

At high PO2, large changes in PO2 cause only

small changes in Hb saturation. Notice that the

curve is relatively flat here. Hb’s properties

produce a safety margin that ensures that Hb is

almost fully saturated even with a substantial PO2 

decrease. As a result, Hb remains saturated even

at high altitude or with lung disease. 

At high altitude, there is less O2.

At a PO2 in the lungs of only 80

mm Hg, Hb is still 95% saturated.

At sea level, there is lots of O2.

At a PO2 in the lungs of 100 mm Hg,

Hb is 98% saturated.

98%

95%

Figure 22.20 The amount of oxygen carried by hemoglobin depends on the PO2 (amount of oxygen) available locally

Page 22: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 22/50

© 2013 Pearson Education, Inc.

Figure 22.21 Effect oftemperature, PCO2

, and blood pHon the oxygen-hemoglobin

dissociation curve. 

   P  e  r  c  e  n   t   O   2  s  a   t  u  r  a

   t   i  o  n  o   f   h  e  m  o  g   l  o   b   i  n

   P  e  r  c  e  n   t   O   2  s  a   t  u  r  a

   t   i  o  n  o   f   h  e  m  o  g   l  o   b   i  n

10ºC

20ºC38ºC

43ºC

0

20

40

60

80

100

0

20

40

60

80

100

Normal bodytemperature

Decreased carbon dioxide(PCO2

 20 mm Hg) or H+ (pH 7.6)

Normal arterial

carbon dioxide

(PCO2 40 mm Hg)or H+ (pH 7.4)

Increased carbon dioxide

(PCO2 80 mm Hg)

or H+ (pH 7.2)

20 40 60 80 100

P

 

mm Hg)

O

2

a)

b)

Page 23: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 23/50

© 2013 Pearson Education, Inc.

Factors that Increase Release of O2 by Hemoglobin

As cells metabolize glucose and use O2  –   As Pco2 and H+ increase in capillary blood! 

Bohr effect - Hb-O2 bond weakens! oxygenunloading where needed most

 –   As Heat production increases! directly andindirectly decreases Hb affinity for O2 ! 

increased oxygen unloading to active tissues

Page 24: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 24/50

© 2013 Pearson Education, Inc.

Homeostatic Imbalance

Hypoxia

 –  

Inadequate O2 delivery to tissues! cyanosis 

 –   Anemic hypoxia –too few RBCs; abnormal or toolittle Hb

 –   Ischemic hypoxia –impaired/blocked circulation

 –   Histotoxic hypoxia –cells unable to use O2, as inmetabolic poisons

 –   Hypoxemic hypoxia –abnormal ventilation;

pulmonary disease

 –   Carbon monoxide poisoning –especially from fire;

200X greater affinity for Hb than oxygen

Page 25: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 25/50

© 2013 Pearson Education, Inc.

CO2 Transport in blood

CO2 transported in three forms

 –  

7 to 10% dissolved in plasma

 –   20% bound to globin of hemoglobin(carbaminohemoglobin)

 –   70% transported as bicarbonate ions (HCO3

 – ) in

plasma

Occurs primarily in RBCs and is very fastIn plasma this reaction is slow

Page 26: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 26/50

© 2013 Pearson Education, Inc.

Haldane Effect: Property of Hemoglobin(Hb)

De-oxygenation of blood increases its ability to carry CO2 

•  Reduced Hb (less O2 saturation) forms

carbaminohemoglobin and buffers H+ more easily! 

 –   Lower Po2 and Hb saturation with O2; more CO2 carried in blood

•  Encourages CO2 exchange in tissues and lungs

• 

As more CO2 enters blood, more O2 dissociates fromhemoglobin (Bohr effect)

•  As HbO2 releases O2, it more readily forms bonds withCO2 to form carbaminohemoglobin

Bohr Effect: hemoglobin's oxygen binding affinity is inversely related bothto acidity and to the concentration of carbon dioxide.

Page 27: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 27/50

© 2013 Pearson Education, Inc.

Figure 22.22a Transport and exchange of CO2 and O2. 

Tissue cell Interstitial fluid

(dissolved in plasma)

Binds to

plasma

proteins

Chlorideshift

(in) via

transport

protein

Blood plasma

(dissolved in plasma)

Slow

Carbonic

anhydrase

(Carbamino-

hemoglobin)

Red blood cell

Fast

Oxygen release and carbon dioxide pickup at the tissues

Page 28: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 28/50

© 2013 Pearson Education, Inc.

Influence of CO2 on Blood pH

Carbonic acid–bicarbonate system – buffers blood pH

 –   If H+ concentration in blood rises, excess H+ isremoved by combining with HCO3

 –  ! H2CO3

 –   If H+ concentration begins to drop, H2CO3 dissociates, releasing H+

 –   HCO3 –  is the alkaline reserve of carbonic acid-

bicarbonate buffer system

Page 29: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 29/50

© 2013 Pearson Education, Inc.

Influence of CO2 on Blood pH

Respiratory rate & depth affect blood pH

 – 

Slow, shallow breathing increased CO2 in

blood  drop in pH

 –  Rapid, deep breathing decreased CO2 inblood rise in pH

•  Changes in ventilation can adjust pH whendisturbed by metabolic factors

Page 30: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 30/50

www.lionden.com

Influence of CO2 on Blood pH

Page 31: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 31/50

© 2013 Pearson Education, Inc.

North Glenelg Beach, South Australia

Page 32: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 32/50

© 2013 Pearson Education, Inc.

Control of Respiration

Involves brain centers, chemoreceptors, and other reflexes

• 

Brain control

 – 

Reticular formation of Medulla and Pons

 –  Pons neurons Influence and modify activity of VRG neurons

 – 

Smooth out transition between inspiration and expiration

 – 

Modify and fine-tune breathing rhythms during vocalization,sleep, exercise

 – 

Clustered neurons in medulla important

• 

Ventral respiratory group

• 

Dorsal respiratory group 

Page 33: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 33/50

© 2013 Pearson Education, Inc.

Medullary Respiratory Centers

•  Ventral respiratory group (VRG) – 

 

Rhythm-generating & integrative center

 –   Sets eupnea –normal breathing (12–15 breaths/min)

 –   Its inspiratory neurons excite inspiratory muscles via phrenic (diaphragm) and intercostal nerves (external intercostals)

 –  

Expiratory neurons inhibit inspiratory neurons

•  Dorsal respiratory group (DRG) –   Near root of cranial nerve IX

 –  

Integrates input from peripheral stretchand chemoreceptors; sends information! VRG

Figure 22 23 Locations of

Page 34: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 34/50

© 2013 Pearson Education, Inc.

Pons

Medulla

Pontine respiratory centers

interact with medullaryrespiratory centers to smooththe respiratory pattern.

Ventral respiratory group (VRG) contains rhythm generatorswhose output drives respiration.

Pons

Dorsal respiratory group (DRG) integrates peripheral sensoryinput and modifies the rhythmsgenerated by the VRG.

To inspiratorymuscles

Externalintercostalmuscles

Diaphragm

Medulla

Figure 22.23 Locations ofrespiratory centers and theirpostulated connections. 

Page 35: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 35/50

© 2013 Pearson Education, Inc.

Factors influencing Breathing Rate and Depth

•  Depth = how actively the respiratory center stimulates

respiratory muscles•  Rate = duration of inspiratory center activity

•  Both modified in response to changing body demands

 –   Most important are changing levels of CO2, O2, and H+ 

 –   Sensed by central and peripheral chemoreceptors

•  Hyperventilation- depth & rate of breathing thatexceeds body's need to remove CO2 

! decreases blood CO2 levels (hypocapnia)

! cerebral vasoconstriction and cerebralischemia !  dizziness, fainting

•  Apnea – breathing cessation from abnormally lowPco2 

Page 36: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 36/50

© 2013 Pearson Education, Inc.

Chemical Factors

Rising CO2 levels most powerful respiratory stimulant

 –  

If blood Pco2 rises (hypercapnia), CO2 

accumulates in brain! 

 –   CO2 in brain hydrated to carbonic acid! dissociates, releasing H+ ! pH drops

 –  

H+ stimulates chemoreceptors of brain stem

 –   Chemoreceptors synapse with respiratoryregulatory centers! increased depth and rate

of breathing! lower blood Pco2 ! pH risesNormally blood Po2 affects breathing only indirectly by influencingperipheral chemoreceptor sensitivity to changes in Pco2

But when arterial Po2 <60 mm Hg, it becomes major stimulus forrespiration (via peripheral chemoreceptors)

Page 37: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 37/50

© 2013 Pearson Education, Inc.

Chemical Factors

Influence of Po2 

 –  

Peripheral chemoreceptors inaortic & carotid bodies – sense

arterial O2 level

 –   When stimulated, causerespiratory centers to increase

ventilation

 –  

Declining Po2 normally slighteffect on ventilation

•  Huge O2 reservoir bound toHb

•  Requires substantial drop in

arterial Po2 (to 60 mm Hg)to stimulate increased

ventilation

Page 38: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 38/50

© 2013 Pearson Education, Inc.

Chemical Factors

Influence of arterial pH

 – 

Can modify respiratory rate & rhythm even if CO2 &

O2 levels normal

 –  Involves peripheral chemoreceptors

 –  Decreased pH may reflect

• 

CO2 retention; accumulation of lactic acid; excessketone bodies

 –  Respiratory system controls attempt to raise pH by

increasing respiratory rate and depth

Page 39: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 39/50

© 2013 Pearson Education, Inc.

Inflation Reflex

Hering-Breuer Reflex (inflation reflex)

• 

Stretch receptors in pleurae and airways

stimulated by lung inflation

- Inhibitory signals to medullary respiratorycenters end inhalation and allow expiration

- Acts as protective response more than

normal regulatory mechanism

Figure 22.24 Neural and chemical influences on brain stem respiratory centers. 

Page 40: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 40/50

© 2013 Pearson Education, Inc.

Central

chemoreceptors

Other receptors (e.g., pain)and emotional stimuli actingthrough the hypothalamus

Peripheralchemoreceptors

Respiratory centers(medulla and pons)

Higher brain centers(cerebral cortex—voluntary

control over breathing)

-breath holding in anger

-gasping with pain-rise in body temperature

Stretch receptorsin lungs

Irritantreceptors

Receptors inmuscles and joints

+ –

+ –

+

 –+

+

 –

Page 41: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 41/50

© 2013 Pearson Education, Inc.

Respiratory Adjustments: Exercise

 Adjustments geared to intensity & duration of exercise

• 

Hyperpnea  –  Increased ventilation (10 - 20 fold) in response to

metabolic needs

•  Pco2, Po2, and pH remain surprisingly constant during

exercise•

 

Three neural factors increase ventilation as exercise begins

- Psychological stimuli — anticipation of exercise

- Simultaneous cortical motor activation of skeletal muscles

and respiratory centers

Excitatory impulses to respiratory centers from

proprioceptors in moving muscles, tendons, joints

R i t Adj t t E i

Page 42: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 42/50

© 2013 Pearson Education, Inc.

Respiratory Adjustments: Exercise

• 

Ventilation declines suddenly as exercise ends

because the three neural factors shut off

•  Gradual decline to baseline because of declinein CO2 flow after exercise ends

•  Exercise! anaerobic respiration! lactic acid

 –  Not from poor respiratory function; from

insufficient cardiac output or skeletal muscle

inability to increase oxygen uptake

Page 43: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 43/50

© 2013 Pearson Education, Inc.

High Altitude

• 

Quick move to > 2400m (8000 ft)! acute

mountain sickness (AMS) –  Atmos P and Po2 levels lower

 –  Headaches, shortness of breath, nausea,dizziness

 – 

Possible, lethal cerebral & pulmonaryedema

Page 44: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 44/50

© 2013 Pearson Education, Inc.

Acclimatization to High Altitude

•  Respiratory & hematopoietic adjustments occur

• 

Chemoreceptors more responsive to Pco2 when Po2 declines

•  Lower Po2 directly stimulates peripheralchemoreceptors

•  Ventilation increases to 2–3 L/min higher than sea

level•  Always lower-than-normal Hb saturation levels

 –   Less O2 available

•  Decline in blood O2 stimulates kidneys to accelerateproduction of EPO

• 

RBC numbers increase slowly to provide long-termcompensation

Page 45: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 45/50

© 2013 Pearson Education, Inc.

Chronic Obstructive Pulmonary Disease (COPD)

 –   Exemplified by chronic bronchitis & emphysema

 –  

Irreversible decrease in ability to force air out of lungs –   Common features

•  History of smoking in 80% of patients

•  Dyspnea - labored breathing ("air hunger")

•  Coughing & frequent pulmonary infections

• 

Most develop respiratory failure (hypoventilation)accompanied by respiratory acidosis, hypoxemia

•  Treated with bronchodilators, corticosteroids, oxygen,sometimes surgery

normal emphysema

Page 46: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 46/50

© 2013 Pearson Education, Inc.

• Tobacco smoke• Air pollution

!-1 antitrypsindeficiency

Continual bronchialirritation and inflammation

Breakdown of elastin inconnective tissue of lungs

• Chronic productive cough• Loss of lung elasticity

• Frequent infections

• Respiratory acidosis

Chronic bronchitis

• Excess mucus production

Emphysema

• Destruction of alveolarwalls

• Airway obstructionor air trapping

• Dyspnea

• Hypoventilation• Hypoxemia

Figure 22.27 Thepathogenesis of COPD 

Page 47: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 47/50

© 2013 Pearson Education, Inc.

Asthma: Reversible COPD

 –   Characterized by coughing, dyspnea, wheezing, and

chest tightness

 –   Active inflammation of airways precedes bronchospasms

 –   Inflammation is immune response due to release ofinterleukins, production of IgE, and recruitment ofinflammatory cells

 –   Airways thickened with inflammatory exudate magnifyeffect of bronchospasms

Page 48: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 48/50

© 2013 Pearson Education, Inc.

Tuberculosis (TB)

 –   Infectious disease caused by bacterium

 Mycobacterium tuberculosis 

 –   Symptoms-fever, night sweats, weight loss,racking cough, coughing up blood

 –   Treatment- 12-month course of antibiotics

Page 49: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 49/50

© 2013 Pearson Education, Inc.

Cystic fibrosis

 –   Most common lethal genetic disease in North

America

 –   Abnormal, viscous mucus clogs passageways! bacterial infections

• 

Affects lungs, pancreatic ducts, reproductive

ducts

 –   Cause–abnormal gene for Cl- membrane

channel

Page 50: Lec 12 - pt.2 - Rsystem

7/21/2019 Lec 12 - pt.2 - Rsystem

http://slidepdf.com/reader/full/lec-12-pt2-rsystem 50/50