land suitability assessments suitability... · land evaluation systems have been used with land...

87

Upload: others

Post on 09-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural
Page 2: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

LAND SUITABILITY ASSESSMENTSFOR SELECTED CROPS IN PAPUA NEW GUINEA

B.B. Trangmar, D.J. Giltrap, S.J. Burgham and T.J. Savage

PNGRIS Publication No. 8

prepared byLandcare Research New Zealand Ltd on contract toCommonwealth Scientific and Industrial Research Organisation for Australian Agency for International Development

May 1995

Page 3: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

Published by Australian Agency for International Development, Canberra Australia 2601

© Commonwealth of Australia 1995

This work is copyright. Apart from any fan dealing for the purposes of study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced without written permission of the Australian Agency for International Development and the Papua New Guinea Government.

Bibliographic Reference:B.B. Trangmar, D.J. Giltrap, S.J. Burgham and T.J. Savage. 1995. Land Suitability Assessments for Selected Crops in Papua New Guinea. PNGRIS Publication No. 8 (AusAID: Canberra.) 84p.

National Library of Australia Cataloguing-in-Publication data:

Land suitability assessments for selected crops in Papua New Guinea.

Bibliography.ISBN 0 642 19609 5.

1. Crops and soils - Papua New Guinea - Data processing.2. Land capability for agriculture - Papua New Guinea - Data processmg. 3. Oil palm - Soils - Papua New Guinea.4. Coffee - Soils - Papua New Guinea. I. Trangmar, B. B. (Bruce Blair), 1952- . II. Australian Agency for International Development. III. Landcare Research New Zealand. IV. CSIRO. (Senes : PNGRIS publication ; no. 8).

631.49953

Cover photograph of coastal plam south of KietaEditing, design and typesetting byPenlnfo, Mooloolah Australia 4553Pnnted by Queensland Complete Printing Services, Nambour Australia 4560

Page 4: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

ABSTRACT

Methodology for the application of computerized land suitability assessment systems with the Papua New Guinea Resource Information System (PNGRIS) is presented. These systems comprise a land suitability model for arabica coffee production (Harding et al. 1986), tree and cash crops described in the Papua New Guinea Land Evaluation System (PNGLES) (Venema and Daink 1992). The methodology is tested for arabica coffee production and oil palm in Papua New Guinea for the major environment classes in Papua New Guinea (PNG) and for resource mapping units defined in PNGRIS. Land suitability for arabica coffee and oil palm production in PNG is mapped. The computerized land evaluation system for arabica coffee production is described. Results of the land suitability assessments for arabica coffee production based on the Harding et al. (1986) and PNGLES systems are compared. Recommendations are made for further development and validation of the land evaluation systems used. Procedures for data transfer between PNGRIS and the land evaluation systems are described.

Page 5: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

IV

ACKNOWLEDGEMENTS

Under an agreement between the Papua New Guinea Government and the Australian Agency for International Development (AusAID), the Commonwealth Scientific and Industrial Research Organisation (CSIRO) has contracted to further develop the Papua New Guinea Resource Information System (PNGRIS) and its applications. This publication is one of a series produced under that contract. The work reported here was conducted by Landcare Research New Zealand Ltd on subcontract to CSIRO

Francis Daink, Land Use Officer, Land Use Section, Department of Agriculture and Livestock, Papua New Guinea is thanked for his assistance in providing land evaluation models of the Papua New Guinea Land Evaluation System (PNGLES) for use in tins study. Dr. Clive Hackett is thanked for his advice in the application of PLANTGRO. Balthazar Wayi, Director. Research Division, Department of Agriculture and Livestock is thanked for his support and advice in developing the methods described in this report.

The assistance of Michael Siri and David Freyne in evaluating the land evaluation results are gratefully acknowledged.

ABBREVIATIONS

ALESAusAIDCSIRODALFAOLRULURLUT

PNGPNGLESPNGRISRMU

Automated Land Evaluation System Australian Agency for International DevelopmentCommonwealth Scientific and Industrial Research Organisation (Australia) Department of Agriculture and Livestock (PNG)Food and Agriculture Organization land resource unit land use requirements land utilisation type Papua New GuineaPapua New Guinea Land Evaluation System Papua New Guinea Resource Information System resource mapping unit

Page 6: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

V

CONTENTS

ABSTRACT iii

ACKNOWLEDGEMENTS iv

ABBREVIATIONS iv

1. INTRODUCTION 1

1.1 Background and objectives 1

2. LAND EVALUATION SYSTEMS 2

2.1 Review of land evaluation in PNG 22.2 Arabica coffee land evaluation model 32.3 Papua New Guinea Land Evaluation System (PNGLES) 122.4 PLANTGRO ' 142.5 Other land evaluation systems used in PNG 16

3. METHODOLOGY 18

3.1 Classification of physical environments of PNG 183.2 Land evaluation procedures 203.3 Data transfer from PNGRIS to PLANTGRO 22

4. RESULTS 4

4.1 Physical environments of PNG 234.2 Land suitability for arabica coffee by environment subclass and RMU 264.3 Land suitability for oil palm 344.4 Land suitability for other crops 344.5 PLANTGRO ratings for Upper Ramu test area 36

5. DISCUSSION 38

5.1 Model validation requirements 385.2 Scale factors in land use suitability assessment 385.3 Adjustment of rating criteria in relation to management conditions 395.4 Application of land evaluation models 395.5 Future model development 39

6. CONCLUSIONS 40

REFERENCES 41

ANNEXES

1. Procedures for extracting soils data from PNGRIS for entry to PLANTGRO 432. Definitions of PNGRIS attributes used to define environment subclasses 473. Summary of crop suitability ratings for PNGRIS RMUs and median environment 48

subclasses according to PNGLES

Page 7: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

VI

TABLES

1. Drainage/effective soil depth suitability classes for high input coffee production 42. Drainage/effective soil depth suitability classes for low input coffee production 43. Altitude/temperature suitability classes for coffee production 54. Mean annual rainfall suitability classes for coffee production 55. Factors and classes comprising the erosion hazard index 66. Erosion hazard index suitability classes 67. Soil fertility index factors, critical values and index points 78. Soil fertility index suitability classes 79. Suitability classes and points allocated to each diagnostic factor 810. Conversion of suitability points into a land suitability classification 811. Land characteristic classes which required translation from PNGRIS/RAMU 9

databases for use in the Harding et al. (1986) coffee model12. Erodibility classes of Soil Taxonomy great groups in PNG 1013. PNGLES land qualities and land characteristics 1314. Soil data inputs required for PLANTGRO 1515. Climatic data inputs required for PLANTGRO 1516. Environment types, subtypes and subclasses 1917. Environment types, subtypes, areas and number of RMUs 2318. Areas of suitability classes for arabica coffee production based on environment 26

subclasses19. Areas of suitability classes for low input arabica coffee production based on 28

PNGRIS RMUs20. Areas of suitability' classes for high input arabica coffee production based on 29

PNGRIS RMUs21. Comparison of suitability ratings for PNGRIS RMUs using the PNGLES 30

and Harding et al. (1986) low input arabica coffee models22. Comparison of suitability classes for high input arabica coffee production using 32

models of PNGLES and Harding et al. (1986)23. Comparison of suitability classes for low input arabica coffee production using 33

models of PNGLES and Harding et al. (1986)24. Areas of suitability classes for oil palm production based on PNGRIS RMUs 3525. PLANTGRO ratings and main limitations for selected crops and PNGRIS 36

RMUs, Upper Ramu catchment. Eastern Highlands Province

MAPS following 73

1. Major environment types, Papua New Guinea2. Suitability of environment subty pes for low input arabica coffee production (Harding

model)3. Suitability of environment subty pes for high input arabica coffee production (Harding

model)4. Suitability of PNGRIS RMUs for low input arabica coffee production (Harding model)5. Suitability of PNGRIS RMUs for high input arabica coffee production (Harding model)6. Suitability of PNGRIS RMUs for oil palm production

Page 8: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

1. INTRODUCTION

1.1 Background and objectives

The Papua New Guinea Resource Information System (PNGRIS) is a micro-computer-based geo- referenced database containing information on natural resources, population distribution, rural land use, small-holder economic activity and land use potential (Bellamy 1986). It is compiled at 1:500 000 scale for approximately 5000 Resource Mapping Units (RMUs) covering the entire land area of Papua New Guinea (PNG).

Two potential applications of PNGRIS are:

1) identification of areas of PNG which, given certain criteria, would be suitable for particular types of land use, and

2) determination of the most suitable type(s) of land use for specific land areas.

The land resource data in PNGRIS is appropriate for broad-scale agricultural land use suitability assessment at national and provincial level. A number of studies have conducted general (Haantjens et al. 1967, Bleeker 1975, Hackett 1988) and crop-specific (Bleeker and Freyne 1981, Vcncma and Daink 1992) agricultural land suitability assessments for PNG. Of these studies, only Venema and Daink (1992) have applied PNGRIS for such purposes. Vcncma and Daink (1992) computed suitability ratings for 22 crops for all PNGRIS RMUs but the results were stored in a database and not mapped. As a result, no spatial assessment of crop suitability was presented.

The structure of most land evaluation systems partition land on the basis of physical and climatic characteristics. A similar partitioning of PNG's physical environment was done by McAlpine (unpub.) in 1987. McAlpine identified 235 discrete environmental combinations in PNG differentiated on the basis of landform, altitude, rainfall, slope, rock type. and inundation. Ideally, physical land suitability for specific crops should be broadly similar within the same environment class when considering land use suitability for different crops on a nation-wide scale. As a result, the environment classes defined by McAlpine should be useful in partitioning the physical environment of PNG for broad-scale agricultural development planning.

The objectives of this study were to:

1) Develop procedures for application of land resource data from PNGRIS with computerized land evaluation systems to assess crop suitability for PNGRIS RMUs and the major environmental types of PNG:

2) Compute land use suitability ratings for a range of crops using coffee as a detailed test crop.3) Prepare sample maps on suitability of major environments and PNGRIS RMUs for selected

cash crops.

This report describes the:

• land evaluation systems used in the study:• procedures used in applying PNGRIS data with these systems;• development and application of a computerized land evaluation system for arabica coffee

production:• results of the crop suitability analyses.

Page 9: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

2

2. LAND EVALUATION SYSTEMS

2.1 Review of land evaluation in PNG

Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural development. Haantjcns (1963, 1969) developed the ‘"Agricultural Land Classification" for arable crops, tree crops, improved pastures and paddy rice. This system was developed during the CSIRO regional land resource surveys of the 1950's and early 1960's. It is based largely on physical properties of the land. Hartley et al. (1967) defined five potential land use classes for horticulture in a survey in West New Britain. Bleeker (1975) used the main elements of Haantjcns' system to produce national 1:1 000 000 scale maps of physical land limitations (9 classes) and agricultural land use potential for the four major land use types defined by Haantjcns.

These early land evaluation systems were developed for the major groups of agricultural crops and were not crop-specific. As the amount of resource data for PNG has increased and agricultural development has proceeded, a number of crop-specific land evaluation systems were developed. These included systems for cocoa production (Bleeker and Freyne 1981, Wavi 1987), sweet potato (Radcliffe 1983), and coffee (Harding et al. 1986). A crop eco-physical land evaluation system (ECOPFTES) (Hackett 1988) was also introduced as part of PNGRIS. However, ECOPHYS has not been widely used by staff of the Department of Agriculture and Livestock (DAL) Land Use Section and has not been widely tested in PNG.

The system currently used most widely by DAL staff is the Papua New Guinea Land Evaluation System (PNGLES) developed by Venema and Daink (1992). This system is based on the FAO Framework for Land Evaluation (FAO 1976). It provides a systematic land evaluation method for the production of 18 crops at two levels of management input. Decision trees for each of the 18 crops have been developed within the computerized framework provided by the Automated Land Evaluation System (ALES) (Rossitcr and Van Wambeke 1991) Crop suitability ratings for the above crops have been computed for each province in PNG using the land resource data in PNGRIS (1:500 000 scale). PNGLES is currently being tested in soil and land resource surveys at more detailed scale by DAL Land Use Section staff. The PNGLES decision tree models for citrus, potato and pineapple were used as part of the land evaluation process in the Upper Ramu land resource survey (Trangmar et al. 1995a).

A crop physiological evaluation system (PLANTGRO) (Hackett 1991) is also currently being evaluated in PNG. PLANTGRO places more emphasis on crop physiological response to climate and soil factors. It is more appropriate for site-specific crop suitability assessments than the other systems listed above. The other systems have less rigorous climatic parameters and are easier to use with land resource survey data in which climatic variation is described in only a general way As such PLANTGRO complements the other systems for site-specific application.

In this study the arabica coffee model of Harding el al. (1986) was computerized using the ALES package and suitability ratings generated for each environment subclass and PNGRIS RMU. Ratings for all PNGLES models were computed for each environment subclass and PNGRIS RMUs. Procedures for applying PLANTGRO with PNGRIS were developed and tested in a pilot study area.

Page 10: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

3

2.2 Arabica coffee land evaluation model

2.2.1 Introduction

Harding et al. (1986) developed a comprehensive system of land evaluation for rainfed arabica coffee production in PNG. The system is also based on the FAO (1976) framework and is a qualitative classification for two land utilization types (LUT). These are a high input system (coffee estates and managed blocks) and a low input system (small-holders).

Seven diagnostic criteria are recommended for evaluating the land suitability of individual sites, namely drainage/effective soil depth, air temperature, mean annual rainfall, erosion hazard, soil chemical fertility, site accessibility and present land use. Land resource data required to derive these criteria are:

Soil drainage class Effective rooting depthAltitude (surrogate for temperature) Mean annual rainfallErosion hazard (rainfall erosivity, soil erodibility, slope)Fertility (total N, P retention, Exch. K, Mg, CEC, pH)

The methodology enables evaluations to be made of individual (uniform) sites and also large areas of variable land, such as provinces or catchments. However, evaluations of large areas of variable land depend on the ability to map the land resource data used to derive the diagnostic criteria to run the model. The system has been validated at provincial scale using Western Highlands as a test area (Harding et al. 1987) and also applied in the Upper Ramu Catchment for land resource data collected at 1:50 000 scale (Trangmar et al. 1995a). In the latter study the classification system was computerized using the ALES framework (Rossiter and Van Wambeke 1991). The computerized version of the model has been installed on computers in DAL Land Use Section, Port Moresby.

Procedures for extracting the relevant land resource data for each resource mapping unit and transferring it into ALES to run the coffee model were similar to those used in the Upper Ramu study (Trangmar et al. 1995a). These procedures were adapted for use with PNGRIS in this study to generate coffee suitability ratings for PNGRIS RMUs and environment subclasses.

2.2.2 Diagnostic Criteria

The key land characteristics and their suitability classes required to run the Harding et al. (1986) coffee model are described briefly below.

Drainage/effective soil depth

The rating for this diagnostic criterion is detenmned from the effective soil depth, the soil depth after drainage. The depth of free-draining soil, the presence or absence of limiting layers, and the presence/absence of slowly permeable horizons are all used to determine the effective soil depth (Tables 1 and 2). These are modified versions of the respective tables in Harding et al (1986), and do not consider the possible limitation of the absence of drainage outlets, because this attribute cannot be compiled on a map unit basis.

In the evaluation for arabica coffee production, the soil is regarded as being unsuitable if the depth to which plant roots can readily penetrate is less than 50 cm (Harding et al. 1986). All soils with an impenetrable layer (e.g. rock, concretionary layer) at depths of less than 50 cm, are rated as unsuitable (R4). Soils with a depth of free-draining soil of less than 20 cm cannot be drained to attain an effective soil depth of more than 50 cm, and are also rated as unsuitable.

Page 11: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

4

Soils without an impenetrable layer at depths of less than 50 cm, but with 20-50 cm of free-draining soil, are rated as suitable (R3), provided the soil can be drained to achieve an effective soil depth exceeding 50 cm. In most cases, this can be achieved by installing closely-spaced drams to a depth of 1 m. Drainage is possible in both low- and high-input production systems, so the soils are rated as suitable (Rating R3). However, if the soils have either low vertical- or low horizontal drainage, deep ploughing or mole draining respectively will be required. In high-input production systems, such amelioration techniques are possible. As a result, slowly permeable soils with 20-50 cm of free- draining soil are rated as suitable (R3). In low-input systems mechanized drainage techniques are too costly, and such soils are rated as unsuitable (R4).

Table 1: Drainage/effective soil depth suitability classes for high input coffee production (afterHarding et al. 1986)

Suitability rating Depth of free draining soil (cm)

R1 > 120

R2 50-120

R3 20-49

R4 <50over limiting layer

<20

Table 2: Dramage/cffcctivc soil depth suitability classes for low input coffee production(Source: Harding et al. 1986)

Suitability rating Depth of free draining soil (cm)

Presence of horizons with low vertical1 2 or horizontal“

permeability

R1 > 120 N/A

R2 50-120 N/A

R3 20-49 absent

R4 20-49 present

<50over limiting layer

N/A

<20 N/A

1 Low vertical permeability in any one horizon indicates that deep ploughing is necessary2 Low horizontal permeability indicates that mole draining will be necessary

Page 12: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

5

Altitude

Arabica coffee production is directly related to temperature - both very low and very high temperatures can seriously affect production. In PNG a strong correlation exists between temperature and altitude. Altitude is therefore used as a diagnostic criterion (Table 3) for evaluation of suitability for coffee production (Harding et al. 1986).

Table 3: Altitude/temperature suitability classes for coffee production (after Harding et al.1986)

Suitabilityrating

Altitude range (metres a.s.l.)

Maximum annual temp, range

(°C) ^

Minimum annual temp, range

(°C) ^

High input LUT Low input LUT

Highinput

Lowinput

Highinput

Low'input

R1 1300-1699 1300-1699 26-24 26-24 15-13 15-13

R2 1100-1299 1100-1299 28-26 28-26 16-15 16-151700-1899 1700-1899 24-22 24-22 13-12 13-12

R3 1000-1099 600-1099 28-27 31-27 17-16 19-161900-2000 1900-2100 24-21 22-21 12-11 12-11

R4 <1000 <600 >28 >22 >16 >19>2000 >2100 <21 <21 <11 <11

Mean annual rainfall

Mean annual rainfall is an important climatic characteristic for arabica coffee production. Suitability ratings for rainfall classes are given in Table 4.

Table 4: Mean annual rainfall suitability classes for coffee production (Source: Harding et al.1986)

Suitability rating Mean amiual rainfall (mm)

R1 2000-2999

R3 1500-19993000-4000

R4 <1500>4000

Page 13: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

6

Erosion hazard

In the humid tropics, rates of natural soil erosion are generally low due to the formation of a protective cover of vegetation. However if the vegetation is removed, accelerated soil erosion occurs, particularly in areas which receive high intensity rainfall (Harding et al. 1986).

In this evaluation, three factors that contribute to soil erosion by water: rainfall erosivity, soil erodibility, and slope, are all used to derive an erosion hazard index, by adding together the index points for each factor (Table 5). The suitability rating is determined from the numerical value of the erosion hazard index (Table 6). The critical values for each suitability rating are different for high-input and low-input coffee production.

Table 5: Factors and classes comprising the erosion hazard index (Source: Harding et al. 1986)

Factor and units Critical values and index points

1 2 3 4

Rainfall Erosivity (erosivity class0

Low Moderate High Very High

Soil erodibility (erodibility class2)

Very Low Low Moderate High

Slope (°) 0-8 9-16 17-32 >32

Rainfall erosivity is a function of maximum monthly precipitation and annual rainfall. Calculations of rainfall erosivity, using data from a network of existing rainfall stations across PNG have been made by Bleeker (1983). A map of rainfall erosivity classes for PNG is given in Harding et al. (1986).

Soil erodibility describes the susceptibility of the soil to erosion, and has been shown to be dependent on the texture, organic matter content, structure, and permeability of the soil. Erodibility classes for PNG soils are given in Table 12.

Table 6: Erosion hazard index suitability classes (after Harding et al. 1986)

Suitabilityrating

Erosion hazard index

High input LUT Low input LUT

R1 3-4 3-5

R2 5-7 6-8

R3 8-10 9-11

R4 11-121 12

l Or any land with slope >32°

Page 14: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

7

Soil fertility

The inherent soil fertility is an important parameter for crop growth, particularly in low input management systems. Such systems are largely dependent on the soil for the supply of plant nutrients. In the arabica coffee model, total nitrogen, phosphate retention, exchangeable K, exchangeable Mg, cation exchange capacity, and pH are used to derive a chemical fertility index (Table 7). The importance of each of the above chemical properties to arabica coffee production, and their preferred range is given in Harding et al. (1986). The numerical value of the chemical fertility is used to determine the suitability ratings, the critical values being different for low-input and high-mput production systems (Table 8).

Table 7: Soil fertility index factors, critical values and index points (Source: Harding et al.1986)

Factor and units Critical values and index points

1 2 3 4

Total N (%) <0.10 0.10-0.19 0.20-0.50 >0.50

P retention (%) >95 85-95 60-84 >60

Exch. K (meq %) <0.10 0.10-0.19 0.20-0.60 >0.60

Exch. Mg (meq %) <0.30 0.30-0.59 0.60-1.00 >1.00

ECEC (meq %) <2 2-5 6-10 >10

or CEC (meq %) <5 5-10 11-25 >25

pH <4.5 4.5-4.9 5.0-5.4 5.5-6.5>7.5 7.1-7.5 6.6-7.0

Table 8: Soil fertility index suitability classes (Source: Harding et al. 1986)

Suitability rating Soil fertility index points

High input LUT Low input LUT

R1 >18 >20

R2 13-18 15-20

R3 8-12 10-14

R4 <8 <10

2.2.3 Land Suitability Class

For each of the diagnostic criteria described above, suitability points are assigned to each of suitability7 ratings, according to the relative importance of each (Table 9). The suitability points of a particular land unit are then added together to determine the suitability class (Table 10).

Page 15: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

8

Table 9: Suitability classes and points allocated to each diagnostic factor (Source: Harding etal. 1986)

Diagnostic factor Suitability rating and points

R1 R2 R3 R4

Drainage/effective soil depth 12 9 6 0

Altitude 8 6 4 0

Mean annual rainfall 4 n/a 2 0

Erosion hazard 4 3 2 0

Soil fertility 4 3 2 1

Table 10: Conversion of suitability points into a land suitability classification (after Harding etal. 1986)

Suitability points Land suitability class

>27 1 (Highly Suitable)

23-27 2 (Moderately Suitable)

17-22 3 (Marginally Suitable)

<17 or any suitability rating 4 (Not Suitable)scoring zero

2.2.4 Development of the model for arabica coffee production in ALES

A computerized decision tree model of the Harding et al. (1986) arabica coffee land evaluation system was developed using the ALES framework.

The land and soil attributes required to determine the suitability ratings for the diagnostic criteria, and thus the Land Suitability Class of the Harding et al. (1986) coffee model, were set up as Land Characteristics in ALES. However, the corresponding data in the PNGRIS/Upper Ramu databases did not always have the same number of classes and/or the same critical limits as those required by the Harding et al. (1986) model. Intermediate Land Characteristics corresponding exactly to those in the PNGRIS/Upper Ramu databases were set up. Decision trees were also set up that would translate the classes of these Land Characteristics to those of the Land Characteristics required by the ALES model. This was done using “Lc -> LC’ decision trees, where decision trees are set up for the each Land Characteristic required by the Harding model that did not have matching classes in the PNGRIS/Upper Ramu databases.

Page 16: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

9

The classes of attributes in the PNGRIS/RAMU data set that required translation are shown in Table 11 below.

Table 11: Land characteristic classes which required translation from the PNGRIS/RAMUdatabases for use in the Harding et al. (1986) coffee model

Land characteristic Land characteristic class in PNGRIS/Upper Ramu databases

Land characteristic class of Harding et al. coffee model

ECEC (meq/100g) <10 2-5

Altitude (m) 600-1200 600-999

1200-1800 1300-1699

1800-2400 2000-2099

1800-2100 1900-1999

Slope (°) 5-10 0-8

10-20 9-16

20-30 17-32

>30 >32

Total Nitrogen (%) <0.2 0.10-0.19

P Retention (%) 60-90 60-84

>90 >95

Exchangeable K (meq/100g) <0.2 0.10-0.19

pH 6-7 6.6-7.0

5-6 5.0-5.4

<5 <4.5

7-8 7.1-7.5

>8 >7.5

The Land Characteristic “depth of free draining soil'5 was derived from the data attribute “drainage class'5 in the PNGRIS/Upper Ramu database as follows:

Drainage Class (PNGRIS/Upper Ramu) Depth of free draining soil

well drained > 120cmimperfectly drained 5 0-120cmpoorly to very poorly drained 20-49cmwaterlogged (swampy) <29cm

Soil erodibility was determined from the Soil Taxonomy great group, using Table A6.1 of Harding et al. (1986). A number of additional correlations were made (Table 12) where the great groups of PNGRIS were not listed by Harding et al. (1986).

Page 17: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

10

Table 12: Erodibility classes of Soil Taxonomy great groups in PNG (after Bleeker 1983)

Code Class Soil Taxonomy Descnptiongreat group

1 Very low Histosols Humitropepts Soils with high to very highAndisols organic matter content and

moderate to rapid permeabilities. Granular to fine crumby surface horizons.

2 Low Argiudolls Crvumbrepts Soils with moderate organicHapludolls Rhodudalfs matter content and moderateRendolls Rhodustalfs permeabilities.Argiaquolls PsammaquentsEndoaquolls TropopsammentsEpiaquolls UstipsammentsArgiustolls HaplohumultsCalciustolls PalehumultsHaplustolls Plinthohumults

3 Moderate Cryaquepts Sulfaquents Generally slowly permeableTropaquepts Tropofluvents soils with moderate organicCryochrepts Ustifluvents matter content; the alluvialDystropepts Cryorthents Entisols have low to moderateEutropepts Troporthents organic matter content, areUstropepts Ustorthents massive and may have moderateCryaquents Endoaqualfs very fine sand and silt contentEndoaquents EpiaqualfsEpiaquents HapludalfsFluvaquents HaplustalfsHydraquents Rhodudults

4 High Endoaquerts Albaquults Endoaquerts: Very slowlyHapluderts Endoaquults permeable, often subject toHaplusterts Epiaquults surface scaling and haveHalaquepts Paleaquults prismatic or coarse blockyPlinthaquepts Plinthaquults structures, but moderate organicAlbaqualfs Hapludults matter content.Natrudalfs Paleudults Hapludults and Epiaqualfs:Natrustalfs Plinthudults generally relatively low organicPlinthaqualfs Acrudox matter content and relativelyNatrustolls Hapludox high very fine sand and silt

content. Poorly structured topsoils.

Page 18: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

1 1

2.2.5 Land use requirements

The diagnostic criteria (rainfall, altitude, erosion hazard index, chemical fertility index, and drainage/effective soil depth) were established in ALES as Land Use Requirements (LUR) for coffee. The decision trees to determine suitability ratings (severity levels in ALES) followed the tables of Harding et al. (1986) described above. The soil chemical fertility index LUR required multiple land characteristics to be set up as Lc -> Lc decision trees to avoid complex decision trees for the LURs.

In the Upper Ramu study, the severity levels for erosion hazard index of Harding et al. (1986) were adjusted so that slopes exceeding 16 degrees were unsuitable for coffee production in the low input model, and slopes greater than 8 degrees were unsuitable in the high input model (D.F. Freyne pers. comm.). In the present studv the seventy levels for erosion hazard were those described in Harding et al. (1986)

2.2.6 Physical suitability subclass

The physical suitability class (1-4) and subclass (abbreviations of the LURs/diagnostic criteria) were derived by means of a decision tree, using all the possible permutations of the five LURs/diagnostic criteria, in combination with the ‘"maximum limitation" method. The suitability classes 1-4 corresponded to the classes SI (Highly Suitable), S2 (Moderately Suitable), S3 (Marginally Suitable), and S4 (Unsuitable) respectively of Harding et al. (1986).

In the decision tree, a suitability class was allocated to each permutation of the five LURs, using the suitability points defined in Tables 9 and 10. Branching of the decision tree was stopped when any one of the diagnostic criteria was maximally limiting (i.e. had a R4 rating and zero suitability points). This was done to reduce the number of possible permutations and the size of the decision tree. When any one of the diagnostic criteria had a R4 rating, the suitability class allocated was “4”, and the subclass corresponded to the abbreviation of the maximally limiting LUR. Where more than one LUR was maximally limiting, the subclass only included the first maximally limiting LUR and would not include all the correct abbreviations. As a result, the "'decision tree'1 method was combined with the ‘"maximum limitation” method. This was done so that all the LURs which are potentially maximally limiting (i.e. drainage/effective soil depth, erosion hazard, altitude, and rainfall) were identified in the final physical suitability class allocated to each RMU.

2.2.7 Suitability ratings for compound RMUs

Many of the land units of both PNGRIS and the Upper Ramu catchment contain more than one soil great group. Each soil great group is unique, having a discrete set of attributes. This can result in different suitability ratings amongst soil great groups in the same RMU Each soil great group is estimated to occupy a certain area percentage of the RMU in which it occurs. In RMUs containing three different soil great groups it was assumed that the percentage area of the RMU occupied by each great group was 40, 30, 30, respectively. This assumption was made to simplify- the decision tree calculations in ALES. Similarly for those land units with only two soil great groups, great groups were assumed to occupy 60% and 40% of the total area respectively. In each case it was assumed that the dominant great group was listed first in the PNGRIS database.

Once the arabica coffee decision tree models were set up in ALES appropriate data for each land characteristic for each RMU was extracted from PNGRIS (Upper Ramu database in the case of the Upper Ramu study). A number of additional attributes required by the model (e.g. exchangeable Mg)

Page 19: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

12

were added. This database was then transferred to FoxPro, whereupon ASCII files of RMU definitions and resource attributes required by the ALES system were compiled. In the ALES framework, evaluations of suitability for arabica coffee production in both low-input and high-input production systems were generated. The resultant suitability classes for each land unit were transferred to a spatial database in Maplnfo from which maps of suitability for arabica coffee production were generated.

The computerized Harding et al. (1986) arabica coffee model was originally developed for the Upper Ramu study (Trangmar et al. 1995a). It was then applied in this study to PNGR1S and used to generate the ratings shown in Maps 1 -5.

2.3 Papua New Guinea Land Evaluation System (PNGLES)

DAL Land Use Section currently uses the Papua New Guinea Land Evaluation System (PNGLES) either manually or through the Automated Land Evaluation System (ALES) package to assess land suitability for crop production. The mam concepts of PNGLES are summarized here. Full details of PNGLES are given in Venema and Daink (1992).

2.3.1 PNGLES concepts

PNGLES is based on the FAO concepts of matching land qualities with land use requirements of a specific land utilization type (LUT) (FAO 1976) to derive suitability ratings. The matching process is conducted using a decision tree framework established for each LUT within the Automated Land Evaluation System (ALES) of Rossiter and Van Wambeke (1991). Decision trees are given for small­holder production of 18 crops (cardamom, cashew, chillies, citrus, cocoa, coconut, coffee arabica and robusta, maize, mango, oil palm, pepper, pineapple, potato, pyrethrum, rubber, upland rice, and vanilla) under low input conditions and 8 crops (cocoa, coffee arabica and robusta, maize, oil palm, potato, upland rice, rubber) under medium to high input, smallholder production conditions. Suitability ratings of each land quality in relation to that required for optimum production of each crop are determined using the decision trees. The suitability rating for most limiting land quality is used to determine the overall suitability of the mapping unit for the specified land utilization type. All land utilization types, crop requirements, and decision trees are given in Venema and Daink (1992).

PNGLES was initially set up to utilize the land resources data stored in PNGRIS, but can be applied at more detailed scales (Trangmar et al. 1995a). It currently uses eight land qualities derived from 26 land characteristics (Table 13).

2.3.2 Automated Land Evaluation System (ALES)

The ALES framework provides a systematic structure and process through which to derive the land evaluation ratings for each LUT. A particular strength of ALES is that provides a user-friendly query system through which the user can ask questions about why particular ratings were derived. ALES also has the potential capability to determine gross margins for crop production if production costs, prices, and yield data are known or can be derived for each LRU. Full details of using ALES are given in the user manual (Rossiter and Van Wambeke 1991) and are not explained here. The yield and gross margins components of ALES and PNGLES have yet to be tested in PNG.

Page 20: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

13

Table 13: PNGLES land qualities and land characteristics

Land qualities Land characteristics/attributes

Temperature Mean max. temperature Mean min. temperature

Erosion hazard SlopeSoil erodibility

Moisture conditions Mean annual rainfall Rainfall seasonality Soil texture (topsoil, subsoil) Landform

Nutrient availability pHMineral reserve Anion fixation

Potential for mechanization

Stonmess/rockinessSlopeTopsoil texture

Rooting conditions Effective soil depthSoil texture (topsoil, subsoil)Stonmess/rockiness

Nutrient availability/ retention capacity

pHCECTopsoil texture Anion fixation

Oxygen availability Soil drainage

Soil toxicities Acid sulphate Calcium carbonate

Excess of salts SalinitySodicity

In addition to the existing decision tree models for the crops developed in PNGLES by Venema and Daink (1992) ALES provides the framework to develop such models for other crops not presently included in PNGLES.

2.3.3 Data transfer between land resource databases and ALES/PNGLES Models

The relevant land characteristics for each RMU can be readily extracted from PNGRIS database and exported to ALES to conduct the crop suitability ratings using the PNGLES models. The crop suitability ratings were computed for each RMU in PNGRIS (Venema and Daink 1992). The ratings can then be reimported back to FoxPro and Maplnfo for map plotting or spatial analyses with the other land resource attributes recorded.

Page 21: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

14

2.4 PLANTGRO

2.4.1 Concepts

PLANTGRO is crop physiology-based computerized system of assessing land suitability for crop growth (Hackett 1991). It operates by matching the environmental requirements for optimum growth of specific crops with the climatic and soil conditions of the site being evaluated. It uses empirical qualitative crop growth response curves for each climatic and soil factor and matches them with the climatic and soils conditions for the site being evaluated. Limitations of each climatic and soil parameter of the site is assessed for the crop on a 0-9 scale (0 representing optimum growth, 9 causing plant death) In assessing the overall rating for the site PLANTGRO uses the maximum limitation method in which crop growth is constrained to the level or rating imposed by the most limiting factor. The overall ratings are presented in terms of maximum limitation rating tables or graphs.

2.4.2 Crop growth response functions in PLANTGRO

PLANTGRO contains crop growth response functions for the following climate and soil/site parameters:

Climate: Soils/Site:

Daylength, solar radiation Tolerance to brief and extended cold Tolerance to heat damage Thermal units Crop development units Water availability Seasonal water logging FloodingProneness to wind damage

Aeration Base saturation Cation exchange capacity Effective rooting depth pHN, P. K Salinity SlopeSoil texture

PLANTGRO currently contains these growth functions for over 100 crops. The crop growth response files have been developed using documented information and expert consultation throughout the world Growth functions can be developed for additional crops quite easily once their response to each climate and soil factor is known. Existing functions can be easily edited to take into account cultivar or varietal differences.

2.4.3 Soil data input to PLANTGRO

Soils data can be entered directly to PLANTGRO or existing generalized soil files for particular types of soils (e.g. sandy, clay soils) can be used if the soil type at a particular site or area is not known. It is recommended that actual soil data be used wherever possible. Soil data required by PLANTGRO is given in Table 14. Soil chemical properties listed in Table 14 apply to the topsoil layer. All of the soils data can be derived from PNGRIS usmg the procedures given in Annex 1.

Page 22: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

15

Table 14: Soil data inputs required for PLANTGRO

Soil chemical properties (Topsoil)

Soil physical/site properties

Base saturation (%) Aeration (Drainage Class)

Cation exchange capacity (meq/100g) Effective rooting depth (cm)

Nitrogen (%) Slope (degrees)

Available phosphorus (ppm) Depth (Layers A, B, C) (cm)

Exchangeable potassium (meq/100g) Texture (Layers A, B, C) (8 classes)

Salinity (dS/m) Available water holding capacity (Layers A, B) (cm/m)

Drainable water holding capacity (Layers A, B, C) (cm/m)

2.4.4 Climatic data inputs to PLANTGRO

Climatic data used in PLANTGRO (Table 15) should be derived from weather stations with more than 15 years of established record. Climatic data can be entered and crop growth analyses conducted for monthly, 10-daily, or weekly periods. Monthly data is most commonly used and is most relevant to crop suitability assessments for land resource surveys. 10-daily or weekly data may be used where particular crop physiological responses to specific weather conditions are to be assessed. Average data over the years of record or actual data for specific monthly, 10-daily or weekly periods can be entered.

Climatic data for PNG stations can be obtained from McAlpine et al. (1975) and entered to PLANTGRO. In running PLANTGRO for a particular survey area, data for the nearest or most relevant climate station is selected from the climate data menu.

Table 15: Climatic data inputs required for PLANTGRO

Data Type Data Type

Rainfall (mm)

Irrigation water applied (mm)

Daylength - average daily (hrs)

Temperature - mean daily max (°C)

Temperature - Brief cold - (e.g. mm. less 6°C)

Wind - extreme (km/hr)

Evaporation (mm)

Flooding risk value (1 or 0)

Solar radiation - average daily (Mj/m2/day)

Temperature - mean daily min. (°C)

Wind - average (km/hr)

Page 23: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

16

2.4.5 Making crop growth predictions using PLANTGRO

Single or multiple crop suitability predictions can be computed at any one time for any combinations of crops, soils and climates. As a result, PLANTGRO is versatile in that many different crops can be compared at the same time for a particular soil and climate combination; the suitability of a particular crop can be evaluated for several different climate zones at the same time; it can also be used to assess appropriate planting times for particular crops during the year and assess crop rotation sequences for different crops under a given set of soil and climate data. PLANTGRO can also be used to assess development stages of the crop growth in response to environmental conditions. It also enables crop suitability assessments to be made for several soils and crops within a land unit.

PLANTGRO output is in the form of tables of limitation ratings for each soil and climate factor for each crop, and an overall limitation rating based on the maximum limiting rating for the individual factors. This can also be displayed graphically onscreen and results saved to a file for hard copy output. PLANTGRO also has a capability for output files to be converted to GIS format although this has not been attempted in PNG as yet.

Full details of operating PLANTGRO are given in the manual by Hackett (1991).

At the present time in PNG, PLANTGRO is best used for making crop growth predictions for particular sites or for land resource surveys with a small number of LRUs. As a result, it is quite complementary to the PNGLES suite of land evaluation models which were designed to be used with large land resource survey data sets through use of the ALES framework.

In contrast to ALES and PNGLES, PLANTGRO does not readily take management conditions into account although these can be simulated by adjusting the soil input data to match different management input levels (e.g. fertilizer, drainage, irrigation). It does not contain economic analysis modules.

PLANTGRO is not well structured to access a large land resource survey database. Its current output formats require much editing before it can be directly incorporated with a relational database for subsequent plotting with a GIS package.

2.5 Other land evaluation systems used in PNG

Land evaluation systems for a number of specific crops (including cocoa, sweet potato, coconuts) have been developed for use with land resource data in PNG. Several of these are briefly described below'. Full details of each system are given in the cited references which the reader is encouraged to consult.

2.5.1 Cocoa

Bleeker and Freyne (1981) developed a land evaluation system for cocoa based on the relative severity of nine types of physical limitations. They used this system to map areas of PNG which are suitable for cocoa production. Wayi (1987) also proposed a system of land evaluation for cocoa production at three levels of management based on the FAO (1976) framework.

Page 24: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

17

2.5.2 Sweet Potato

Radcliffe (1983) also applied the FAO framework for land evaluation to assess contrasting land types in Southern Highlands Province for sweet potato production under the traditional Mendi cultivation system. Radcliffe’s sweet potato evaluation system could probably adapted for application in other parts of PNG.

2.5.3 Coconuts

Marques (1994) developed a land evaluation system for small-holder coconut production in PNG using the FAO framework. ALES was used as the framework within which to develop the system. The system was applied to Madang, Gulf and North Solomons Provinces as test areas using land resource data from PNGRIS. Maps of coconut suitability classes were plotted using Maplnfo and areas of different suitability classes calculated (Marques 1994). The ALES model for coconut production has been installed on computers in DAL Land Use Section in Port Moresby.

2.5.4 Other Crops

Description of environmental requirements for specific crops is beyond the scope of this handbook. A bibliography of information on 26 crops is given in Venema and Daink (1992). This and the plant growth response functions given in PLANTGRO (Hackett 1991) should be consulted if new land evaluation systems for particular crops are to be developed or existing ones improved on.

Page 25: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

18

3. METHODOLOGY

3.1 Classification of physical environments of PNG

The RMUs of the PNGRIS database were classified into the major environment subclasses based on the criteria defined by McAlpine (unpub.).

The classification includes 14 major environment types separated initially on the basis of major landform type (Table 16). These environment types were then subdivided according to altitude and rainfall classes. These subtypes are:

Altitude class: Rainfall class:

low (0-600m)mid (600-1200m)high (1200-2400m)very high (>2400m)

dry (1000-2000mm)wet (2000-4000mm)very wet (>4000mm)

It should be noted that not all environment types contain subtypes of each altitude and/or rainfall class. For example, mangrove swamp environments only occur in the low altitude class, but occur in all three rainfall classes. As a result, there are three environment subtypes:

Mangrove Swamps:Low altitude (0-600 m), dry (1000-2000 mm)Low altitude (0-600 m), wet (2000-4000 mm)Low altitude (0-600 m), very wet (> 4000 mm).

Each environment subtype has been further subdivided into a number of environment subclasses, based either on inundation type, slope, rock type, or dominant rock type grouping (Table 16). The environment subclasses are defined according to the PNGRIS classes for each of these land resource factors (Annex 2).

Page 26: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

19

Table 16: Environment types, subtypes and subclasses

Environment type Subtypes Subclasses Maximum number of

subclasses1 per subtype

Altitude Rainfall

Mangrove Swamps Low DryWetVery wet

- -

Estuaries and Coastal Plains

Low DryWetVery wet

Inundationtype

4

Beach Ridges and Plains

Low DryWet

- -

Raised Coral Reefs Low DryWetVery wet

Slope 3

Recent Alluvial Plains Low High Very high

Dry (L,H alt.)Wet (L,H,VH alt.) Very wet (L alt.)

Inundationtype

4

Relict Alluvial Plains Low DryWetVery wet

Inundationtype

3

Alluvial Floodplains Low DryWetVery wet

Inundationtype

3

Swamps Low Mid High Very high

Dry (L alt.)Wet (L,H,VH alt.) Very wet (L,M alt.)

Inundationtype

4

Alluvial Fans Low Mid High Very high

Dry (L,M,H alt.)Wet (L,M,H,VH alt.) Very wet (L,M,H alt.)

Rock type 3

Volcanic Plains and Fans

Low Mid High Very high

Dry (L alt.)Wet (L,M,H,VH alt.) Very wet (L,M,H alt.)

Slope 3

Volcanic Plateaux and Cones

LowMidHighVery high

Wet (L,M,H,VH alt.) Very wet (L,M,H alt.)

Slope 3

(continued)

Page 27: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

20

Environment type

Altitude

Subtypes

Rainfall

Subclasses Maximum number of

subclasses1 per subtype

Steeplands - Karst LowMidHighVery high

Wet (L,M,H alt.) Very wet (L,M,H.VH alt.)

Slope 3

Hills LowMidHighVery high

Dry (L,M,H alt.)Wet (L,M,H,VH alt.) Very7 wet (L,M,H alt.)

Dominant rock type grouping

62

Mountains LowMidHighVery high

Dry7 (L,M,H,VH alt.) Wet (L,M,H,VH alt.) Very wet (L,M,H,VH alt.)

Dominant rock type grouping

5

Not all possible subclasses occur within each subtype.

Includes additional subclass not previously defined, for those RMUs which did not fit any of the subclass criteria

A FoxPro database file (RMUENV.DBF) containing all the RMUs from the PNGRIS database classified to environment subclass level has been installed on computers in the Land Use Section, Department of Agriculture and Livestock (DAL).

3.2 Land evaluation procedures

3.2.1 Evaluation models

Crop suitability ratings for all PNGRIS RMUs and the environment subclasses of McAlpine (unpub.) were evaluated using the PNGLES models (Venema and Daink 1992), except for arabica coffee for which the Harding et al. (1986) model was used.

The decision trees of the PNGLES models were used without modification, except for the vanilla model (low input). This model produced nil ratings for three RMUs in Central Province. The decision tree for the Tooting conditions' LUR caused the nil ratings for the particular combination of soils for these RMUs. The particular combination in question was soils with an effective soil depth of 50-100 cm, and a subsoil texture of class 6 (rock). The decision tree was altered such that this combination gave a class 2 rating for 'rooting conditions', the lowest rating elsewhere in the decision tree for all other subsoil textures and an effective soil depth of 50-100 cm.

For the Harding et al. (1986) coffee model only the decision tree for erosion hazard index (for low input production) was altered from that of the original model. In the decision tree of the original model an R4 rating is achieved only when a land unit has slopes >32 degrees, high rainfall erosivity and high

Page 28: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

21

soil erodibility. The model was adjusted such that all units with slopes >32 degrees were given a R4 rating, including those with a higher rating for rainfall erosivity and soil erodibility.

3.2.2 Missing data from PNGRIS

Data for the rainfall erosivity (a required PNGLES land characteristic) is not part of the PNGRIS data set. Rainfall erosivity for each RMU was derived by overlaying the rainfall erosivity map given in Harding et al. (1986) onto an RMU map of each province. Maplnfo and FOXPRO were then used to compile rainfall erosivity classes for each RMU into a database which was then linked to the PNGRIS database.

3.2.3 Suitability determinations for RMUs containing more than one soil great group

For crops evaluated using the PNGLES models, suitability ratings for RMUs containing more than one soil great group were derived using the method described in Venema and Daink (1992). For the arabica coffee evaluation, the final rating of RMUs with more than one soil great group was based on the dominant soil in the RMU.

3.2.4 Calculation of median environment subclass ratings

All RMUs were classified according to the 'Natural Resource Classification from PNGRIS’ (McAlpine unpub.) down to environment subclass, altitude subclass and rainfall subclass level. The median crop suitability rating for all RMUs occurring in a particular environment subclass within a particular province was then calculated for each of a set of unique classification identifiers that occurred in each province. The median rating was then attached back to the RMUs using the unique classification identifier.

3.2.5 Data transfer and crop evaluations

The Harding et al. (1986) arabica coffee model required land unit definitions to be set up in the ALES database. These were created in FoxPro and exported to ALES using ASCII comma-delimited files. The attributes from PNGRIS required by the Harding arabica coffee model were also transferred from PNGRIS (FoxPro database files) to ALES using ASCII comma-delimited text files. The evaluations for all crops were then run and the results exported to an ASCII file, using the commands “File Evaluation Results”, ‘'Suitabilities” in the ‘'Evaluations” sub-menu (Rossiter and Van Wambeke 1991).

The PNGLES models already contained a complete attribute database for all RMUs, and so did not require attributes to be transferred from PNGRIS. The crop evaluations were run for these models, and results exported as above.

The files containing the evaluation results for the Harding arabica coffee model and the PNGLES models, were imported into FoxPro and database files created. The database files for the Harding arabica coffee model and the PNGLES models were processed differently to attach individual ratings to each of the provincial RMUs. The database files for the Harding model were filtered to remove the results for RMU constituents. The ALES evaluation results file contains an evaluation rating (integer physical suitability subclass) for each RMU that corresponds to that of the first-named soil constituent (which by PNGRIS definitions occupies 40% of each RMU). It is this rating which was then attached to each provincial RMU, in individual database files for each province/crop combination.

Page 29: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

22

In the case of the results files from the PNGLES models the evaluation ratings for the individual soil constituents were used in combination to derive the rating for the RMU. This was done according to the method of Venema and Daink (1992). A macro was written in FoxPro to do this. The resultant whole-RMU rating was stored as a single field in individual database files for each province/crop combination.

The individual files containing evaluation ratings for each province were then combined to create a single file containing all the RMUs for each province in PNG for each crop. These files were then transferred to Maplnfo for map plotting.

3.3 Data transfer from PNGRIS to PLANTGRO

The PLANTGRO crop evaluation package (Hackett 1991) has not been evaluated for use with PNGRIS to date. The data input structures for PLANTGRO are not readily suited for application with large resource survey databases. These difficulties largely relate to extracting soils data from multi­factor resource databases and adapting them to PLANTGRO's input fonnats. Procedures w7ere developed to extract soils data from PNGRIS for application with PLANTGRO. These procedures are described in full in Annex 1. The procedures were tested for 19 PNGRIS RMUs in the Upper Ramu catchment in Eastern Highlands Province. PLANTGRO analyses for these RMUs were conducted for arabica coffee, sweet orange, pineapple, Irish potato and yam. Climate data from Aiyura (McAlpine et al. 1975) was used for the climatic parameters required by PLANTGRO for the 19 test RMUs.

Page 30: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

23

4. RESULTS

4.1 Physical environments of PNG

The distribution of the 14 major physical environment types in PNG are shown in Map 1. The enviromnent types were further subdivided into a total of 235 subclasses (McAlpine unpub.) whose distribution is too complex to be shown at the map scale (1:2 000 000) used in Map 1. A data file classifying each PNGRIS RMU into one of the 235 enviromnent subclasses has been installed on the computers in the Land Use Section, DAL.

The areas of major environment types and subtypes are summarized in Table 17. Results indicate that mountains (41%), relict alluvial plains (13%), swamps (8%) and hills (7%) are the most common environment types in PNG.

Table 17: Environment types, subtypes, areas and number of RMUs

E n v ir o n m e n t T o ta l a r e a

( k m 2)

N u m b e r o f

R M U s

M a n g r o v e s w a m p sL o w a l t i tu d e ( 0 - 6 0 0 m ) , d ry (1 0 0 0 - 2 0 0 0 m m ) 1861 35

L o w a l t i tu d e (0 - 6 0 0 m ) , w e t ( 2 0 0 0 4 0 0 0 m m ) 2 3 2 6 53

L o w a l t i tu d e ( 0 - 6 0 0 m ) , v e ry w e t ( > 4 0 0 0 m m ) 1511 1 0

T o ta l - M a n g ro v e s w a m p s 5 6 9 8 9 8

E s tu a r ie s a n d C o a s ta l P la in s

L o w a l t i tu d e ( 0 - 6 0 0 m ) , d ry ( 1 0 0 0 - 2 0 0 0 m m ) 1001 16

L o w a l t i tu d e (0 -6 0 0 m ) , w e t ( 2 0 0 0 - 4 0 0 0 m m ) 1059 4 2

L o w a l t i tu d e ( 0 -6 0 0 m ) , v e ry w e t ( > 4 0 0 0 m m ) 3 8 4 _9

T o ta l - E s tu a r ie s a n d c o a s ta l p la in s 2 4 4 4 6 7

B e a c h R id g e s a n d P la in sL o w a l t i tu d e (O -öO O m j, d ry ( 1 0 0 0 - 2 0 0 0 m m j 7 6 8 17

L o w a l t i tu d e (0 - 6 0 0 m ) , w e t ( 2 0 0 0 - 4 0 0 0 m m ) 1 1 2 3 52

T o ta l - B e a c h r id g e s a n d p la in s 1891 6 9

R a is e d C o ra l R e e f sL o w a l t i tu d e ( 0 - 6 0 0 m ) , d ry (1 0 0 0 - 2 0 0 0 m m ) 95 7

L o w a l t i tu d e (0 - 6 0 0 m ) , w e t ( 2 0 0 0 4 0 0 0 m m ) 5 3 1 2 156

L o w a l t i tu d e (0 - 6 0 0 m ) , v e ry w e t ( > 4 0 0 0 m m ) 2 1 6 3 _36

T o ta l - R a is e d c o ra l r e e f s 7 5 7 0 199

R e c e n t A l lu v ia l P la in s

L o w a l t i tu d e (0 -6 0 0 m ) , d ry (1 0 0 0 - 2 0 0 0 m m ) 3 2 1 7 4 4

L o w a l t i tu d e ( 0 -6 0 0 m ) , w e t (2 0 0 0 - 4 0 0 0 m m ) 14191 150

L o w a l t i tu d e ( 0 -6 0 0 m ) , v e ry w e t (> 4 0 0 0 m m ) 2 6 7 6 4 5

H ig h a l t i tu d e (1 2 0 0 - 2 4 0 0 m ) , d ry (1 0 0 0 - 2 0 0 0 m m ) 102 9

H ig h a l t i tu d e (1 2 0 0 - 2 4 0 0 m ) , w e t ( 2 0 0 0 - 4 0 0 0 m m ) 6 6 5 11

V e ry h ig h a l t i tu d e ( > 2 4 0 0 m ) , w e t ( 2 0 0 0 4 0 0 0 m m ) 131 _ 9

T o ta l - R e c e n t a l lu v ia l p la in s 2 0 9 2 8 2 6 8

R e l ic t A l lu v ia l P la in s

L o w a l t i tu d e ( 0 -6 0 0 m ) , d ry (1 0 0 0 - 2 0 0 0 m m ) 2 2 9 6 0 2 8

L o w a l t i tu d e (0 -6 0 0 m ) , w e t ( 2 0 0 0 4 0 0 0 m m ) 2 1 4 9 1 2 0

L o w a l t i tu d e ( 0 -6 0 0 m ) , v e ry w e t ( > 4 0 0 0 m m ) 1 5 3 6 3 U

T o ta l - R e l ic t a l lu v ia l p la in s 5 9 8 1 4 59

( c o n t in u e d )

Page 31: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

24

E n v iro n m e n t T o ta l a rea (k m 2)

N u m b e r o f R M U s

A llu v ia l F lo o d p la in sL o w a ltitu d e (0 -6 0 0 m ), d ry (1 0 0 0 -2 0 0 0 n u n ) 3364 27L o w a ltitu d e (0 -6 0 0 m ), w e t (2 0 0 0 -4 0 0 0 n u n ) 19582 89L o w a ltitu d e (0 -6 0 0 in ), very w e t (> 4 0 0 0 m m ) 4 4 9 9 _24T o ta l - A llu v ia l flo o d p la in s 27445 140

S w am p sL o w a ltitu d e (0 -6 0 0 m ), d ry (1 0 0 0 -2 0 0 0 m m ) 4 5 6 9 33L o w a ltitu d e (0 -6 0 0 m ), w e t (2 0 0 0 -4 0 0 0 n u n ) 2 5995 168L o w a ltitu d e (0 -6 0 0 m ), very w e t (> 4 0 0 0 m m ) 4 5 2 9 21M id a lti tu d e (6 0 0 -1 2 0 0 m ), very w e t (> 4 0 0 0 m m ) 128 5H ig h a lti tu d e (1 2 0 0 -2 4 0 0 m ), w e t (2 0 0 0 -4 0 0 0 m m ) 13 1V ery h ig h a lti tu d e (> 2 4 0 0 m ), w e t (2 0 0 0 -4 0 0 0 m m ) 14 J _T o ta l - S w am p s 35248 229

A llu v ia l F an sL ow a ltitu d e (0 -6 0 0 m ), d ry (1 0 0 0 -2 0 0 0 m m ) 4 4 5 8 41L o w a ltitu d e (0 -6 0 0 m ), w e t (2 0 0 0 -4 0 0 0 n u n ) 7964 111L o w a ltitu d e (0 -6 0 0 m ), very w e t (> 4 0 0 0 m m ) 907 11M id a lti tu d e (6 0 0 -1 2 0 0 m ), d ry (1 0 0 0 -2 0 0 0 m m ) 89 3M id a lti tu d e (6 0 0 -1 2 0 0 m ), w e t (2 0 0 0 -4 0 0 0 m m ) 539 14M id a lti tu d e (6 0 0 -1 2 0 0 m ), very w e t (> 4 0 0 0 m m ) 86 3H ig h a lti tu d e (1 2 0 0 -2 4 0 0 m ), d ry (1 0 0 0 -2 0 0 0 m m ) 181 6H ig h a lti tu d e (1 2 0 0 -2 4 0 0 m ), w e t ( 2 0 0 0 4 0 0 0 m m ) 1542 39H ig h a lti tu d e (1 2 0 0 -2 4 0 0 m ), very w e t (> 4 0 0 0 m m ) 114 3Very' h ig h a lti tu d e (> 2 4 0 0 m ), w e t (2 0 0 0 -4 0 0 0 m m ) 76 _ 3T o ta l - A llu v ia l fans 15956 234

V olcan ic P la in s a n d F an sL ow a ltitu d e (0 -6 0 0 m ), d ry (1 0 0 0 -2 0 0 0 n u n ) 47 1L ow a ltitu d e (0 -6 0 0 m ), w e t (2 0 0 0 4 0 0 0 m m ) 10197 88L ow a ltitu d e (0 -6 0 0 m ), very' w e t (> 4 0 0 0 m m ) 7761 29M id a lti tu d e (6 0 0 -1 2 0 0 m ), w e t ( 2 0 0 0 4 0 0 0 m m ) 1167 19M id a lti tu d e (6 0 0 -1 2 0 0 m ), very w e t (> 4 0 0 0 n u n ) 1710 18H ig h a lti tu d e (1 2 0 0 -2 4 0 0 m ), w e t ( 2 0 0 0 4 0 0 0 m m ) 3286 38H igh a lti tu d e (1 2 0 0 -2 4 0 0 m ), very w e t (> 4 0 0 0 m m ) 452 8V ery h ig h a lti tu d e (> 2 4 0 0 m ), w e t ( 2 0 0 0 4 0 0 0 n m i) 711 _ 9T o ta l - V o lcan ic p la in s an d fans 25331 212

V olcan ic P la te a u x an d C o n esL o w a ltitu d e (0 -6 0 0 m ), w e t ( 2 0 0 0 4 0 0 0 m m ) 3618 77L o w a ltitu d e (0 -6 0 0 m ), very w e t (> 4 0 0 0 n u n ) 40 4 18M id a lti tu d e (6 0 0 -1 2 0 0 m ), w e t ( 2 0 0 0 4 0 0 0 m m ) 2665 36M id a lti tu d e (6 0 0 -1 2 0 0 m ), very w e t (> 4 0 0 0 m m ) 802 11H ig h a lti tu d e (1 2 0 0 -2 4 0 0 m ), w e t ( 2 0 0 0 4 0 0 0 m m ) 2 084 36H ig h a lti tu d e (1 2 0 0 -2 4 0 0 m ), very w e t (> 4 0 0 0 m m ) 836 16V ery h ig h a lti tu d e (> 2 4 0 0 m ), w e t ( 2 0 0 0 4 0 0 0 m m ) 994 _ L ZT o ta l - V o lcan ic p la te a u x a n d cones 11403 211

(c o n tin u ed )

Page 32: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

25

E n v iro n m e n t T o ta l a rea N u m b e r o f(k m 2) R M U s

S te e p la n d s , K a rs tL ow a ltitu d e (0 -6 0 0 m ), w e t ( 2 0 0 0 4 0 0 0 m m ) 169 28L o w a ltitu d e (0 -6 0 0 m ), very w e t (> 4 0 0 0 m m ) 7 518 25M id a lti tu d e (6 0 0 -1 2 0 0 m ), w e t (2 0 0 0 -4 0 0 0 m m ) 4 0 7 6 21M id a lti tu d e (6 0 0 -1 2 0 0 m ), very w e t (> 4 0 0 0 m m ) 3 897 21H ig h a lti tu d e (1 2 0 0 -2 4 0 0 m ), w e t (2 0 0 0 -4 0 0 0 m m ) 3697 26H ig h a lti tu d e (1 2 0 0 -2 4 0 0 m ), very w e t (> 4 0 0 0 m m ) 1524 21V ery h ig h a lti tu d e (> 2 4 0 0 m ), w e t (2 0 0 0 4 0 0 0 m m ) 1447 14V ery h ig h a lti tu d e (> 2 4 0 0 m ), w e t (2 0 0 0 4 0 0 0 m m ) 573 J JT o ta l - S te ep la n d s , k a rs t 2731 25463 169

H illsL o w a ltitu d e (0 -6 0 0 m ), d ry (1 0 0 0 -2 0 0 0 m m ) 5796 58L o w a ltitu d e (0 -6 0 0 m ), w e t (2 0 0 0 4 0 0 0 m m ) 17929 192L ow a ltitu d e (0 -6 0 0 m ), very w e t (> 4 0 0 0 m m ) 4 3 0 8 30M id a lti tu d e (6 0 0 -1 2 0 0 m ), dry (1 0 0 0 -2 0 0 0 m m ) 323 3M id a lti tu d e (6 0 0 -1 2 0 0 m ), w e t ( 2 0 0 0 4 0 0 0 m m ) 49 9 16M id a lti tu d e (6 0 0 -1 2 0 0 m ), very w e t (> 4 0 0 0 m m ) 4 70 10H ig h a lti tu d e (1 2 0 0 -2 4 0 0 m ), d ry (1 0 0 0 -2 0 0 0 m m ) 264 5H ig h a lti tu d e (1 2 0 0 -2 4 0 0 m ), w e t ( 2 0 0 0 4 0 0 0 m m ) 2 334 44H ig h a lti tu d e (1 2 0 0 -2 4 0 0 m ), very w e t (> 4 0 0 0 m m ) 2 633 1V ery h ig h a lti tu d e (> 2 4 0 0 m ), w e t ( 2 0 0 0 4 0 0 0 m m ) 425 _ioT o ta l - H ills 32383 269

M o u n ta in sL o w a ltitu d e (0 -6 0 0 m ), d ry (1 0 0 0 -2 0 0 0 m m ) 4 7 8 7 36L o w a ltitu d e (0 -6 0 0 in ), w e t ( 2 0 0 0 4 0 0 0 m m ) 43911 365L o w a ltitu d e (0 -6 0 0 m ), very w e t (> 4 0 0 0 m m ) 19886 157M id a lti tu d e (6 0 0 -1 2 0 0 m ), dry (1 0 0 0 -2 0 0 0 m m ) 567 11M id a lti tu d e (6 0 0 -1 2 0 0 m ), w e t ( 2 0 0 0 4 0 0 0 m m ) 36433 302M id a lti tu d e (6 0 0 -1 2 0 0 m ), very w e t (> 4 0 0 0 m m ) 11657 123H ig h a lti tu d e (1 2 0 0 -2 4 0 0 m ), d ry (1 0 0 0 -2 0 0 0 m m ) 2 180 24H ig h a lti tu d e (1 2 0 0 -2 4 0 0 m ), w e t ( 2 0 0 0 4 0 0 0 m m ) 4 7 9 7 2 482H ig h a lti tu d e (1 2 0 0 -2 4 0 0 m ), very w e t (> 4 0 0 0 m m ) 6725 121V ery h ig h a lti tu d e (> 2 4 0 0 m ), dry (1 0 0 0 -2 0 0 0 m m ) 99 2V ery h ig h a lti tu d e (> 2 4 0 0 m ), w e t (2 0 0 0 4 0 0 0 m m ) 12311 187V ery h ig h a lti tu d e (> 2 4 0 0 m ), very w e t (> 4 0 0 0 m m ) 47 9 17T o ta l - M o u n ta in s 187007 1828

Page 33: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

26

4.2 Land suitability for arabica coffee by environment subclass and RMU

4.2.1 Suitability for arabica coffee based on environment subclass

The suitability of arabica coffee production (Harding et al. 1986) based on analysis of median ratings for each environment subclass are shown in Maps 2 (low input) and 3 (high input). Map 2 indicates that small areas of highly suitable land occur near Goroka in Eastern Highlands Province, Mt Hagen in Western Highlands Province and in Southern Highlands Province. Large areas with moderate suitability occur along the main axial ranges of the PNG mainland with small areas at higher elevations in East New Britain, New Ireland and the islands in Milne Bay Province.

Map 3 also indicates that the same areas which are highly suited for low input coffee production are also well suited for high input production. However, a much smaller area is moderately suited and is restricted to parts of the Southern Highlands, Enga, Western Highlands, Eastern Highlands and Morobe Provinces with small areas in Central and Northern Provinces. The total areas of suitability class based on analysis of environment subclasses are given in Table 18.

Table 18: Areas of suitability classes for arabica coffee production based on environmentsubclasses

Input level Suitability class Total

High Moderate Marginal Not suitable

Low (km2) 2909 61370 22068 372288 458635

Low (%) 0.6 13.4 4.8 81.2 100

High (km2) 3131 10316 732 444456 458635

High (%) 0.7 2.2 0.2 96.9 100

4.2.2 Suitability for arabica coffee based on RMUs

The suitability of arabica coffee production based on application of the Harding et al. (1986) model for each of the PNGRJS RMUs is shown in Maps 4 (low input) and 5 (high input). The suitability ratings determined on analysis of each RMU are summarized in Tables 19 (low input) and 20 (high input) for each province. About 4% of PNG has high physical suitability under either low or high input management (Tables 19, 20). These areas occur mainly in the 1300-1700 altitude range in rolling terrain in West Sepik, Southern Highlands, Enga, Western Highlands, parts of Chimbu, Eastern Highlands, Morobe, Central and Milne Bay Provinces with small areas in Madang and Northern Provinces (Maps 4 and 5).

About 8% of PNG is moderately suited for low input arabica coffee production compared to about 1% under high input levels. Areas of moderate suitability for low input production are generally adjacent to the highly suitable areas listed above (Map 4). These are generally areas which are less suitable because of soil constraints (effective rooting depth, soil fertility), steeper slopes, suboptimal altitude/temperature range, or soil erodibility. Areas which are marginal for low input production occur on higher parts of New Britain, New Ireland and Bougainville with constraints largely caused by warmer temperatures and moist climate.

Page 34: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

27

Results indicate a wider distribution of areas of high suitability based on RMU analysis compared to the values determined using the median rating for each environment subclass (Maps 2 and 3). In the environment subclass approach, values of land attributes are averaged across RMUs within each contiguous environment subclass. This may result in the relatively lower suitability ratings of many areas using the environment subclass median values compared to analysis based on each RMU.

Soil factors were not used as criteria for separating environment subclasses. They were not used because of the complexity of the soil pattern and difficulties of delineating homogeneous units at 1:500 000 scale in PNGRIS.

Page 35: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

28

Table 19: Areas of suitability classes for low input arabica coffee production based on PNGRISRMUs

P rov ince S u itab ility c lass and areaT otalarea

H igh M oderate M arg ina l U nsu itab le

(k m 2) (%) (k m 2) (% ) (k n r ) (% ) (k m 2) (% ) (k n r )

W este rn 16 <0.1 10 <0.1 0 0 96260 99.9 96286

G u lf 0 0 60 0.2 0 0 33787 99.8 33847

C en tra l 2233 7.5 4899 16.4 39 0.1 22747 76.0 29918

M iln e Bay 587 4.2 1513 10.7 4 <0.1 12021 85.1 14125

N o rth e rn 694 3.1 3071 13.6 0 0 18745 83.3 22510

S ou th ernH ig h lan d s 2444 9.5 3796 14.8 0 0 19400 75.7 25640

E n g a 1392 11.8 2119 17.9 81 0.7 82470 69.6 11839

W este rnH ig h lan d s 2080 23.4 3183 35.7 0 0 3634 40.9 8897

C h im bu 373 6.2 996 16.5 0 0 4653 77.3 6022

E as te rnH ig h lan d s 3607 32.8 3340 30.4 292 2.6 3767 34.2 11006

M orobe 3693 11.0 6413 19.1 331 1.0 23074 68.9 33511

M ad an g 371 1.3 851 3.0 84 0.3 27355 95.4 28661

E as t Sepik 19 <0.1 378 0.9 99 0.2 43020 98.9 43516

W est Sepik 1527 4.2 3419 9.5 11 <0.1 31053 86.2 36010

M an u s 0 0 0 0 0 0 2098 100 2098

N ew Ire lan d 0 0 458 4.8 1922 20.0 7235 75.2 9615

E as t N ew B rita in 0 0 427 2.8 2357 15.6 12325 81.6 15109

W est N ew B rita in 0 0 29 0.1 1800 8.7 18867 91.2 20696

N o rthS o lom ons 0 0 100 1.1 1045 11.2 8184 87.7 9329

T O T A L 19036 4.2 35062 7.6 8065 1.8 396472 86.4 458635

Page 36: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

29

Table 20: Areas of suitability classes for high input arabica coffee production based on PNGRISRMUs

Province Suitability class and areaTotalarea

High Moderate Marginal Unsuitable

(km2) (%) (km:) (%) (km2) (%) (km2) (%) (km2)

Western 16 <0.1 10 <0.1 0 0 96260 99.9 96286

Gulf 0 0 0 0 0 0 33847 100 33847

Central 2179 7.3 162 0.5 39 0.1 27538 92.1 29918

Milne Bay 587 4.2 25 0.2 4 <0.1 13509 96.8 14125

Northern 694 3.1 14 0.1 0 0 21802 96.8 22510

SouthernHighlands 2549 9.9 867 3.4 0 0 22224 86.7 25640

Enga 1392 11.8 337 2.8 0 0 10110 85.4 11839

WesternHighlands 2226 25.0 777 8.7 0 0 5894 66.3 8897

Chimbu 491 8.2 113 1.9 0 0 5418 89.9 6022

EasternHighlands 3607 32.8 650 5.9 93 0.8 6656 60.5 11006

Morobe 3719 11.1 135 0.4 0 0 29657 88.5 33511

Madang 251 0.9 203 0.7 0 0 28207 98.4 28661

East Sepik 19 <0.1 0 0 0 0 43497 99.9 43516

West Sepik 1544 4.3 220 0.6 11 <0.1 34235 95.1 36010

Manus 0 0 0 0 0 0 2098 100 2098

New Ireland 0 0 0 0 483 5.0 9132 95.0 9615

East New' Britain 0 0 433 2.9 42 0.3 14634 96.8 15109

West New7 Britain 0 0 39 0.2 0 0 20657 99 8 20696

NorthSolomons 0 0 100 1.1 0 0 9229 98.9 9329

TOTAL 19274 4.2 4085 0.9 672 0.2 434604 94.7 458635

Page 37: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

30

4.2.3 Comparison of PNGLES and Harding et al. (1986) arabica coffee models

Suitability ratings determined by the PNGLES (Venema and Daink 1992) and Harding et al. (1986) low input arabica coffee land evaluation models were compared at two different spatial scales:

• 1: 500 000 scale based on the PNGRIS RMUs, and• 1: 50 000 scale for 598 Land Resource Units (LRUs) mapped in the Upper Ramu catchment

(Trangmar et al. 1995a) in Eastern Highlands Province.

Results for the comparison between models (Table 21) show that the Harding et al. (1986) model rates about 11% of PNG as being of high or moderate suitability for low input arabica coffee production. In contrast, the PNGLES model rates only about 4% as being moderately suitable, with none being highly suited.

Table 21: Comparison of suitability ratings for PNGRIS RMUs using the PNGLES and Hardinget al. (1986) low input arabica coffee models

Rating class PNGLES Harding et al. (1986)

Area (km2) % Area (km2) %

1 0 0 19036 4.2

2 17325 3.8 35062 7.6

3 281339 61.3 8065 1.8

4 150642 32.8 396472 86.4

458635 100 458635 100

In the comparison made at 1:50 000 scale, the Harding et al. (1986) model for high input arabica coffee production produced a more severe rating than the PNGLES model for 31% of LRUs (Table 22). In 18% of LRUs the Harding et al. (1986) model produced a less severe rating than the PNGLES model. The remaining 50% of LRUs had the same rating in each system. For low input production, the Harding et al. (1986) model produced a more severe rating than the PNGLES model (Table 23) for 48% of the LRUs. In 21% of LRUs the Harding et al. (1986) model produced a more severe rating the PNGLES. The remaining 31% of LRUs had the same rating in each system.

Many of the discrepancies between the two systems are caused by differences in the decision trees and class boundaries for altitude (temperature) and rainfall land use requirements. The Harding et al. (1986) model treats vanation in altitude outside the optimal range of 1300-1699 m more severely than the PNGLES model. Similarly, the Harding et al. (1986) model downgrades variation in rainfall outside the 2000-2999 mm optimal range more severely than the PNGLES models.

For example, in the Harding et al. (1986) model, a rainfall of less than 1500 mm yields a severity level for the rainfall land use requirement of “4”. The suitability class is therefore Class 4, indicating that this LRU is unsuitable for both high and low input arabica coffee production. However h the PNGLES model, the land use requirement decision tree yields a severity level of “2”, because i: also considers the texture of the subsoil in this decision tree.

Page 38: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

31

Therefore rainfall is rated more severely in the Harding model. In the case of the Upper Ramu, this has a significant effect on the ratings produced with 276 LRUs in the low input model, and 186 LRUs in the high input model being affected by the more severe rainfall rating.

In cases where the PNGLES models produced more severe ratings, this was largely due to differences in assessment of soil aeration or wetness. In PNGLES aeration status is solely derived from soil drainage class. For poorly or very poorly drained soils, the land use requirement rating is c4’ (i.e. unsuitable for coffee production). However, for the corresponding land use requirement (drainage/effective soil depth) in Harding et al. (1986) such soils are rated as 3. Where drainage is mitigated by other land use requirements the final rating for such soils in Harding et al. (1986) may be 2 .

4.2.4 Interpretation of land evaluation results

The differences in evaluation results of the two models for both the PNGR1S RMUs and the Upper Ramu study indicate the need for users of the land evaluation systems to be fully aware of which models and criteria were used. They should also be aware of the limitations of the models used.

The results also indicate that the PNGLES and Harding et al. (1986) models require further validation before they are widely applied in PNG.

Page 39: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

32

Table 22: Comparison of suitability classes for high input arabica coffee production usingmodels of PNGLES and Harding et al. (1986)

Rating class, Harding model

Rating class, PNGLES model

No. of LRUs

Example Harding model subclass1

Example PNGLES model subclass2

Harding model more severe:

4 3 46 4r/e 3e

4 2 137 4r 2m/t

3 2 3 3a/r 2c/m/w

3 1 - - -

2 1 - - -

Total LRUs 186(31.1%)

Venema model more severe:

3 4 7 3d/a/r 4w

2 4 42 2d/r 4w

2 3 - - -

1 3 - - -

1 2 63 1 2m/t

Total LRUs 112(18 7%)

No difference:

4 4 260 4r/e 4e

3 3 - - -

2 2 40 2r 2mAv

1 1 - - -

Total LRUs 300(50.2%)

1 Subclass abbreviations for the Harding models as follows:a altitude d drainage/effective soil depthe erosion hazard r rainfall

Subclass abbreviations for the Venema models as follows: c temperature m moisture conditionst nutrient availability/retention capacity w oxygen availability (wetness)

Page 40: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

33

Table 23: Comparison of suitability classes for low input arabica coffee production using modelsof PNGLES and Harding et al. (1986)

Rating class, Harding model

Rating class, PNGLES model

No. of LRUs

Example Harding model subclass1

Example PNGLES model subclass2

Harding model more severe:

4 3 226 4r/e 3e

4 2 50 4r 2m/n

3 2 8 3a/r 2c/e/m/w

3 1 - - -

2 1 - - -

Total LRUs 284(47.5%)

Venema model more severe:

3 4 28 3d/r 4w

2 4 - - -

2 3 - - -

1 3 - - -

1 2 99 1 2e/m

Total LRUs 127(21.2%)

No difference:

4 4 101 4r/e 4e

3 3 - - -

2 2 86 2r 2e/m/r/w

1 1 - - -

Total LRUs 187(31.3%)

1 Subclass abbreviations for the Harding models as follows:a altitude d drainage/effective soil depthe erosion hazard r rainfall

2 Subclass abbreviations for the Venema models as follows:c temperature m moisture conditionst nutrient availability/retention capacity w oxygen availability (wetness)

Page 41: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

34

4.3 Land suitability for oil palm

The suitability of land for high input oil palm production based on application of the PNGLES model (Venema and Daink 1992) for each of the PNGRIS RMUs is shown in Map 6. The suitability ratings determined on analysis of each RMU are summarized in Table 27 for each province. Results indicate that about 4% of PNG has high physical suitability for oil palm. These areas occur mainly in Madang, Morobe, Northern, Central, Milne Bay, West New Britain, New Ireland and North Solomons Provinces. About 6% of PNG is moderately suited, 24% is marginal and 66% is unsuitable (Table 24, Map 6).

Areas of moderate suitability occur in East and West Sepik, the Gogol Valley in Madang, parts of Western Province, Gulf, Central, Northern, New Britain, and small areas in Morobe, Milne Bay, North Solomons, and New Ireland.

4.4 Land suitability for other crops

Land suitability assessments were conducted using the PNGLES models for low input, small-holder production of 14 other crops (cardamom, cashew, chillies, citrus, cocoa, coconut, coffee robusta, maize, mango, oil palm, pepper, pineapple, potato, pyrethrum, rubber, upland rice, and vanilla) under low input conditions and 6 other crops (cocoa, coffee robusta, maize, potato, upland rice, rubber) under medium to high input, smallholder production conditions.

For each of the above crops, land suitability ratings for each PNGRIS RMU were transferred from ALES and linked to the PNGRIS database for mapping using Maplnfo. These crop suitability map files have been installed on the computers in the DAL Land Use Section, Port Moresby from which hard copy maps can be readily produced. The maps are too numerous to be presented in this report. The example of oil palm is given m Map 6.

In addition, suitability ratings were computed for each median environment subclass for all 18 of the PNGLES crops (Venema and Daink 1992). Results for each province have been installed on the DAL Land Use Section computers. Area summaries (km“ and per cent of total province area) of suitability ratings by crop and province are given in Annex 3 for the PNGLES models calculated on an RMU basis and by median environment subclass.

Page 42: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

35

Table 24: Areas of suitability classes for oil palm production based on PNGRIS RMUs

P rov ince S uitab ility class an d areaT ota larea

H igh M oderate M arg in a l U nsuitab le

(k m 2) (% ) (k m 2) (% ) (k m 2) (% ) (k m 2) (% ) (km 2)

W este rn 0 0 5384 5.6 51457 53.4 39445 41.0 96286

G u lf 698 2.1 3333 9.9 1115 3.3 28701 84.7 33847

C en tra l 1127 3.8 1816 6.1 5297 17.7 21678 72.4 29918

M iln e Bay 1975 14.0 1207 8.6 1727 12.2 9216 65.2 14125

N o rth e rn 2925 13.0 1927 8.6 3827 17.0 13831 61.4 22510

S ou thernH ig h lan d s 0 0 529 2.1 145 0.6 24966 97.3 25640

E n g a 68 0.6 54 0.5 0 0 11717 98.9 11839

W este rnH ig h lan d s 257 2.9 172 1.9 726 8.2 7742 87.0 8897

C h im bu 0 0 40 0.7 1081 18.0 4901 81.3 6022

E aste rnH ig h lan d s 0 0 116 1.0 98 0.9 10792 98.1 11006

M orobe 1107 3.3 1021 3.1 4541 13.6 26842 80.0 33511

M ad an g 4069 14.2 2132 7.4 3607 12.6 18853 65.8 28661

E a s t Sepik 0 0 981 2.2 10524 24.2 32011 73.6 43516

W est Sepik 0 0 2676 7.4 13254 36.8 20080 55.8 36010

M anus 193 9.2 662 31.6 260 12.4 983 46.8 2098

N ew Ire lan d 1448 15.1 1319 13.7 2384 24.8 4464 46.4 9615

E ast N ew B rita in 816 5.4 1737 11.5 0 0 12556 83.1 15109

W est N ew B rita in 2551 12.3 3782 18.3 3871 18.7 10492 50.7 20696

N o rthSolom ons 2185 23.4 685 7.3 4305 46.2 2154 23.1 9329

T O T A L 19419 4.2 29573 6.5 108219 23.6 301424 65.7 458635

Page 43: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

36

4.5 PLANTGRO ratings for Upper Ramu test area

Crop suitability ratings and dominant constraints for selected PNGR1S RMUs from the Upper Ramu test application of PLANTGRO are summarized in Table 25. PLANTGRO uses growth limitation ratings (GLRs) imposed by soil or climatic constraints to assess potential crop performance. GLRs are rated (Hackett 1991) as:

0-2 High potential crop performance (Minimal physical limitations to crop growth)3-4 Moderate potential crop performance (Moderate limitations to crop growth)5-6 Low potential crop performance (Significant limitations to crop growth)7-8 Nil potential (Severe limitations to crop growth)9 Rapid death (Very severe limitations to crop growth).

The PLANTGRO ratings correspond to the high, moderate, marginal and unsuitable classes used in this report for ratings derived from PNGLES and Harding et al. (1986)

Table 25: PLANTGRO ratings and mam limitations for selected crops and PNGRIS RMUs,Upper Ramu catchment, Eastern Highlands Province. Comparative ratings for Harding et al. (1986) for arabica coffee and PNGLES for other crops (except yam) in parentheses.

RMU No. PLANTGRO crop performance ratings and main limitations

Arabica coffee Sweet orange Pineapple Irish potato Yam

171 9(4) 6(3) 5(3) 5(3) 6Slope Soil texture Fertility Slope Temp.

441 3(2) 3(2) 4 (2) Solar 3(2) 6Fertility Temperature radiation Fertility Temp.

442 4(2) 6(3) 5(3) 5(3) 6(3)Aeration Aeration,

textureFertility Fertility Temp.

452 6(3) 7(4) 7(4) 7(4) 6(3)Aeration Aeration Aeration Aeration Temp.

60 4(2) 4(2) 5(3) 5(3) 6(3)Slope Temperature Fertility Fertility Temp.

64 2(1) 4(2) 4(2) 2(1) 6(3)Nil Temperature Solar

radiationNil Temp.

For the RMUs listed in Table 25 ratings based on PLANTGRO correlated closely with those for the other evaluation systems used. As with the ALES-based systems (PNGLES and Harding et al. (1986), the limitation ratmgs of each land characteristic are given in the PLANTGRO output. An additional advantage of the PLANTGRO output is that climatic limitations at various parts of the grow ing season

Page 44: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

37

can be identified for each crop. This capability is not present in PNGLES or the Harding et al. (1986) coffee models.

The land use requirements in PLANTGRO are more physiologically-based than PNGLES or the Harding et al. (1986) coffee model. As a result, PLANTGRO is more sensitive to climatic parameters than the other two models. For example, Table 25 indicates that while there are basically no soil constraints to growth of pineapple in RMUs 441 and 64, solar radiation is the major limiting factor to achieving optimum growth. Factors such as solar radiation are not included in the other models.

The structure of PLANTGRO enables rapid comparison of site suitability for a range of crops, comparison of sites (different soils, and/or climates) for a specific crop(s), crop rotations, and assessment of the phasic development of some crops. It is also flexible in climate data entry which can include weekly or mean monthly records, or actual monthly records for a specific year. As a result, it complements the relatively inflexible decision tree structure of the ALES-based models. However, PLANTGROs current input/output formats are not easily linked with relational databases or computer mapping packages. This constraint limits its widespread application with large resource databases.

Page 45: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

38

5. DISCUSSION

5.1 Model validation requirements

The analysis has indicated a need for wider validation of the PNGLES models (Venema and Daink 1992) and the Harding et al. (1986) arabica coffee models. The PNGLES models have been applied for several small areas by DAL Land Use Section staff (L. Dainkpers comm.). They were also used to assess land suitability for citrus and Irish potato at 1:50 000 scale in the Upper Ramu catchment (Trangmar et al. 1995a). In the latter study, the suitability ratings produced by the models for specific areas were compared with local experience of crop production as a reliability check. However, no systematic quantitative testing of models in relation to yield and specific management inputs in different locations has been conducted to date.

The arabica coffee models of Harding et al. (1986) have been applied and tested in the Western Highlands (Harding et al. 1987). They were also applied at 1:50 000 scale in the Upper Ramu catchment (Trangmar et al. 1995a). Results were generally consistent with local experience.

Both the PNGLES and Harding et al. (1986) arabica coffee models require further field testing in areas with different land characteristics and management regimes. Validation should include comparison of model ratings with crop yield results under known management inputs. This should be done in a range of environments that cover a range of rating classes so that the boundaries between rating classes can be more reliably defined.

As the systems become used and tested in different areas, they should be refined and updated by DAL Land Use Section staff. This should be an ongoing activity as DAL experience in application of the various systems increases.

In addition, comparisons of different land evaluation systems which exist in PNG for some crops (e g. cocoa) should be systematically compared so DAL staff can select the most appropriate model for each crop. For example, the results produced by the cocoa model of Bleeker and Freyne (1981) should be compared with those of PNGLES (Venema and Daink 1992) and PLANTGRO (Hackett 1991) to assess which best match local experience.

5.2 Scale factors in land use suitability assessment

The land evaluation systems discussed in this report can be readily applied at different map scales. However, it is essential that interpretation of the results is done in context of the map scale at which the land characteristics used in the land evaluation systems are collated and delineated.

Land suitability assessments made using data from PNGRIS are only relevant for planning at national or provincial level. The land resource data in PNGRIS was compiled at 1:500 000 scale and is of insufficient detail for planning agricultural development at district, subdistrict or catchment levels. Land evaluation for planning at these levels should be based on resource data mapped at scales of 1:50 000 or 1:25 000, respectively (Basher et al. 1995). Land suitability assessment for village development or site-specific agricultural projects requires land resource data mapped at scales of 1:10 000 or larger.

Page 46: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

39

5.3 Adjustment of rating criteria in relation to management conditions

Adaptations to the models may be required at different spatial scales and under different input management systems. At increasing levels of spatial detail, the assumed management inputs levels (or Land Utilization Type in the PNGLES models) will require increasing refinement for local crop production systems and management inputs. In applying the land evaluation systems, care should be taken in defining the management systems to which the systems are applied to ensure relevance of the suitability ratings generated.

5.4 Application of land evaluation models

The ALES-based models (PNGLES, Harding et al. (1986)) should be used in conjunction with appropriate land resource data to initially screen land suitability at national and provincial level using PNGRIS. They should then be used in conjunction with more detailed land resource data (e.g. 1:50 000) collected in areas of high potential to identify specific areas of development potential. Once such areas have been identified detailed site investigations of land suitability should be done in conjunction with other relevant factors such as availability of markets, investment, infrastructure, and transport. PLANTGRO is perhaps best used to complement the ALES-based models at this detailed, site-specific stage of the agricultural development process to assess specific soils, crop species and combinations under a particular set of well documented climatic conditions.

5.5 Future model development

Once the existing models have been more widely validated and applied, additional parameters of importance for production of specific crops could be added to improve their predictive ability. For example, climatic criteria (e.g. rainfall, rainfall seasonality, humidity, temperature) could be used to predict general likelihood of pest and disease occurrence for specific crops.

Addition of new parameters and their testing should be done in conjunction with agronomists and crop specialists with experience of specific crops in different parts of PNG.

Page 47: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

40

6. CONCLUSIONS

The framework for computerized land evaluation systems in PNG have been established by the development of PNGLES (Venema and Daink 1986), the arabica coffee model of Harding et al. (1986), and the test application of PLANTGRO (Hackett 1991) in conjunction with PNGRIS. However, the systems applied during this study require ongoing validation in different parts of PNG. This should be done by comparison of crop yield data with suitability ratings generated by the land evaluation systems. This should be done in collaboration with local agronomists and crop production specialists.

Results of the analyses for arabica coffee production indicate that use of median ratings for environment subclasses downgrade suitability ratings compared to analysis on an RMU-by-RMU basis. This is caused by use of the median rating for each environment subclass whose value reflects the generally more common lower suitability classes in an environment unit and downgrades the RMUs which (on an individual basis) have higher suitability ratings.

The aggregation of ratings using the environment class approach are useful for very broad scale analysis of crop suitability. However, calculation of ratings on an RMU basis provide a more reliable estimate of crop suitability because the ratings are directly related to the land resource data in each RMU rather than averaged for all RMUs in a particular environment subclass.

Wider correlation of the PNGLES and Harding et al. (1986) arabica coffee models should be conducted. Appropriate adjustments should be made to each model to ensure improved consistency between the ratings produced by each model.

The development of PNGLES and the Harding et al. (1986) coffee model in the ALES framework makes them well suited to land evaluation in association with computerized land resource databases such as PNGRIS and the Upper Ramu database (Trangmar et al. 1995b). The work done in this study of developing procedures to extract soil data from PNGRIS for use in PLANTGRO should be expanded on to make PLANTGRO more widely applicable with PNGRIS. This will require revision of data input/output formats in PLANTGRO to make it more compatible with relational databases and applicable with land resource survey data.

The crop suitability ratings based on PNGRIS in this study should only be used for agricultural development planning at national scale. Investigations for agricultural development at provincial, district, subdistrict and site-specific levels should be conducted at more detailed scales.

Page 48: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

41

REFERENCES

Bellamy, J.A. (compiler). 1986. Papua New Guinea inventory o f natural resources, population distribution and land use handbook. CSIRO Division of Water and Land Resources, Natural Resources Series No. 6 (CSIRO: Melbourne).

Bleeker, P. 1975. Explanatory notes to the land limitation and agricultural land use potential map o f Papua New Guinea. CSIRO Australian Land Research Series 36.

Bleeker, P. 1983. Soils o f Papua New Guinea. CSIRO and ANU Press, Canberra.

Bleeker, P., and Freyne, D.F. 1981. Areas suitable for cocoa production in Papua New Guinea. CSIRO, Australia and Dept. Primary Industry, Papua New Guinea.

FAO (Food and Agriculture Organization). 1976. A framework for land evaluation. Soils Bulletin 32, Rome.

Haantjens, H.A. 1963. Land capability classification in reconnaissance surveys in Papua New Guinea. J. Aust. Inst. ofAgric. Sei. 29:104-107.

Haantjens, H.A. 1969. Agricultural land classification for New Guinea land resources surveys. Second revised edition. CSIRO Division of Land Research Tech. Mem. 86/4. Canberra.

Haantjens, H.A., Reynders, J.J., Mouthaan, W.L.P.J., and van Baren, F.A. 1967. Major soil groups o f New Guinea and their distribution. Communication No. 55, Department of Agriculture Research, Royal Tropical Institute, Amsterdam.

Hackett, C. 1988. Matching plants and land: Development o f a general broadscale system from a crop project for Papua New Guinea. CSIRO Division of Water and Land Resources, Natural Resources Series No. 11, Melbourne.

Hackett, C. 1991. PLANTGRO - A software package for the coarse prediction o f plant growth. CSIRO Publications, Melbourne. 242 p.

Harding, P.E., Bleeker, P. and Freyne, D.F. 1986. A handbook for land suitability evaluation for rainfed arabica coffee production in Papua New Guinea. Coffee Research Report 3. PNG Coffee Research Institute. 134 p.

Harding, P.E., Bleeker, P. and Freyne, D.F. 1987. Land suitability evaluation for rainfed arabicacoffee production: Western Highlands Province, Papua New Guinea. Coffee Research Report 4. PNG Coffee Research Institute.

Hartley, A.C., Aland, F.P., and Searle, P.G.E. 1967. Soil survey o f West New Guinea, the Balima- Tiauru area. Soil Survey Report No 1, DASF, Port Moresby.

McAlpine, J.R., Keig, G., and Short, K. 1975. Climatic tables for Papua New Guinea. CSIRO Division of Land Use Research Technical Paper 37. Canberra, Australia.

Page 49: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

42

McAlpine, J.R. Unpub. Environments o f Papua New Guinea and their current use. Unpublished report.

Marques, M.R. 1994. Land suitability classification for small-holder coconut production in Papua New Guinea. M.Sc Thesis, University of Queensland. 191 p.

Radcliffe, D.J. 1983. Land evaluation for food crop production in Papua New Guinea. Paper presented at the 1st PNG Food and Nutrition Conference, Goroka, AFTSEMU Technical Report No. 2. Mendi.

Rossiter, D.G., and Van Wambeke, A.R. 1991. ALES Version 3 User’s Manual. Cornell University, Ithaca, New York.

Trangmar, B.B., Basher, L.R., Rijkse, W.C., and Jackson, R.J. 1995a. Land resource survey, Upper Ramu Catchment, Papua New Guinea. (AIDAB:CSIRO), PNGRIS Publication 3.

Trangmar, B.B., Basher, L.R., and Rijkse, W.C. 1995b. Land resource survey, Upper Ramu Catchment, Papua New Guinea: Database attributes. (AIDAB:CSIRO), PNGRIS Report 3.

Venema, J.H., and Daink, F. 1992. Papua New Guinea Land Evaluation System (PNGLES). AG:TCP/PNG/0152 Field Document 1. PNG Dept. Agriculture and Livestock, and Food and Agriculture Organization. 152 p.

Wayi, B.M. 1987. Development o f a land suitability classification system for cocoa in Papua New Guinea. M.S. Thesis. State University of Ghent, Belgium.

Page 50: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

43

ANNEX 1: Procedures for extracting soils data from PNGRIS for entry to PLANTGRO

1. Introduction

PLANTGRO (Hackett 1991) is a computer program which generates semi-quantitative predictions of plant performance based on soil, climate and plant characteristic files. Linking PLANTGRO to PNGRIS data should allow prediction of physical crop suitabilities for many crops across many RMUs. However, constraints to doing this are:

• limitations in PLANTGRO input and output formats• PNGRIS does not contain all the data required to run PLANTGRO• inconsistencies in data definitions between PNGRIS and PLANTGRO

Any omissions from the PNGRIS database or the accuracy of the PLANTGRO models are not considered here. Such factors impact on the reliability of predictions obtained by linking PLANTGRO and PNGRIS, but not on the procedures of generating such predictions.

2. PLANTGRO input and output

PLANTGRO reads input data from ASCII text files in a strict format and writes data as text reports to a printer or text file. There is no facility for reading data from or writing predictions to databases in standard formats. A computer program (SOILOUT.EXE) was written to take data from a standard database (Paradox) table and write this out to a series of PLANTGRO soil files (one soil per record). The following fields are read from the Paradox table:

Name Name of PLANTGRO soil fileFullname Soil (site) name stored in PLANTGRO fileAeration PLANTGRO aeration codeBS Base saturation (%)CEC CEC (meq/100g)PRD Potential rooting depth (cm)P Olsen Phosphate (ppm)K Exchangeable K (meq/100g)Sal Salinity (dS/m)Slope Slope (degrees)DEPTHA Thickness of “A” horizon (cm)DEPTHB Thickness of “B” horizon (DEPTHA+DEPTHB=Potential rooting depth)DEPTHC Thickness of “infiltration zone"' (cm)AWCA Available water in A horizon (%)AWCB Available water in B horizon (%)DRWA Drainable water capacity in A horizon (%)DRWB Drainable water capacity in B horizon (%)DRWC Drainable water capacity in C horizon (%)TEXTA Texture of A horizon (PLANTGRO code)TEXTB Texture of B horizon (PLANTGRO code)TEXTC Texture of infiltration zone (PLANTGRO code)

Writing a computer program to convert PLANTGRO output to a standard database table for use with PNGRIS requires the computer program to interpret the PLANTGRO text output m a format suitable for input to a relational database and use with computer mapping software.

Page 51: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

44

3. PNGRIS data

PNGRIS stores soil data for the three main soils within each RMU. Most of the soil data required byPLANTGRO is included in PNGRIS (subject to translation) or could be reasonably inferred fromPNGRIS data. The main exceptions are:

Slope PNGRIS records two slopes and three soils per RMU but does not indicate whichslopes apply to which soils. This must be inferred from user knowledge of soils and their likely slope class.

Layers PNGRIS stores an overall depth rating rather than the thicknesses of individual layersas required by PLANTGRO. This overall thickness must be arbitrarily split between the soil A and B horizons for input to PLANTGRO.

AWC Available water capacity (AWC) is required for the A and B layers in PLANTGRO.PNGRIS stores a rating for the cumulative AWC for three different rooting depths. The ratings are too coarsely stepped to allow estimation of the individual layer AWCs by difference. As a result, AWC must be estimated from texture.

DRWC Drainable water capacity was not included in the PNGRIS data. This was estimatedfrom the texture.

Infiltration ZonePNGRIS does not include any data about the infiltration zone' parameter used in PLANTGRO. The infiltration zone is an area below the rooting zone which may impede soil drainage and lead to seasonal water-logging if its drainable water capacity or total thickness is sufficiently low. A constant infiltration zone of 1 m can generally be assumed with texture, AWC and DRWC the same as the B horizon.

4. Data inconsistencies between systems

The PNGRIS and PLANTGRO data formats differ in several ways. PLANTGRO uses numeric estimates for most properties while PNGRIS stores ratings. The PLANTGRO models are not particularly sensitive to the precise value of each input parameter. The level of precision in the PNGRIS data is probably adequate for most PLANTGRO applications.

A series of lookup tables were created converting the PNGRIS data code to one or more PLANTGRO soil parameters. Each lookup table was given fields named CODE giving the PNGRIS code, DESC giving the corresponding description, and one or more other fields giving the corresponding PLANTGRO soil characteristic(s)

Page 52: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

45

The lookup tables are:

Table 1-1: Summary of lookup tables for converting PNGRIS soil data to PLANTGRO soil inputparameters

Lookup table PNGRIS field (CODE) Corresponding PLANTGRO field(s)

AVAILP AVAILP PGOLSEN Olsen Phosphate

BS BS PGBS Base Saturation

CEC CEC PGCEC Cation Exchange Capacity

DEPTH DEPTH PGDEPTH Potential rooting depth PGDEPTHA A horizon thickness PGDEPTHB B horizon thickness

DRAINAGE DRAINAGE PGAERAT PLANTGRO Aeration code

EXK EXCHK PGKX Exchangeable K

NITROGEN NITROGEN PGNIT Available Nitrogen

PH PH PGPH Soil pH

SALINITY SALINITY PGSAL Soil salinity

SLOPE SLOPE 1 or SLOPE2

PGSLOPE Slope

TEXTURE TEXTURE 1 or TEXTURE2

PGTEXT Texture (PLANTGRO code) PGAWC Available water capacity PGDRWC Drainable water capacity

5. Procedure for generating PLANTGRO Predictions

The following procedure was used to generate PLANTGRO predictions for arabica coffee, sweetorange, pineapple, Irish potato and lesser yam for each of the 57 soils within the 19 RMUs in the UpperRamu catchment. Climate data was taken from the Aiyura climate station in all cases.

The main steps were:

1. Data for the 57 soils in the 19 RMUs were extracted from the PNGRIS data file

2. The SLOPE 1 and SLOPE2 values from the PNGRIS data file were inserted into the extracted soil file and one of these was manually selected for each soil This selection was a “best guess'’ taking account of the erodibihty ratings of the soils and the presumed relative frequencies (soil 1 > soil2 > soil3). Only one RMU had SLOPE 1 and SLOPE2 values differing by more than one class so errors in this allocation were probably not critical.

3. The lookup tables were used to generate a new (Paradox) table with the PLANTGRO codes in the format required by the SOILOUT program. The name fields were generated from the RMU and soil numbers.

Page 53: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

46

4. The SOILOUT.EXE program was run to produce PLANTGRO soil files for each of the 57 soils.

5. PLANTGRO program was run (using the multiple predictions option) to generate the 285 predictions (57 soils, 5 plants).

Results of the test application of PLANTGRO on PNGRIS RMUs is summarized in Section 4.4 of the main report.

6. Limitations to using PLANTGRO with a large dataset

Steps 1, 3 and 4 in the above procedure can be readily performed on a much larger number of soils. However, step 2 requires manual inspection of each soil and therefore requires more effort if a large number of soils were involved. The effort was relatively minor (at least for the 57 soils tested). Many plant files may not be markedly dependent on slope (erosion hazard should be considered separately) and it may, in fact, be acceptable to simply use the dominant (or mean) slope for all soils in an RMU.

The main limitation to running a much larger (e.g. 1000 soils) data set would be running PLANTGRO and interpreting the results. Even in the multiple prediction model PLANTGRO requires each soil, crop and climate file to be specified and has a limit of 7 soil files per run. Future developments of PLANTGRO should provide output formats which are compatible with data input and output formats which are readily compatible with relational databases for using with computer mapping packages.

7. Computer programmes

The computer programmes developed to extract PLANTGRO data from PNGRIS (SOILOUT.EXE, lookup tables) have been installed on computers in DAL Land Use Section.

Page 54: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

ANNEX 2: Definitions of PNGRIS attributes used to define environment subclasses

Defimtions of the 'Inundation type’ environment subclasses

In u n d a t io n ty p e P N G R IS c o d e

L it t le o r n o in u n d a t io n 0 ,1 ,2

S e a s o n a l 3 ,4

P e r m a n e n t 5 ,6

T id a l 7 ,8

Definitions of the 'Slope' environment subclasses

S lo p e c la s s P N G R IS c o d e

L o w (< 1 0 ° ) 1 ,2 ,3

M o d e r a te (1 0 -2 0 ° ) 4

H ig h (< 2 0 ° ) 5 ,6

Definitions of the 'Rock type' environment subclasses

R o c k ty p e P N G R IS c o d e

A l lu v ia l d e p o s i ts 4 1 ,4 5

O ld e r s e d m ie n ts 4 0 ,1 2

P y ro c la s tic s 4 6

Definitions of the 'Dominant rock type' environment subclasses

D o m in a n t ro c k ty p e P N G R IS c o d e

N o i l - c a lc a re o u s s e d im e n ta ry 1 1 ,1 2 ,1 3

C a lc a r e o u s s e d im e n ta r y 14 ,15

M e ta m o r p h ic 2 1 ,2 2 ,2 3

A c id to i n te r m e d ia te ig n e o u s 3 0 ,3 2 -3 5 ,3 8 ,4 6

B a s ic ig n e o u s 3 1 ,3 6 ,3 7

Page 55: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

48

ANNEX 3: Summary of crop suitability ratings for PNGRIS RMUs and median environmentsubclasses according to PNGLES

Key to Abbreviations:

Province:

WES Western MOR MorobeGUL Gulf MAD MadangCEN Central ESK East SepikMIL Milne Bay WSK West SepikNTH Northern MAN ManusSHY Southern Highlands NIR New IrelandENG Enga ENB East New BritainWHY Western Highlands WNB West New BritainSIM Simbu NSL North SolomonsEHY Eastern Highlands ALLPNG Totals for the whole of PNG

Crop:

card Cardamom cash Cashewchil Chillie citr Citruscoco Cocoa cocn Coconuth2cof Harding et al. (1986) arabica coffee modelrcof Robusta coffee maiz Maizemango Mango oilp Oil palmpepp Pepper pine Pineapplepota Irish potato pyre Pyrethrumricevani

Suffixes:

RiceVanilla

rubb Rubber

lo Low input managementhi High input management

Suitability ratings:

1 High2 Moderate3 Marginal4 Unsuitable

Page 56: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

LUCL

ED.

EN

V

' %

are

a

0.0

0.5

75.5

20.7 0.0

3.2

73.3

20.7 0.1

3.7

71.7

20

8 12

5.1

69.6

20.7 0.5

4.6

16.1

77.7 0.0

7.2

37.5

54.5 0.1

7.1

37.5

54.5 6.9

0.0

0.1

93.1 Ol o o

co ö ^ T-ro co

O CNö in

Till

R

AT

ING

S B

Y M

E%

area

ar

ea(k

m2) 0

178

2529

169

52

010

8724

555

6952 31

1225

2402

569

68 408

1720

2331

569

52 157

1547

5380

2602

6 024

2612

573

1824

8 3123

9512

573

1824

8

2296

0 1831

197

2150

1036

032

020

447 0

1737

0.0

7.9

63.7

28.4 T— T— in co

O N CD CD CD CN

0.7

8.0

56.7

34.6 1.3

13.3

59

.1

26 3 m h- o r-

o m (D N 0.2

8.0

33.7

58

0 0.3

8.0

33.2

58.5

11.1

0

4 0.

0 88

.5

11.0

19

.1

1.0

68 9 in 05

o

FtA

TIN

GS

BY

Rr

ty

area

ig

(km

2)

026

3721

341

9533 26

2393

2227

988

13 241

2672

1900

311

595

434

4461

1981

088

06 184

1904

5369

2605

4 7826

7911

301

1945

3

110

2665

1111

819

618

3719 13

5 029

657

3693

6413 33

123

074

156

2655

t- CN CO tT T - (N CO ^ T - CN CO TT T - CN CO t T T - CN CO N- T - CN CO N- T - CN CO TT T - CN CO TT T- CN CO N- T - CN

s ' i s03 »-

1

chil_

loc

hilj

och

il_lo

ch

iljo

cit

rjo

cit

rjo

cit

rjo

cit

rjo

co

co

joc

oc

ojo

CO

CO

jO

coco

_lo O O O O

I I I I c c c cCJ CJ o oo o o oCJ (J o u h

2co

f_lo

h2

cof_

loh

2co

f_lo

h2

cofJ

o

crop

card

_lo

card

_lo

card

_lo

card

_lo

cash

_lo

cash

_lo

ca

sh

joc

as

hjo

coco

_hi

coco

_hi

coco

_hi

coco

_hi

h2co

f_hi

h2co

f_hi

h2co

f_h

ih2

cof_

hi

rcof

_hi

rcof

_hi

pro

vin

ce er er er r r O o o o 2 ^ ^ ^

er er er er o O o O ^ ^ ^ ^

er er er er O O O O 2 2 2 2

er er er er o O O O 2 ^ ^ ^

er er er er O O O O ^ ^ S

er er er er O O O O^ ^ ^ ^

er er er er O O O O2 2 2 2

er er er er O o o o 2 2 2 2

er er er er o O O O 2 2 2 2 M

OR

MO

R

LUCL

hLU 03

0 0

0.0

48.7

50.7 0 0

0.8

47.9

50

.7 0 0

22 0

27

.1

50 8 0.0

21.4

27.5

50

6 0.0

39.2 3.1

55.7 0.0

39 2

7.

3 52

9 0.0

39.7

6

8 52

.9 o o o o o o o o

o o o o o o o o

0Z

Z

0 0

U

RA

TIN

GS

BY

ME

D%

area

ar

ea

%(k

m2) 0 0

4688

448

812 0

810

4610

048

812 0

2121

826

127

4891

5 020

589

2645

748

677 0

3770

730

3253

631 0

3770

770

6150

955 0

3827

065

0650

955 0 0 0

9626

0 1

0 0 096

260 0

2115

2

0.0

0.0

65.1

34.9 0.2

23.3

41.6

34.9 0 0

38 8

26

2

35 0 0.0

20.1

45

.1

34 8 0.0

38 8

21

.739

4 0 0

38 8

24

1

37.1 CN CN m T—

o cd cd r- n co

o o o o o o o o

o

o o o o o o o o

LL

Z

0 0

TIN

GS

BY

RM

ar

ea

(km

2) 0 1662

668

3360

2

225

2240

440

055

3360

2 037

338

2522

133

727 0

1932

943

402

3355

5 037

378

2093

037

978 0

3737

823

221

3568

7

220

5415

462

2535

687 16 10 0

9626

0 16 10 096

260 0

3632

5

2

r - (N fO T f r - (N CO ^ T - CN CO TT T - CN CO N - T - CN CO N- T— CN co CN CO ^ T - CN CO N- r- (N CO t- CN

1

ch

iljo

ch

iljo

ch

iljo

ch

iljo

cit

rjo

citr

_lo

citr

_lo

cit

rjo o o o o

I I I I o o o oO O O CJo o o oO O CJ o

o o o o 1 1 1 1

c c c c (J O CJ oo o o oO CJ (J o h

2co

fJo

h2co

f_lo

h2

cofJ

oh2

cof_

lo

Z ' Z 'o o o o

crop

card

Jo

c

ard

jo

ca

rdjo

c

ard

jo

ca

sh

joc

as

hjo

ca

sh

joc

as

hjo

coco

_hi

coco

_hi

coco

_hi

coco

_hi

h2co

f_hi

h2

cof_

hh2

cof_

hih2

cof_

hi

OCO CO CO CO CO CO CO CO co co co co co co co co co co co co co co co co co co co co co co co co CD CD CO CO CD CD

,E£

5 5 5 5 5 5 5 5 5 $ § § 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Page 57: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

ING

S B

Y R

MU

R

ATI

NG

S B

Y M

ED

. E

NV

. TY

PE

R

ATI

NG

S B

Y R

MU

R

ATI

NG

S B

Y M

ED

. E

NV

. TY

PE

ED.

EN

V.

'

% ar

ea

22.9

70.8 0.6

5.1

52.3

37.5 0.0

7.4

6.7

85.7 0.1

3.1

73.3

20.7 3.0

2.2

16.6

77.1 2.5

3.3

39.4

53.9 0.0

5.8

33.7

59.7 1.2

9.3

72.5

13.8 0.0

0.9

39.9

53.0 0.0

0.0

54.5

42.8

V/IU

R

ATI

NG

S B

Y M

E%

area

ar

ea(k

m2)

7686

2373

0

194

1713

1751

212

550 0

2470

2250

2870

3 4010

4724

555

6952

1011 72

355

6525

841

854

1121

1321

018

063 0

1945

1128

520

017

412

3109

2430

446

41

031

413

376

1777

2 0 018

268

1434

2

25.4

66.2 0.9

8.0

51.0

40.1 in oo r t co

ö id o cd 0.6

6.6

66.5

26.3 3.3

3.0

13.6

80.1 2.6

4.4

34.6

58.3 0.2

6.4

31.5

61.8 1.0

16.2

51.6

31.2 0.0

2.8

40.8

56.3 0.0

0.5

43.6

55.9

cd

“ s S TCO s £CD m jc2 ~

i =

8507

2219

3

298

2692

1709

213

429

171

1945

3469

2792

6

197

2222

2227

988

13

1107

1021

4541

2684

2

884

1485

1160

919

533 79

2150

1056

120

721

334

5413

1730

510

459 16

954

1368

218

859 0

156

1462

318

732

2

> , D ) CO TJ- t- cm co m - T - CM CO tT t - CM CO T - CM CO t J- T - CM CO T f t - CM CO t * T - CM CO TT CM CO T f T - OJ CO I f

5 ra

5

rco

fjorc

ofjo

rcof

_lo

rcof

_lo

ma

ng

jom

an

gjo

man

g_lo

man

g_lo

oilp

joo

ilpjo

oilp

joo

ilpjo

pe

pp

jop

ep

pjo

pe

pp

jop

ep

pjo

pin

ejo

pin

ejo

pin

ejo

pin

ejo

crop

o o o o

mai

z_hi

mai

z_h

mai

z_hi

mai

z_hi

oilp

_hi

oilp

jiio

ilpjii

oilp

jii

po

tajii

pota

_hi

pota

_hi

po

tajii

pyr

ejo

pyr

ejo

pyr

ejo

pyr

ejo

prov

ince

MO

RM

OR cd cd cd ad

O O O O ^ ^ ^ ^

Cd Cd Od Cd O O O O ^ ^ ^ ^

Cd Cd Cd Cd O O O O 2 2 2 2

Cd Cd Cd Cd O O O O ^ 2 ^ S

Cd Cd Cd Cd O O O O 2 2 2 2

Cd Cd Cd Cd O O O O ^ ^ ^ ^

Cd Cd Cd Cdo o o o s ^ 2 ^

Cd Cd Cd Cd O O O O S S ^ ^

Cd Cd Cd Cdo o o o ^ ^ ^

LUCL

s iLU TO 21

.954

.7 0.0

22.0

26.1

50.7 0.1

0.0

38.4

60.3 0.0

0.8

47.9

50.7

16.7

46

.3

14 6

19

5 0.0

39.0

39.9

16.7 0.0

39 6

6.

7 53

.6 0.0

22.1

26.7

50.7 0.0

0.0

43.4

54.6 0.0

0.0

0.4

99.1

QLU

> -

U Ft

ATI

NG

S B

%ar

ea

area

(km

2)

2108

552

670 0

2121

825

151

4881

2

129 0

3696

658

064 O O O CM

CO ■<— CO CD 0 0 16

051

4461

614

012

1873

1 037

578

3842

416

055 0

3814

164

9751

648 0

2124

425

707

4878

0 0 041

834

5253

5 0 040

095

457

24.1

38.2 0.0

38.8

25.6

35.7 0.4

0.1

55.6

43.9 0.2

23.3

41.6

34.9 O (D ^ O

O CO CO t—lO ^

0.0

41.2

39.7

19.1 0.0

39.0 6.5

54.5 0.2

38.6

26.2

35.0 0.0

0.0

62.0

38.0 o o cd m-

O O (\i N CD

:>Cd

&CO «1 ^CD2F

2317

736

784 0

3732

224

633

3433

1

349 67

5358

242

288

225

2240

440

055

3360

2 053

8451

457

3944

5 039

649

3822

018

417 0

3756

162

2552

500

220

3712

825

248

3369

0 0 059

676

3661

0 0 1024

7293

804

£

2 ? «? CO TJ- T - cm m -<j- T - CM CO TT T - CM CO T - CN CO T - CN CO TT T - CM CO T t T - CM CO TT T - CM CO ^ T - cm r o tj-

i ' - s .-2 L-3

“ lo o o o

o o o o

o o o o o u o o

ma

ng

jom

an

gjo

ma

ng

jom

an

gjo

oilp

joo

ilpjo

oilp

joo

ilpjo

pe

pp

jop

ep

pjo

pe

pp

jop

ep

pjo

pin

ejo

pin

ejo

pin

ejo

pin

ejo

pyr

ejo

pyr

ejo

pyr

ejo

pyr

ejo

crop

mai

z_hi

mai

z_hi

mai

z_hi

mai

z_hi

oilp

jiio

ilpjii

oilp

jiio

ilpjii

po

tajii

pota

_hi

po

tajii

po

tajii

o CO CO CO CO CO CO c p cp CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO

,E£ 5 5 5 5 5 5 § § § § 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Page 58: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

RA

TIN

GS

BY

RM

U

RA

TIN

GS

BY

ME

D

EN

V T

YP

E

RA

TIN

GS

BY

RM

U

RA

TIN

GS

BY

ME

D.

ENV.

TY

PE

ED.

ENV.

%

are

a

1.7

3.3

36.6

56.1 0.0

7.7

21 0

70

.8 0.0

8 8

48 8

37

.5 1.2

4.6

39 0

54

5 0.3

0.1

65.3

27.9 0.0

1.0

64.8

27.9 3.3

11.1

44

937

.3 4.9

10 4

50

4

27.9 CD CO O CD

T f O ) i f j O CO

COco

m S ™co 2: p G i 2:1-

585

1121

1225

718

792 0

2571

7035

2373

0 029

3516

361

1255

0

389

1556

1305

418

248 84 23

1870

979

83 029

618

580

7983 944

3184

1287

310

681

1397

2967

1445

279

83

1328

2739

1437

2309

7

944

VIU

RP%

area 1.

85.

235

.857

.2 0.0

11.2

22.1

66.7 0.0

12 0

47

.4

40.6

2 09 LZZ C 9 6 0 0.

30.

365

.434

.0 0.0

1.7

64.7

33.6 3 2

16.9

40

6

39.3 4.7

15.4

46.6

33.3 N t T O (7)

CO CD N CNCNCO

e r

“ s £g ra

p

613

1731

1200

219

165 1

3749

7403

2235

8 140

3815

878

1359

4

289

2102

1094

720

173 84 78

1875

597

44 1348

918

541

9618 92

748

4711

624

1126

3

1333

4426

1335

295

50

1058

4690

2013

2090

0

914

S

>■ g> T - cNj co r - (N CO ^ r - CN CO T f T - CNI CO T - CN CO tJ- T - (N CO N- T - CN CO N- T - CN CO T t T - o j co

S cS iS1

rub

bjo

rubb

_lo

rubb

_lo

rubb

_lo

van

ijova

nijo

van

ijova

nijo

card

joca

rdjo

card

joca

rdjo

cash

joca

shjo

cash

joca

shjo

chilj

och

iljo

chilj

och

iljo

citr_

loci

tr_lo

citr_

loci

trjo

crop

rice_

hiric

e_hi

rice_

hiric

e_hi

rub

bjii

rubb

_hi

rubb

_hi

rubb

_hi

coco

_hi

coco

_hi

coco

_hi

coco

_hi

coco

jo

prov

ince c c e r e r e r

O O O O: > ^ ^ ^

e r e r e r e r O O O O 2 5 2 2

e r e r e r e r O O O O: > ^ ^ ^

e r e r e r e r O O O O 2 2 2 2

Q O D O < < < < ^ 12 2 ^

Q O Q Q < < < <

Q Q Q Q < < < < 2 2 2 2

Q Q O O < < < < 2 2 2 2

Q Q Q Q < < < < 5 2 2 2 M

AD

UJCL

i iLU

0.1

219

55.9

18

3 0 0

39.7

4

154

.7 0.0

39.7 8 4

50.7 0.0

39.6 6.9

52.9 0 0

0 0

54.0

39

.8 0.0

0 1

52.2

39

.7 0.0

3 0

47.9

42

9 0.0

2.6

51.5

39.7 0.6

5.7

17.4

67.1

90

QLU

>

U R

ATI

NG

S B

%ar

ea

area

(km

2) 129

2104

153

807

1763

5 038

270

3967

5267

0 038

270

8099

4881

2 038

141

6626

5095

5 0 018

267

1348

4 9 3717

652

1342

7 010

1816

202

1453

1 088

017

444

1342

7

217

1919

5876

2271

2

217

0.4

20.7

58.8

20

.1 0.0

56 5

5

3 38

.2 0.0

56.5 7.9

35.7 0.0

39.0

23

937

.1 0.0

0.1

51.4

48

4 0.0

04

51.3

48.3 0.3

3.8

44.6

51.3 0.3

2.6

48 8

48

.3 0.6

8.7

22 8

67

.8

90

TIN

GS

BY

RM

ar

ea

(km

2)

349

1993

756

660

1934

0 054

374

5128

3678

4 054

374

7581

3433

1 037

561

2303

835

687 0 47

1740

916

391 9

135

1736

916

334 90

1295

1509

517

367 90 893

1653

016

334

201

2948

7734

2296

4

201

2

T - CN CO T t T - CN CO Tf r * ( N CO N- T - CN CO T t T - CN CO tT T - CN CO N- T - CN CO N" T - CN CO N- T - CM CO

5 ro i S

1

rub

bjo

rub

bjo

rub

bjo

rub

bjo O O O O

I I I I c c cz c= co cö ca ca > > > > ca

rdjo

card

joca

rdjo

card

jo

cash

joca

shjo

cash

joca

shjo

chilj

och

iljo

chilj

och

iljo

citr_

loci

trjo

citr

joci

trjo

crop

rice_

hiric

e_hi

rice_

hiric

e_hi

rubb

_hi

rubb

_hi

rubb

_hi

rubb

_hi

coco

_hi

coco

_hi

coco

_hi

coco

_h

coco

jc

prov

ince co co co co

LU LU LU LUco co co coUJ LU LU LU

§ § § §

co co co coLU LU LU LU

§ § § §

co co co coLU LU UJ LU

§ § § §

__i _i __i __iD D D D G G G G

_i __i __i __iD D D D G O O O

__i __i __i _iZ> => D Z ) G O O O

_i __i _i _iD D D D G G G G

__i __i __i __iD D D DG G G G G

UL

Page 59: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

ING

S B

Y R

MU

R

ATI

NG

S B

Y M

ED.

EN

V.

TYP

E

RA

TIN

GS

BY

RM

U

RA

TIN

GS

BY

ME

D.

ENV.

TY

PE

ED

. E

NV

.

% a

rea cd ^ m o o ) T t m o m N- 00 N- •<— oo m CO N 03 CO T - CO T f O O CO 03 CO 00 OO Tj- cn

T - CO oo ^ CO

O ) i n co co TJ- CO

o CO03

CN in03

CO y - y f Ö 00

CO T - CO N T - Tj- CN

co co co in co

O T - T f N CD CN

O t T O CO O ) !£) f f l

2

CO O i n CO Tj- O IDn co

CO T t CN T -

os

CO CO O O CN 03 CO CD

03 CN CD N" CD CO N h -

03 CN 03 CO CD N O ) CO

T f 03 c o m N- O N- (D

O CD O CO 03 CO CO

O 03 N i n 03 00 OO CO

26

81

19

88

39

57

8 s !co tj- oCO (N T -

i n CD TT oCM t— CN t—

n - CNCO

N - CD N- 03 r - CO O CO T - co

03 CO CO 03 CO CO N

03 CO 03 N* CN TT

CN i n 03oo r^-

O CO o o co ^— co ^—

2 -

h -

s

03<DTO

= > *

CN CN CN CN CN

CD T - T - CD CO ▼” a> r ^ o CO P CO T f T - T - i n co 03 tj- i n r- N i n N O 00 N CD CN N- CD 00 CN CN COCD CD t— t— co ^ r

CO r - CO T -t- CO N"

o o o CO03

T - CO o m03

Tf CD CO r- T- h-

T f CD CN CD T - N - CO

CO 03 T f CN 00

▼“ o T t co CD CO

T f N CN m T- t— CD

O CN COT- T- rj-

a :

“ S§ CO t— CO LO — N

CD CN CN CO ^ (N N

T - COm o

o

37

1

85

1 tt m co m

03 CO N- O CO O CO CO

03 i n CO 03co N" m co

89

1

27

81

12

86

23

70

3 N- 00 T- CO CO N” t—

03 CN N COcd co o m

i n oo 'T- T- O CN

8 ™ 1 2 ""

N CN N i n c o o nCN CO t— t—

CN CN CNCOCN

co

CN

r - CD ^ ^ ▼— N - CN O

CN

T- CO r- Tj-T- TJ- CN O

CN CN m CD CO 03

O T- CD CO TT CN CO CO

03 m tj- CN CO CN

& ¥ CN CO tJ- T- CN co n - T- CN CO Tf T- CN ro ■<? t— CN CO T- CN CO N- CN CO T- CN CO N- T- CN CO N- T- CN CO

TO »—

1

coco

_lo

coco

_lo

coco

_lo

h2

cof_

loh

2co

f_lo

h2

cof_

loh

2co

f_lo

rco

f_lo

rco

fjo

rco

f_lo

rco

fjo

ma

ng

_lo

ma

ng

_lo

ma

ng

_lo

ma

ng

_lo

oilp

_lo

oil

pjo

oil

pjo

cro

p

co

cn

joc

oc

njo

cocn

_lo

cocn

_lo

h2

cof_

hi

h2

cof_

hi

h2

cof_

hi

h2

cof_

hi

rco

f_h

irc

of_

hi

rco

f_h

irc

of_

hi

ma

iz_

hm

aiz

_h

ma

iz_

hm

aiz

_h

oilp

_h

io

ilp_

hi

oilp

_h

io

ilp_

hi

pro

vin

ce

MA

DM

AD

MA

D

MA

DM

AD

MA

DM

AD Q Q D D

< < < < 2 2 2 2

0 0 0 0 < < < < 2 2 2 2

Q Q O O < < < < 2 2 2 2

Q Q D Q < < < < 2 2 2 2 M

AD

MA

DM

AD

MA

D Q Q O O < < < < 2 2 2 2

O D O O < < < < 2 2 2 2 MA

DM

AD

MA

D

LUCL

8 5LU TO

5.7

42

.04

2.8 0.7

5.7

41

.94

2.8 o o o o

o o o o

Z 66 C

O

0 0 0 0 0.1

2.5

23

.867

.0

0.1

2.9

51.1

39

.7 O CO CN O O CD

r-COoo 0

.00.

15

2.2

39

.7

0.9

15

.334

.14

2.7 0.8

1

5.4

58

6

TIN

GS

BY

ME

D

are

a

%(k

m2

)

19

19

14

22

31

45

00

24

71

91

91

41

93

14

50

0 O O O hj-COCOCO

0 09

33

37

54 37

84

38

04

52

26

91 37

981

17

30

61

34

27 9

25

82

08

33

00

10 9

371

76

52

13

42

7

29

25

19

31

15

29

14

45

6

25

85

22

71

98

24

CTTOCD

TO 8.7

39

.25

1.4 X- co

00

39.1

51

.4 o o o o o o o o

8 66 0 0 Z

O

0 0 0.2 2.3

29

.96

7.6

0.2 3.9

47

.24

8.7 0.1

1.3

7.2

91

.4

0.0

0.4

51

.34

8.3 2.1

9.8 3.3

84

.8 3.5

11

.75

4.9

TIN

GS

BY

are

a

(km

2)

29

61

13

27

8

17

40

7

37

52

81

7

13

24

81

74

07 0 0 0

33

84

7 06

0 03

37

87 71

77

4

10

11

02

28

92 71

13

14

15

96

61

64

96

43

43

3

24

22

30

94

9 91

35

17

36

91

63

34

69

8

33

33

11

15

28

70

1

11

76

39

70

18

59

4

RA

su

ita

bil

ity

rati

ng CN CO Tf i - CN CO "<T T- CN CO tT CN CO Tf T- CN CO Tf t- cn co n - T- CN CO Tt CN CO N- ^ (N CO Tf T- CN CO

cro

p o o oI I I

o o o o o o o o o o o o c

oc

njo

co

cn

jo

co

cn

joc

oc

njo

h2

co

f_h

i

h2

co

f_h

ih

2c

of_

hi

h2

co

f_h

i

h2

co

fJo

h2

co

f_lo

h2

co

f_lo

h2

co

f_lo

rco

fjii

rco

f_h

i

rco

f_h

irc

of_

hi o o o o

JJJJo o o o o u u o

ma

iz_

hi

ma

iz_

hi

ma

iz_

hi

ma

iz_

hi

ma

ng

_lo

ma

ng

jom

an

gjo

ma

ng

jo

oil

p_h

io

ilp

_hi

oil

p_h

i

oil

p_h

i

oil

pjc

oil

pjc

oil

pjc

8.E G

UL

GU

L

GU

L _i _i _i _iO ID O O O O 0 CD

_i _i _i _iZD 3 3 O O O O Ü

_i _i _i _iD D D D O O O Ü

_i _i _i _iDD DD DD DD O O O O

_I _I _I _ID D D D O 0 Ü O

_i _i _i _iD D D D O O CD 0

_i _i _i _iD O D D0 0 0 0

_i _i _i _iD D D D 0 0 CD 0 G

UL

GU

L

GU

L

Page 60: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

RA

TIN

GS

BY R

MU

R

ATI

NG

S BY

MED

. EN

V. T

YPE

R

ATI

NG

S BY

RM

U

RA

TIN

GS

BY M

ED.

ENV

. TY

PEED

. EN

V. ‘

% a

rea

31.6 9.0

4.8

43.2

39.8 4 3

10 3

44

8

37.3 0.0

0.4

20 5

78

9 O O O to 0 0 ( 0 0

ct)

4.7

7.7

15.5

71

.9 o N m m o i n co o

T - 00

0.0

16.4

45.5

27

.9 9.0

4.8

44.4

38.5 0.0

0.0

39.1

59.2

VIU

RA

TIN

GS

BY M

E%

area

ar

ea(k

m2)

9056

2573

1388

1237

211

409

1219

2955

1282

710

681 0

107

5886

2260

8 0 017

1325

969

1348

2214

4441

2059

8 045

1010

1723

074 0

4700

1304

079

83

2573

1388

1273

611

045 0 0

1702

625

764

co

5

7.9

12.4

37.3

42.4 4.3

16.6

41.7

37.4 0.0

0.4

29.4

70.2 O O CNJ 00

Ö Ö CT) d CT)

O) CD CN CO CD 00 T - CO

CN CD

0.0

21.0 7.7

71.3 0.0

21.8

41.7

36.5 8.0

12.4

38.6

41.1 0.0

0.2

35.6

64.2

Cd

“ S STco £ E ü ^

1 -

9817

2276

3560

1068

312

142

1236

4768

1194

310

714 0

107

8433

2012

1 0 026

2826

033

1969

2471

6084

1813

7 060

1222

1920

430 0

6249

1194

310

469

2294

3540

1104

911

778 0 67

1549

327

956

RA'

suita

bilit

yra

ting T - CNJ CO ^ t- CN CO Tf T - CN CO T t T - cm n tj- t- CM CO TJ- T— CM CO TJ- r - CM CO Tf •<- CN CO ■<- CM CO tJ-

crop

oilp

_lo

pepp

jope

ppjo

pepp

_lo

pepp

jo o o o o I I I I

(D <D <D Q) c c c cQ_ Q . Q . Q . po

ta_h

ipo

ta_h

ipo

ta_h

ipo

ta_h

i

pyre

jopy

rejo

pyre

jopy

rejo

rice_

hiric

e_hi

rice_

hiric

e_hi

rubb

_hi

rubb

_hi

rubb

_hi

rubb

_hi

rubb

joru

bbjo

rubb

joru

bbjo o o o o

I I I I c c c c ca ca ca co > > > > ca

rd Jo

ca

rd Jo

ca

rdjo

ca

rd Jo

o.E£

MA

D Q Q Q Q < < < < ^ ^ ^ ^

Q Q Q Q < < < < ^ ^ ^ S

Q O Q Q < < < < ^ S ^ S

Q Q Q Q < < < < ^ ^ ^ s

Q Q Q Q < < < < 2 2 2 2

Q Q Q Q < < < < ^ ^ ^ ^

Q Q Q Q < < < < 2 2 2 2

D O Q Q < < < < 2 2 2 2

m ^ x.CO CO CO CO LU LU LU UJ

o

> s CD CD CD o T - 0 3 CO TT O O N- O O O CO 03 T - N m cd O CO N - O O CO N N O CO O ) O O O O CNJ

z £LU TO

0 0 o in T- co O CM CM CMm r r

O O CD N CM CD

o o o r^r - CO

O Ö 0 3 CN N" N-

O CD N N T - CD

d to in öS ■<3- ro O CD T - CO O O O CT) C - CNI

QLU

CDCD

c o cd i n N o •<- h - mcd cm m mN - TT

o o mCM 03

o o co i n h - CD

CD ▼- o o i n ^ m cd oO CD N ' —

CO 0 3 0 3O (D (D N

CO O ) CMO CD CD N

c o cd m0 13 33 49CO >- F

o ro ^Z ~I -

C\lCD

CN CD T— mT - r j - t T

O ) c o c o r - T r

0 3 CD 0 0 CM

CN

N - h - CO 03

CM

CM N T f CD TT

r - 0 0 CO CN i n CN

CN

r - (N cm m c o

T - i nCM ^ t

0 3 D - O CO CM

2030)CO£

Z

CD 0 3 r - CD CN 0 3 N CM O O TT CD O O O O CM O O 00 O t O CD O M- 0 3 N CM CM T - (D O «r-00 r-CDCN

O CO 0 3 T -c o m

O CO 0 3 CD N - N-

O O CM N CO CD

O O co CM 0 3

O CM CN i n i n tj-

O O ) CO N CN CD

O 03 T— 0O N - N-

O 0 3 0 3 T—c o m

Ö CO Ö CD CD CO

2Cd

& 302

2851

1323

017

464 80

1322

1682

115

624 O O Is- O

CD 00o o cm m

CN CMO N ^ CD 0 0 CD 0 3 O

O CN CO CN N CO 0 3

O CN O ) CD h - Is- 03

CD CD T— i n O CM CD

O TT 0 3 m CN 0 3 0 3

CO ro t OzI—

o0 3 00 O CM T - CM

CM ^ CO

cd m m Is- m

— r coCO N CM

CMCO O- S

▼” CN ^ CO CO N

0 3 N00 o

<Cd

>N 0 3 N- T— CN CO N" T - CM CO r - CM CO T f r - CM CO M- CM CO N- T - CN CO T t t - CNJ CO NJ- r - CN CO N- T- CN CO N-1 1 03 »-

5

crop

oilp

jo

pep

pjo

pep

pjo

pep

pjo

pep

pjo

pin

ejo

pin

ejo

pin

ejo

pin

ejo

pot

ajii

pota

_hi

pota

_hi

pota

_hi

pyr

ejo

pyr

ejo

pyr

ejo

pyr

ejo

rice

_hi

rice

_hi

rice

_hi

rice

_hi

rubb

_hi

rubb

_hi

rubb

_hi

rubb

_hi

rubb

_lo

rubb

_lo

rub

bjo

rub

bjo

van

ijo

van

ijo

van

ijo

van

ijo

card

joca

rdjo

card

joca

rdjo

oE> G

UL _i _i _i _i

z> z> z z Ü Ü Ü Ü

_i _i _i _iZ Z Z 3 O O 0 0

_i _i _i _iZ Z Z Z 0 0 0 0

_i _i _i _iZ Z> Z) z> O 0 0 0

_i _i _i _i3 D D D Ü Ü O Ü

_i _i _i _iD D D D0 0 0 0

_i _i _i _iZ> Z Z> Z) 0 0 0 0

_i _i _i _iD 3 D D 0 O 0 0

z z z zLU UJ LU LUo o o o

Page 61: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

NG

SB

YR

MU

R

ATI

NG

S B

Y M

ED

E

NV

. TY

PE

R

ATI

NG

S B

Y R

MU

R

ATI

NG

S B

Y M

ED.

ENV.

TY

PE

03(D

CD

1.

03CDCD

03CD

03CD

£|S1 a

3.6

5.9

29.4

59.2 0.0

11.4

24

.062

.5 0.0

9.8

28.9

59.2 3.6

7.9

1.1

86.6 3.6

6.3

25.1

63.0 3.6

7.9

23.5

63.0 o o o o

o d o oO CD CO CO Ö O Ö od

CJ)

0.0

11.4

1.

686

.5 0.0

11.4

1548

2567

1279

825

764 0

4963

1043

827

219 0

4266

1259

025

764

1551

3442 487

3768

1

1548

2748

1093

827

418

1548

3445

1024

127

418 19 0 0

4349

7 19 246 92

4297

4 049

63 676

3766

2 049

63

2.2

7.4

26.1

64.2 0.4

11.5

20.9

67.2 0.4

9.9

25.5

64.2 ■'f CD CO

c\i ch T- co 2.3

8.3

21.3

68

.0 CO CD OCM CD CD CO

r - CD

o o o o d d o d

6 86 ZO

6 0 0 0 0.

611

.3 2.1

86.0 0.4

11.5

973

3239

1134

827

956

162

4995

9098

2926

1

162

4304

1109

427

956

1025

4299 57

737

615

1022

3611

9273

2961

0

1022

4308

8576

2961

0 19 0 043

497 19

378 99

4302

0

241

4916 92

237

437

175

4988

T - CN CO ^ r- (\J CO ^ r - CNJ CO T f T - CM CO tT T - CM CO r- CM CO ^ v - CM CO T t T - CM CO ^ ■«— CO CO "S’ T - CM

cash

jcca

shjc

cash

jcca

shjc

chilj

cch

iljc

chilj

cch

iljc

citr

jcci

trjc

citr

jcci

trjc

coco

_hi

coco

_hco

co_h

ico

co_h

i O O O OI I I I

O O O O O O O (Jo o o o o cj o o

o o o oI I I I

c c c cCJ O (J oo o o oO O CJ o h2

cof_

hih2

cof_

hih2

cof_

hih2

cofJ

ii

h2co

f_lo

h2co

f_lo

h2co

fJo

h2co

fJo

rcof

_hi

rco

fjii

rcof

_hi

rco

fjii o o

o oo CJ

* * * ^ x. ^ ^ ^ ^ ^ ^ it: ^ ^ * i4 *LU UJ LU UJ LU LU HI UJ UJ UJ HI UJ LU UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ LLl LLl LLl UJ UJ UJ LLl LU UJ LLl UJ UJ UJ UJ

0.7

4.2

66.3

28.6 0.9

5.0

63.9

28.6 0.9

4.9

65.1

28

6 0.2

5.0

4.9

89 8 0.9

5.0

47 8

46

.2 1.5

5.0

47 2

46

.2 0.4

116

0.1

87 8 0.6

33.4

1.

664

.4 1.9

4.0

4.1

89.4 CD CO

CM CO

205

1266

1984

785

66 264

1503

1910

885

66 264

1469

1949

185

66 5914

9014

5726

878

264

1490

1429

813

832

447

1490

1411

513

832

129

3480 39

2627

0

183

9998 482

1925

5

563

1204

1239

2674

9

768

999

0.9

11.4

56.7

30.9 1.4

13.8

49.5

35.3 1.6

12.5

55.6

30

.2 0.7

14.0 7.9

77.4 0.9

14.1

38

6

46.4 2.7

119

39.0

46

4 7.3

0.5

0.1

92.0 7.5

16.4 0.1

76.0 3.6

10.2

15.9

70.2 co m

T t CD

282

3419

1697

592

42 431

4119

1482

010

548

482

3752

1664

590

39 203

4202

2363

2315

0

278

4209

1155

813

873

795

3574

1167

613

873

2179 16

2 3927

538

2233

4899 39

2274

7

1083

3061

4769

2100

5

1288

2856

r - CN CO T f r- CN CO ^ T - CM CO T t r- CN CO ^ T - CM CO tT T- co co Tr v - CM CO T- (n n ' t cm co T - CO

cash

joca

shjo

cash

joca

shjo

chilj

och

iljo

chilj

och

iljo

citr

joci

trjo

citr

joci

trjo

coco

_hi

coco

_hi

coco

_hi

coco

_hi o o o o

I I I I o o o oO O CJ oo o o oCJ CJ CJ CJ co

cnjo

cocn

joco

cnjo

cocn

jo

h2co

f_hi

h2co

f_hi

h2co

f_hi

h2co

f_hi

h2co

fJo

h2co

fJo

h2co

fJo

h2co

fJo

rco

fjii

rcof

_hi

rcof

_hi

rcof

_hi o o

o o o u

Z Z Z Z UJ UJ UJ UJo o o o

z z z zUJ UJ UJ UJo o o o

z z z zUJ UJ UJ UJo o o o

z z z zUJ UJ UJ UJo o o o

z z z zUJ UJ UJ UJo o o o

z z z zUJ UJ UJ UJo o o o

z z z zLU UJ UJ UJ O O CJ (J

z z z zUJ UJ UJ UJ (J o o o

z z z zUJ UJ UJ UJo o o o C

EN

CE

N

Page 62: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

NG

S BY

RM

U

RAT

ING

S BY

MED

. EN

V. T

YPE

R

ATIN

GS

BY

RM

U

RAT

ING

S B

Y M

ED.

ENV.

TYP

E

03<1)03

£

™ I

fi?03 £

S ro03 k -

03<D(5s?

sg™ J .

sg« I

£ £

S'-S03 * -

26.2

60.4 CD N N t D

co T- o co 03

3.6

5.9

29.4

59.2 00 CN CN O

T- cd ih in 0.2

12.0

34.6

51.4 0.0

2.0

30.1

65.5 3.6

8.4

23.5

62.5 O O t- T-

Ö Ö CO CD T- CO

O O O COo d CN

CD

9.5

1.6

14.0

74

.6

1138

226

275

1548 72

732

240

731

1548

2567

1279

825

764

780

7029

2258

3264

7 8052

0315

066

2238

4 087

813

116

2850

8

1548

3642

1021

127

219 0 0

5703

3748

2 0 086

142

563

4127 70

060

7132

448

22.4

65.7 2.3

1.8

2.3

93.5 2.2

7.4

26.1

64.2 0.0

2.3

24.2

73.6 0.5

12.7

31.5

55.2 0.0

3.1

28.1

68.8 2.4

10.0

20.4

67.2 OOTflD

o o ^ f i r i ■<- co 0.

00.

04.

295

.8 8.0

2.9

16.4

72.7

9768

2858

5

1015 79

310

0040

708

973

3239

1134

827

956 0

981

1052

432

011

215

5532

1372

924

040 7

1335

1221

529

959

1050

4333

8872

2926

1 0 062

8437

232 0 0

1811

4170

5

3485

1249

7154

3162

8

CO Tj- T- cm n tj- •<— CN CO T- CN CO T- CN CO Tt CN CO Tf CN CO TJ- T- CN CO-Tf T- CN CO ^ T- CM CO Tf

o o

. J * - 'o o o o

ma

iz_

hi

ma

iz_

hi

ma

iz_

hi

ma

iz_

hi

ma

ng

jo

ma

ng

jo

ma

ng

_lo

ma

ng

_lo

oilp

_h

i

oilp

_h

i

oilp

_h

i

oilp

_h

i

oil

pjo

oil

pjo

oil

pjo

oil

pjo

pe

pp

jo

pe

pp

jo

pe

pp

jo

pe

pp

jo

pin

ejo

pin

ejo

pin

ejo

pin

ejo

po

ta_

hi

po

ta_

hi

po

ta_

hi

po

ta_

hi

py

rejo

py

rejo

py

rejo

py

rejo

ric

e_

hi

ric

e_

hi

ric

e_

hi

ric

e_

hi

^ * * ^ ^ ^ ^ ^ ^ * x . •*. x : ^ ^ * x . * ^

LU LU LU LU LU ID LU LU LU LU LU LU LU LU LU LU LU LU LU LU LU LU UJ LU LU LU UJ UJ LU UJ UJ LU LU LU LU LU LU LU

65.1

28.8

0.2 3.5

2.4

93.7 0.7

4.2

66.3

28.6

2.0 3.7

17.6

76.4 0.6

5.0

61.3

32.8 0.0

5.0

47.9

46.8 2.6

5.9

69.1

20.9

0.0 0.1

26.0

72.4 o CO

O O TT Tt CO CD

1.2

5.7

33.1

58.3

1949

186

26 5910

45 732

2804

8

205

1266

1984

785

66 597

1097

5280

2285

0

191

1503

1832

698

04

014

8714

320

1401

5

768

1760

2066

362

48

0 3977

8721

649 0 39

1019

819

238

362

1712

9912

1745

5

49.7

36

4 co m m co

Ö 03 T* in co

1.9

10.4

56.7

30.9 co m

CO CD N CN T- r -

2.8

6.6

49.1

41.4 0.0

10.7

36.8

52

.4 6.0

12.0

52.9

29.1 0.0

0.6

33.8

65.6 0.0

0.4

26.3

73.3 3.9

4.6

30.9

60.5

1487

310

901 75

2848

1336

2565

9

580

3121

1697

592

42

1127

1816

5297

2167

8

835

1985

1469

712

401 0

3214

1101

715

687

1802

3589

1582

687

01

017

910

105

1963

4 011

878

6621

934

1170

1379

9259

1811

0

CO Tt ■<- C\l CO TJ- t— CN 00 Tf T- CN CO N- CN CO N- T- CN co T- CN CO N- T- CN CO ^ r - CN CO N" T- (N M

o o

M-l M_ ' o o o o

x : _ c _ c I I I I

N N N N 03 03 03 03

E E E E

o o o o I I I I

CD 03 03 CJ) C C C C 03 03 03 03E E E E

-C .c -c .n I I I I

.9 - . 9 - . 9 - . 9 - o o o o

O O o o I I I I

.9 - . 9 - . 9 - . 9 - o o o o

o o o o I I I I

Cl Q. Q. Q. Q. Q. CL CL <D (D CD (D Q. Q. Q. Q.

O O O OI I I I

t i l lC £ £ £

t i l l03 Q3 TO 03

o o o o cl cl a . a

o o o oI I I I

qj a> <U Q)> . >* >> a a a a

r r c c I I I I

8 8 8 8o o c o

CD z z -Z .-Z .-Z .-Z . z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z zO LU UJ LU LU UJ UJ LU LU UJ LU LU LU LU LU LU LU LU LU LU LU UJ LU LU LU LU LU LU LU LU LU LU UJ LU LU LU UJ LU LU

§Q.

o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o O O O O

Page 63: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

LUQ.

£ED

. E

NV

. '

% a

rea

0.0

11.5

1.

486

.5 0.0

11.5

26.0

60.4 0.0

9.0

26.0

63.0 O N CD oo

° ° £ ZR

AT

ING

S B

Y M

E ar

ea

(km

2) 050

20 592

3766

2 050

2011

298

2627

5 039

0311

331

2741

8 026

727

926

42

60

J %ar

ea

O (O N O O CN T- CO 0.

012

.322

.065

.7 0.4

11.2

20.4

68.0 0.0

5.2

59.7

35.1

RA

TIN

GS

BY

RM

l ar

ea

(km

2) 053

51 728

3743

7 053

5795

742

85

85

162

48

7688

682

961

0 018

742

149

912

637

i su

itab

ility

ratin

g t- CN CO Tf T- CN CO Tj- r - (N CO r f r - CN CO r f

crop

rubb

_hi

rubb

_hi

rubb

_hi

rubb

_h

rub

bjo

rub

bjo

rubb

_lc

rubb

_lo

va

nijc

va

nijo

van

i_lc

va

nijo

ca

rdjc

ca

rdjo

ca

rdjo

ca

rdjo

O ^ ^ * ^ ^ ^ ^ ^.E>

Lü LU LU LU LU LU LU LU LU LU LU LU

LUCL>h-■> co Tf N r - Tj- m- ■>- oo o s i n co o o cm cdZ E T- Tf Tf oi T— Tj" uo oo Ö ir ih - C D ö c\i cd coO jro co cocNi m- m- ooQ ON LU

>“Cü co ^ 7 CO CO (D CD CD CO T - CD O CN CD m O CD t- CO

(D V O CD (O O O ) O ) CN CT) O T— CO f^- i n^ i= E ^ CO (N N ^ CO ^ CD CO CN O CN t- CNO - ^ T - T - C O T— CD CO T - N - N- CN T -2 ^ CN T - T -

£ca O O CT) CM O O t O M - O CT) i n (D O CD CD CT)

553

cas g

CN in cd m(J) N Tf O

(N in O r -O) N m o

O in N CDh- T- CN

O O CN CO CO CN N-

CN T- Tt O Tj- tT •»-

CNCN r - m ö)

N- N- Oin cd r f (O o in

CO m CN T- CN

su

ita

bil

ity

rati

ng T - (N CO Tf r - CN CO 1- CN (O ^ r - CN (O Tf

Q. E 'E JE E o o o o o o o o O O O O

oI I I I

D D D D U £1 D D J D □ D

1 1 1 1 JD JD JD JD _Q _Q _Q _Q □ 3 D D

E E E ECT3 CT3 CT3 CC3> > > >

1 1 1 1 TD TD TD "O C0 03 03 03 O O O O

4)

,E>

z : z z zLU LU LÜ LUo o o o

2 2 2 2 LU LU LU LUo o o o

2 2 2 2 LU LU LU UJo o o o

_J _J _J _J ^ ^ ^ ^

Q.

O 00 T t 00 o ) o ) h - T f cxD CN (D o m CN CD O OO CNO OO CO T - T - CD c o T f

i n T -T - CD CN - f-

CDr - O CO CO

co i nr - O (O T f

CO CO (M

o i n oo om CN CD

CD CD i n 00 CD CD ÖD CD

CD CN T f O CD CD CD CD

o CO ^ r - CO CO N N

o c o i n T f CO CO CD T - 8

r “ T f CN CO CD N"

CN

i n o T - CN cd ▼- m

CN

i n oo i n CN i n CN x f

CN

o o o

T - CN

N - O CD CD T - CN CO

N"

CN 00 CD T— CD CO CO N" CO CD CM CT) CT) CT) O CO N- CO N - CDo co m m

m co^ CD N co

T - CO coTT CD CN T f

Tj- co1- co i n T f

T - h -•»- CT) T - hL

•t— CO

o co m NCD CD tJ- CO

o CN i n co i n co cd co

T f co co oCO T - 00 00

' t N i f if ' - CT) CT) M"

r - tj- i n Tj-O CD CD r j- s

T - T - CD CO O CN

CN T -

cd cd m ooT - CD CO CO

m N T - mr - CD i n CN

CD h - h - N CD T— CD

CN

i n CD CN CNcd r -

m

T - CN CO N- T— CN CO r - CN CO ^ T - CN CO N- T - CN CO ^ -

cash

_lo

cash

_lo

ca

sh

joca

sh_l

o

chil_

loch

il_lo

ch

iljo

ch

iljo

citr

_lo

cit

rjo

cit

rjo

cit

rjo

coco

_h

ico

co_

hi

coco

_h

ico

co_

hi o o o o

I I I I o o o o o o o o o o o o o o o o c

oc

njo

* ^ ^ ^ ^ * * X . ^ * i d X. X. X. X.CO CO CO co co co co co co co c o co c o co c o co co c o co co co

§ § § § § § § § § § § § 5 § § § §

o m m o i M- M- M" CT) CD O CT) O CD CD in CO CN co 00 COO O ) CO 00 O CD T - co

f - Is-T— CO CN CO ö r - T - CT)

T - CDö CO Ö CD

- - CD T -Ö

013

2011

094

1258 56

2318

1008

212

58 222

1839

1026

312

58

724

8116

4598

12 4325

7685

9123

67

CO

T - CN 00 CD T - 00 N N" CD 00 tJ- CD CO CD CD CN r - r - i n CO mö T - cg i r i r i i n n N

T - C£) •>-r r -r- r^.' i n

CD T -co m T - cd

T - T - CDCN N N CO

r - i n CNco

r — CO 00 CO CNI CO N T f

443

2235

8991

2456

m co cd coCD CD T— T f

i n T— cd co cd i n c o N

o oo oO r - CD

mCD

i n CN CN ^ O CN

CD CD i n CN T - CD CN

CN CD N CN T— CD

CO T f T— CN CN 00 CO

N-

T - CN CO ^ r - CN CO ^ T— CN CO N" T - CN CO N- T - CN CO TT

cash

_lo

cash

_lo

ca

sh

joc

as

hjo

ch

iljo

ch

iljo

ch

iljo

ch

iljo

cit

rjo

cit

rjo

cit

rjo

cit

rjo

coco

_hi

coco

_h

ico

co_

hi

coco

_h

i o o o o 1 i 1 1o o o o

o o u o o o o o o o o o

0| UOOO

MIL

MIL

MIL

MIL

MIL

MIL

MIL

MIL —1 _J —1 _J

^ ^ ^ ^ MIL

MIL

MIL

MIL

MIL

MIL

MIL

MIL

MIL

Page 64: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

LUCL>-

ED.

EN

V.

7 %

are

a

16.7

50

.024

.8 7.6

0.5

0.0

91.5 O CD O O

1.2

30.7

10

8

50.5 12

30.7

47.

213

.3 1.2

0.6

21.5

69.

5

0 0

8 8

73.4

11

.8

8 8

9.2

26 0

54

.0 1.3

16.7

59.0

20.3 0.0

31.8

36.0

>/IU

R

AT

ING

S B

Y M

E%

area

ar

ea(k

m2)

5998

1800

089

14

2725 17

0 032

961

1447

4165

030

244

430

1107

338

7218

176

430

1107

316

999

4783 430 22

377

5025

038 0

3155

2642

842

60

3160

3321

9360

1945

4

467

6014

2125

172

97

611

457

1296

5

16.4

31.3

47.

9

4.3

0.6

0.0

95.1 CN in o CN

N" CD O CD CO 3.

5 19

4

8.3

68.

8

2.6

20 4

3

7.0

39.9

4.1

2.9

4.9

88.2 0.2

8.8

55.

935

.1 0.0

7.4

36.8

55

8 1.5

21.

94

7.2

29.4 1.5

19.3

31.4

MIN

GS

BY

Rr

area

(k

m2)

5896

1128

617

244

1544 220 11

342

35

1527

341

9 113

10

53

1269

698

729

93

2476

1

942

735

813

330

1438

0

1476

1040

1747

317

47 60

316

82

01

45

1263

7 026

76

1325

42

00

80

541

7882

1700

810

579

535

693

611

295

DC>, g> CN CO Tf T- CN CO TJ- T- CN CO N" CN CO N" T- CN CO Tf ^ CN CO N- T- CN CO Tf T- CN CO N- T- CN CO N- r - CN CO

5 '7503 »—

1

h2co

f_lo

h2co

f_lo

h2co

f_lo

h2co

f_lo o o o o

o o o oU U Ü u

ma

ng

jom

an

gjo

ma

ng

jom

an

gjo

oil

pjo

oil

pjo

oil

pjo

oil

pjo

pe

pp

jop

ep

pjo

pe

pp

jo

crop

o o o I I I c c c o o o

o o o o o o h2co

f_hi

h2co

f_hi

h2co

f_hi

h2co

f_hi

rcof

_hi

rcof

_hi

rcof

_hi

rcof

_hi

mai

z_hi

mai

z_hi

mai

z_hi

mai

z_hi -Q JZ JZ .c

I I I I _Q._9-_Q._Q.O 5 O O

o isC X. * ^ ^ ^ * ^ ^ ^4 ^ ^ ^ ^ ^ ^ Ü ^ ^ ^ ^ ^,EoQ.

5 § § 5 5 5 5 5 5 5 5 5 5 5 5 § 5 § § § § § § § 5 § § 5 5 5

LU0-

S 5LU 14

.160

.816

.8

0 86 0 0 0 0 0 2 2.

017

.5

0.0

80.5 2.9

10.5

15

.4

69 4 m D o co

^ CO O O) 0.0

11.6

11.4

75.7 0.0

9 3

78 5

8

9

12.3 5.2

14.1

66.1 3.9

14 6

64

.2

13 4 0.0

18.7

59.7

TIN

GS

BY

ME

D

area

%

(km

2)

1996

8591

2367 27

8 0 413

843

278

2466

411

377

408

1485

2170

9803 63

012

5398

8713

16

016

4016

1710

694 0

1320

1109

412

58

1736 73

719

9593

40 553

2066

9063

1895

026

3584

31

U

RA

%ar

ea

16.9

56.3

23.

3

4 2

0 2

0.0

95.6 4.2

10.7

0.0

85.1 6.2

9 2

17 0

67

.5 9.0

10.5

62.3

18.3

6 9/

OZ

l 6 8 V

I 0.4

11.0

72.8

15.9

14 0

8.

5 12

2

65 2 CN ID CD CO

ID CD CO O) t— ID —

2.9

16.8

55.2

PIN

GS

BY

RM

ar

ea

(km

2)

2383

7957

329

0

587 254

1350

9

587

1513

412

021

877

1305

240

895

35

1269

1480

8793

2583 30

312

6016

9710

865 50

1554

1027

822

43

1975

1207

1727

9216 74

123

3383

1827

33 406

237

978

03

$T ' o) CN CO Tf T- CN CO N- T- CN CO N- r- CN CO N- i - CN CO ^ T- CN CO TT T- CN CO N- r- CN CO Tf T- cm ro

s i s03 k—

1

h2co

f_lo

h2co

f_lo

h2co

f_lo

h2

cofJ

o O O O O

o o o o o o u o

ma

ng

jom

an

gjo

ma

ng

jom

an

gjo

oil

pjo

oil

pjo

oil

pjo

oil

pjo

pe

pp

jop

ep

pjo

pe

pp

jo

crop

co

cn

joc

oc

njo

co

cn

jo

h2co

f_hi

h2co

f_hi

h2co

f_hi

h2co

f_hi

rcof

_hi

rcof

_hi

rcof

_hi

rcof

_hi

mai

z_hi

mai

z_hi

mai

z_hi

mai

z_hi

oil

pji

oilp

_hoi

lp_h

oilp

_h

8.E M

ILM

ILM

IL _i _i _i —i2 ^ ^ ^

_ J _ J _ J _ J _I _I _I _I5 5 5 5

_I _1 _1 _1 _J _J _J _J5 5 5 5 M

ILM

ILM

ILM

IL _i _i _i _i _i _i _i _i2 ^ ^ ^ M

ILM

ILM

IL

O

Page 65: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

RA

TIN

GS

BY

RM

U

RA

TIN

GS

BY

ME

D.

EN

V.

TY

PE

R

AT

ING

S B

Y R

MU

R

AT

ING

S B

Y M

ED

. E

NV

T

YP

E%

are

a co

a

1.2

32.9

45.3

14.7 0.0

0.5

45.5

47.9 0.0

0.0

20.1

78.3 1.4

7.6

46.3

44.0 0.0

32.3

15

3

50.5 0.0

32.3

51

.7

13 3 1.2

30 6

36

.0

24.8 0.0

0.0

85.9

14.1 0.0

0.0

85.9

14.1

area

(km

2)

8914 43

011

858

1631

452

98

017

016

387

1725

7 0 072

4128

192

520

2753

1668

515

838 0

1161

855

0118

176 0

1161

818

628

4783 43

011

033

1296

589

14

0 018

02 296 0 0

1802 29

6

%ar

ea

47.9 2.3

21.6

38.1

38.0 0.0

0.5

35.4

64.0 0.0

0.0

19.7

80.2 4.5

7.4

41.7

46.3 0.3

23.7

7.

268

.8 0.3

23.7

36.0

39.9 1.7

19.0

31.4

47

.9 0.0

0.0

85.6

14.4

VV

l 9 98 0

0

0 0ar

ea(k

m2)

1724

4

828

7777

1373

613

669 0

185

1276

223

06

3 0 1171

112

888

8

1637

2667

1502

316

683

116

8540

2593

2476

1

116

8540

1297

414

380

614

68

5711

295

1724

4 0 017

95 303 0 0

1795

303

>, g) t— CN CO N - T - CN CO N- t— CN CO N" r - CN CO TT T - CN CO r t T - CN CO N- r - CN CO T f T - CN CO T t r - CN CO ^

5 75 iS1

pin

ejo

pine

_lo

pin

ejo

pin

ejo

rub

bjo

rub

bjo

rub

bjo

rub

bjo o o o o

t i l l c c= c cCD CD CD CD > > > > c

as

hjo

cash

_lo

cash

_lo

ca

sh

jo

crop

pepp

_lo

pota

_hi

pota

_hi

pota

_hi

pota

_hi

py

rejo

py

rejo

py

rejo

py

rejo

rice_

hiric

e_hi

rice_

hiric

e_hi £ r £ £

I I I I £ £ £ £ £ £ £ £ E E E E ca

rd J

o

ca

rdjo

ca

rd J

o

ca

rdjo

O * * * ^ ^ * ^ * * * ^ x. 2 Z 2 Z 2 2 2 2

.£5 5 5 5 5 5 § § § § § § § § 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 2 2 2 S ^ ^ ^ ^

CO<D CD C\l G) T f m

h - n C\l CO NT— CN CD

° ° O T-

o o p -co CD

o o p- n - o o öS öS

Ul N N N N lO O CO

C\l CD

o o n - o oo T— öS

CD

O O CN CO O CD 00 O)

tT CD 00 CO O 00 O CD

T— CD ▼-

r ^ T - T— cd ö cg m o

P - CN

N CN CDO T - (O o

T— CD CN

p - co O ) m nCN in co m in

O P - CO CD CO P -

O O P*- CD t O (N Om o CN o

O 00 T f CO CO O O

o N- m cdCO CO T -

CD T - ^ N in CN CD CD

o CN in p - m c d ^ CN

m N" CN CJ) oCN co co r -

CO T f N" CD

P - CN CN T -

O CO CD O T - CN O)

m cd ooCN T * CD

CD CD CO CN CD T -

cd m coCN 00 CN

N- O) CD CD N-

03CD

N" CD in CO o CN m co O T - co P r - O (X> O CD CD O in cd m cd co CO CD O CO p t t m N-CD O CD CD

CN in T -O Ö CO CD

CO CD ° ° m Sr - CD T - CN

CN CDO CD CN N

’T- T - CDo o o co

CN CD T -CN CD P CO

r - in CNo m T - CN

CD CO

CD CO N N ’o m CN T - in co

03 rp p~. p- 03 p- CN(D CO 03 TT N OE i n co 03 03 co

ro co CN N CN

o N i n coCN CO CD

P - coN- 03in p - in in

N- P- O ^o cd o inO CN T - N T - T - CO CO

T- 03 in T- co co co cd inCN T— 03

§X- T- co03 CD 00co m inCN 00 CN

CD 03 O O 03 00 in 03 CO CO O CN

CN co CO

O T - o 03 in CN N- 03 T - CN co CN

T - CO N

m N cn ’- ( N O )co m CNCN CN P-

£ g5 5 ’« iS k—

T - CN CO T f T - CN CO TT

o

q !S'

O O O OI I I I

a> a> a> <u . £ . £ .E .E a a a a

£ r j: r I I I I

cd ca ca coo o o oQ . Q . Q . Q .

o o o o I I I I J 0 J) J)

>* >> >* CL CL CL CL

sz x sz sz I I I I

8 8 S 8C X X x

sz x sz sz : I I I

£2 £3 £3 X I X X £3 £3

2 3

° ° ° °t i l l I I I I I I I I

x x x x E E E E p p p p03 CT3 CO (T3H H D H

D U =J D > > > > 03 03 03 03o o o a

o o o oI I I I

x: jz -c jzCO CO C/) (/303 03 CD 03o o o o

_J _J _J _J ^ _J _J _J

s ^ s s 2 ^X X X X X X

^ ^ ^ ^ ^ ^X X X X

i 1 1 1X X X X X X X X

1— I— I— I— 2 2 Z 2

X X X X I— I— h- H Z 2 2 2

Page 66: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

NG

S B

Y R

MU

R

ATI

NG

S B

Y M

ED

E

NV

TY

PE

R

ATI

NG

S B

Y R

MU

R

ATI

NG

S B

Y M

ED

. E

NV

TY

PE

030 )

03

TO J

03CD

t g15 -HS

1Q-

U

O

03CD

s ?TO I

t-

t g*1 ™ 03

0.0

32.2

33

4

14.1 0.0

0.0

84.9

14

1 0.0

32.2

20.3

47

.5 0.0

32 2

33 4

14

1 0.0

32.2

33.4

14 1 o o o o

O O O O O

o o o o o o o o 0.

00.

031

.247

.5 0.0

32.2

33

.4

14 1 o o

O CT>0

676

701

296 0 0

1781 29

6 067

642

599

7 067

670

129

6 067

670

129

6 O O O CD CD

8

O O O 00 CD

8

0 065

599

7 067

670

129

6 O CD 00

0.0

38.1

47.5

14.4 0.0

3.6

82.0

14 4 0 0

38.1

4.

0 57

.9 0.0

38.1

47.5

14 4 0.0

38.1

47

.5

14 4 o o o o

o o o oO O O O o o o o 0.

0 3.

6 38

5

57.9 0.0

38.1

47.5

14.4 O CD

O lO

079

999

630

3 0 7517

20 303 0

799 84

1215 0

799

996

303 0

799

996

303 0 0 0

2098 O O O CO

CD

8

0 75 808

1215 0

799

996

303 0

118

•«— CN CO tJ- x- CM CO N- T- CM CO Tt r - CN CO ^ r - CN CO ^ r - CN CO Tf T- CN CO r r x- CM CO tT CM CO M- CN

chil_

loch

iljo

chil_

loch

il_lo

citr

joci

trjo

citr

joci

trjo n r n r

I I I I o o o o o u o o o o o o o o o u

o o o o

I I I I o o o o o o o o o o o o o o o o

o o o oI I I I

c c c c o o o o o o o o o u o o h2

cof_

hih2

cof_

hih2

cof_

hih2

cof_

hi

h2co

f_lo

h2co

Jlo

h2co

f_lo

h2co

f_lo

rcof

_hi

rcof

_hi

rcof

_hi

rcof

_hi

rco

jlorc

of_l

orc

of_l

orc

ojo

mai

z_hi

mai

z_hi

Z Z Z Z < < < < ^ ^ ^ ^

2 2 2 2 < < < < 2 ^ ^ ^

2 2 2 2 < < < < 2 2 2 2

2 2 2 Z < < < < 2 2 2 2

2 2 2 2 < < < < ^ ^ 2 ^

2 2 2 2 < < < < ^ S ^ 2

2 2 2 2 < < < < S ^ 2 S

2 2 2 2 < < < < 2 2 2 2

2 2 2 2 < < < < ^ ^ ^ 2 M

AN

MA

N

0.7

20.1

44

6

33.1 9 3

16 9

51

.6

20 6 9.6

9.3

10 4

68

6 0.9

22.6

41

.6

34 7 0 9

22 6

4

16

34 7 4.3

0 0

0.0

95.7 4.3

17.9

0

077

.9 0.0

20 8

11

1 64

4 0 2

25.5

42

2

30 5 0.8

15 1

159

4524

1003

074

41

2098

3812

1161

746

27

2164

2093

2337

1543

7

213

5078

9359

7821 21

350

7893

5978

21 960 7 0

2154

3

960

4020 0

1753

0 046

8324

9514

499 52

5746

9495

6861 17

034

01

5.4

16 3

35

.9

42 4 9.4

19 8

38

4

32.4 7.3

12.7 9.4

70.6 2 2

20 8

31

.9

45 0 5.4

17 6

31

.9

45 0 3.1

0 1

0.0

96 9 3.1

13 6

0.

0 83

.3 11

20 6

10

.6

67.7 5.5

21.5

34

7

38 2 4.3

14 4

1216

3670

8073

9551

2109

4455

8653

7293

1632

2863

2120

1589

5

506

4688

7183

1013

3

1220

3967

7190

1013

3

694 14 0

2180

2

694

3071

018

745

243

4643

2381

1524

3

1249

4835

7817

8609 96

432

41

r - ( \ fO Tf T- cm c o r - CM CO r - CM CO ^ T- CN CO Tt T- CM CO N- T- CN CO ^ T- CN CO M- f rg ro CN

chilj

och

iljo

chilj

och

iljo

citr

joci

trjo

citr

joci

trjo

coco

_hi

coco

_hi

coco

_hi

coco

_hi

coco

joco

cojo

coco

joco

cojo O O O O

I I I I c c c c o o o o o o o o o o o o h2

cof_

hih2

cof_

hih2

cof_

hih2

cof_

hi

h2co

f_lo

h2co

f_lo

h2co

f_lo

h2co

f_lo

rcof

_hi

rcof

_hi

rcof

_hi

rcof

_hi

rco

jlorc

ojlo

rco

jlorc

ojlo

-C

11

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Z Z 2 Z 2 2 2 Z Z 2 2 Z Z 2 2 2 2 Z Z z z

Page 67: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

RA

TIN

GS

BY R

MU

R

ATI

NG

S BY

MED

. EN

V. T

YPE

R

ATI

NG

S BY

RM

U

RA

TIN

GS

BY M

ED. E

NV

.

UJQ.

i iQ

o o o ö

03

0.0

0.0

85.9

14.1

10.0

22.2

33.3

34.5

11

fr 9fr Z

ZZ

0 0 0.0

32.2

33.4

14.1 0.0

32.2

33.4

14.1 0.0

0.0

32.2

47.5 o o o o

o ö ö ö o 0.0

21.1

24

.1

34 5 0.0

32.2

20.3

47

.5

RA

TIN

GS

BY M

E ar

ea

(km

2) o coCO00

0 018

02 296

210

466

698

724 0

676

974 23 0

676

701

296 0

676

701

296 0 0

676

997 O O O CO

CD

s

044

350

672

4 067

642

599

7

S B

Y RM

Ure

a %

area

n2)

103

4.9

377

89.5

0 0.

00

0.0

>95

85.6

303

14.4

I93

9.2

362

31.6

>60

12.4

383

46.9

35

1.7

320

39.1

172

55.9

71

3.4

0 0.

0 >9

9 38

.139

6 47

.530

3 14

4

0 0.

038

3 42

.131

2 43

.530

3 14

.4

0 0.

00

0.0

383

42.1

>15

57.9 o o o o

d d ö o

o o o CO05

0 0.

0>4

2 11

.537

3 41

.638

3 46

.9

0 0.

0>9

9 38

.184

4.

0>1

5 57

.9

PsCN

>r CO ■St T- CN CO st T— CN CO Tf r- (N (O Xf r- (N CO xf T- CN (O xf T- OJ CO St r- CN CO ^ CN (O xf T- (N CO xr

5 TS03 fc-

1

man

gjo

man

g_lo

man

g_lo

man

g_lo

oilp

jooi

lpjo

oilp

jooi

lpjo

pepp

jope

ppjo

pepp

joPe

PP

pine

jopi

nejo

pine

jopi

nejo

pyre

jopy

rejo

pyre

jopy

rejo

crop

mai

z_hi

mai

z_hi

oilp

_hi

oilp

_hi

oilp

_hi

oilp

_hi

pota

jii

pota

_hi

pota

jii

pota

_hi

rice_

hiri

ceji

iric

e_hi

rice

jii

rubb

_hi

rubb

_hi

rubb

jii

rubb

_hi

prov

ince

MAN

MAN

Z Z Z Z< < < < 2 2 2 2

2 Z 2 2 < < < < 2 2 2 2

2 2 2 2 < < < < 2 2 2 2

2 2 2 Z< < < < 2 2 2 2

2 2 2 2 < < < < 2 2 2 2

Z 2 Z 2< < < < 2 2 2 2

2 2 2 2 < < < < 2 2 2 2

2 2 2 2< < < < 2 2 2 2

2 2 2 2 < < < < 2 2 2 2

LUQ_

: ? LU 03

5.6

75.4 1.4

9.8

63 4

20

.6

13.3 7.2

16.7

56.2 0.2

25.5

45.2

25.0 0.0

21.1

43.7

34.7 0.9

19.9

54.4

23.2 0.0

0.7

34 9

64

.4 0.0

0.0

26.0

74.0 0.8

17.7

26.9

51.1 0.0

24 9

7.

0 64

4

TIN

GS

BY M

ED.

area

%

(km

2)

1260

1697

3

310

2206

1428

146

27

2988

1610

3748

1265

0 5257

5110

183

5621

047

5798

3178

21 213

4477

1225

052

14 914

878

6114

492 0 7

5851

1665

2

170

3993

6052

1149

3 056

0015

7814

499

<Li r

TO<DTO

1.9

79.4 6.7

5.2

55.7

32.4 O CD O s t

CO OO N T - s ~ s - CO

5.5

18 2

38

.5

37.8 0.9

19.6

34.4

45.0 2.6

19.2

35.9

42.4 0.0

1.1 32.7

66.1

9 6Z fr 03 0 0 0 0 4.

716

.821

.756

.8 0.5

21.6

10

2

67.7

riN

GS

BY R

M

area

(k

m2)

435

1787

0

1505

1179

1252

772

99

2925

1927

3827

1383

1

1245

4086

8676

8503 20

944

2277

4610

133

580

4313

8079

9538 9

247

7371

1488

3 0 745

8717

916

1069

3784

4882

1277

5

121

4851

2295

1524

3

2

& co T - CM CO s t r - CNM O T f r - (N (O x r T - (N CO xj- r - (N CO S t ^— (M CO x f T - CN CO T f T - CN CO N - r - CN CO xj-

= = to EE

1

PeP

Pjo

pepp

jope

ppjo

pepp

jo

pine

jopi

nejo

pine

jopi

nejo

pyre

jopy

rejo

pyre

jopy

rejo

crop

mai

z_hi

mai

z_hi

man

g_lo

man

g_lo

man

g_lo

man

gjo

oilp

_hi

oilp

jiioi

lp_h

ioi

lpjii

oilp

jooi

lpjo

oilp

jooi

lpjo

pota

jii

pota

_hi

pota

_hi

pota

_hi

rice_

hiric

e_h

rice_

hiric

e_hi

rubb

_hru

bb_h

rubb

jiru

bbji

s X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X I— l— I— h— 2 2 2 2

X I X X X X X X.E z z z z z z 2 2 2 2 z z z z Z 2 2 2 2 2 Z 2 2 Z 2 2 Z 2 2 2 2 2 2 2

Page 68: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

RATI

NGS BY

RMU

RA

TING

S BY

MED. ENV. TYP

E RA

TING

S BY

RMU

RA

TING

S BY

MED. ENV. TYP

E

03<D03£

O CN Tf T-ö cn ro tj-'co CO T-

O (M ^ T-ö c\i co Ttco co T-

O CN N- 03o in co o00 T-

o o m 03 O O co o

O N 03 CN 00 CN O

r— (D y—

CO T- N 03 O CO N O (N in r-

CN co T- mCN 03 Tt 03

T- T- mC0 03 Tf Tfö in c\i toCN m T—

CN T— Tf Tj- oCN Tf CN CD ÖCN m T-

ro 1 O CD T- CD N O O) CD N CNO CD r- CD N O 03CD N CN

o o N- h- CO COcd co tj-

cn m o o r- co T-

CO CN O CD CO CN in N* CN in oCN m T-

CO CO N No m m T-CN CO CO N T- T- m

CO O CO N" CO 03 CO N^ o inCN in T-

o

03CD o T- m N- o co N \rco t T-

o t- in N-O CD N ^

CO N" —

o 03 co mO N CN 0300

o o in mO O Ö 03 03

o CN co mT- o 03 03 r- CN in

CN co co in co co in 03 CN m

N- CO O CO O 00 CN 03 r- T- CN Tf

CO O CO 00N m (N CN in r-co co co coO T- CN Tt r- (N in r-

t f 03 CO CO 03 03 Om 03 co

03 CO CO 03 03 o O N- 03 CNCO CO r-M 03 03

CM 00 roco co o cn -<3- o cd in in in N coCM CO

COcn coCT) n-

CM CO COco o in cm Is- M- O M- cm cn ■<-

N S CO CO •*— CT) CM O O O M-T- cm in T-

£ 2 5 TS03 V_

T- CN CO N- T- CN CO N-

o o o o I I I I_Q -O _Q _Q -Q -Q JD _Q O 3 D 13

0 | 0 | 0 | 0 |E E E ECO CT3 03 03> > > >

o o o ot i l l■D TD -O TDi— *— »— *—03 03 03 03(J O O O

O O O OI I I I £ £ £ £ CO CO CO 10 03 03 03 03 O O O O

° O o oI I I I“ — — mo u o o

O O O O G G G G

S1 SZ _cI I I I o o o o o o o o o o o o (J o o o

0 o o o01 o1 o1 o1 o o o o o o o o o o o o

o o o oI I I I c c c c o o o o o o o o o o u o

ij

03<D

03<D

™ I

£ i15 co03 *-

2:2 2 : 2 2 2 2 2< < < < < < < <^ ^ 2

o 00 T- inO 03 CX) O CN CO CO

o cd m NO N N CN CO CO

m m inCD 00

cn00CD

O CD CN ■*— N- N- CNT- Tj- 00(D CO N

O N- CO CN O N Tf CO CN CO CO

N- o m or- (N r- in

CN CO xf

o m <nCD M

oCD00

C3 T- s CO r- CD 03 CO CO 03 O T— N- h- O

t- C N C O N - T- CN CO TT

cd cd cd cd er er er er er er er er er er er er Cd Cd Cd Cd er er er er er er er er erz z z z 2 2 2 2 2 2 2 2 2 2 2 2 ~Z.-Z.-Z.-Z. 2 2 2 2 2 2 2 2 2

cm T- in 0 O O CN O 0 co m co O N- CN O O CD in N O CD 03 O O CD 03 O MÖ TJ- IT)— CO CM 0 0 cn in m cn 0 0 in T-T- in co 0 T- 0 mCD CN Ö CN 03 03 O CN 03 IO CN CD O CN 03 in CN CD CN

T- T- m cd in cd 00 0 O O N- CD CN O O CN T- CO N- N- CO O N- CO CD CN CN O O N- 't- 03 N CD CN O N" O M M D m O N- O M N CD m inCDCO 03 Tj- N- CO CD in N-00 CD CD CN O CN N- 00 03 N- rf CN in CD CD N- N- CN O CD CD CD M CD CD CD CD M CD CNCOCN

CN N N Tf O O CD Tj- O CD CN CN O CD CN CN O CD CD 00 O CD r- CO O CD T- CO 03O N* CO T— T- m CO O O 00 T—CD CO 0 cb in co in co 0 co co 00CD CN 0 cn in T-T- 00 O (N N O CN M O CN M O CN M 03

N CO Tj-in CD N TJ- O O CD N- 03 N’ O CO 03 CO CO N- O O CN g 03 O N- CO CO N 03 N O N- CN Tf N t CN O N- CN N- N (N 03m m 0 co co 00 m 0M 00 CD T- co T- N- 03 CN CN CN CN CD N CD 03 03 CO O CD 03 O CD CO CD 03 O CD 00 inCNCN

CN CO r- CN CO r- CN CO Tf T- CN CO N- T- CN CO Tf T- CN CO N- T- CN CO

rubbjo

rubbjo

rubbjo

rubb_lo 0 0 0 0

1 1 1 1 c c c cCO CD CO CT3> > > > cardjo

card Jo

cardjo

cardjo

cashjo

cashjo

cashjo

cashjo

chiljo

chiljo

chiljo

chiljo

citrjo

citrjo

citrjo

citrjo

coco_hi

coco_hi

coco_hi

coco_hi 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 cocnjo

cocn_lo

cocnjo

cocnjo

h2cof_hi

X X X X 1- H H 1- 2 Z Z Z

X X X X h h h H Z Z 2 2

>>->->- X X X Xco co co co>>->->- X X X X co co co co

> > >- > X X X Xco co co co>->>>- X X X Xco co co co

>>>->- X X X X co co co co>->->->- X X X X co co co co

>->->->- X X X Xco co co co SHY

Page 69: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

ING

SB

YR

MU

R

ATI

NG

S B

Y M

ED.

ENV.

TY

PE

R

ATI

NG

S B

Y R

MU

R

ATI

NG

S B

Y M

ED.

ENV.

TY

PE

CDCD

I f

03CD03

£

03CD

«1

03CD

«I2

03 w-

Q .

O

0S

6

0 0 0 9 5.

011

.8 0.0

83.1 0.0

23.4

14

6

59.0 0.0

30.3

58.3

10

.9 0.0

18 2

2.

9 73

.9 0.0

0.0

88.7

10

9

18 5

3.

0 20

.7

52.9

0.0

31.2

59

0

9.8

2.2

24.1

52

.4

16 4 0.0

26.1

60.1

483 0

9132 48

311

380

7994

022

5214

0756

72

029

1856

0610

46

017

5427

671

05

0 085

2410

46

1777

284

1992

5082

030

0356

73 939

208

2315

5038

1574

025

0557

80

0 96 0 9 0 0 0.

04.

820

.075

.2 0.0

28.3

22.7

49.0 0.0

34.7

55.5 9.7

0.0

13.7

10

.675

.7 o o in ino o O CO

co 15.1

13.7

24.8

46

.4 0.0

35.2

52.8

11

9

10.4

22.0

52.8

14.8

0.0

35.5

55.3

048

391

32

045

819

227

235 0

2722

2181

471

2 033

3953

39 937 0

1322

1019

7274

0 087

03 912

1448

1319

2384

446

4 033

8950

7911

47

1002

2112

5078

1423

034

1053

18

CN CO T f r- ( N CO ^ r- CN CO Tj- T- CNJ CO t T r- (N CO ^ T- ON CO Tj T- CM CO Tf T - cNj c o CN CO t T t" CM CO

h2co

f_h

ih2

cof_

hi

h2co

f_h

i

h2co

f_lo

h2co

f_lo

h2co

f_lo

h2co

f_lo

rcof

_hi

rcof

_hi

rcof

_hi

rcof

_hi

rco

fjo

rco

fjo

rcof

_lo

rcof

_lo

mai

z_h

im

aiz_

hi

mai

z_h

im

aiz_

hi

ma

ng

jom

an

gjo

ma

ng

jom

an

gjo

oilp

_hi

oilp

_hi

oilp

_hi

oilp

_hi

oilp

joo

ilpjo

oilp

joo

ilpjo

pe

pp

jop

ep

pjo

pe

pp

jop

ep

pjo

pin

ejo

pin

ejo

pin

ejo

NIR

NIR

NIR X X X X

X z z zX X X Xz z z z

X X X Xz z z z

X X X Xz z z z

X X X Xz z z z

X X X Xz z z z

X X X Xz z z z

X X X Xz z z z N

IRN

IRN

IR

0.8

0.3

86.2

12.7

13

8

2.5

71.0 0 0

0.2

25 9

65

.4 0.0

1.6

57.2

38.0 0.0

2.4

13 8

83

.8 0.0

0.0

72.2

25.0 2 1

0.6

11.1

78

.0 0.0

2.6

31.4

63

4 0.0

2.6

29 9

65

0 0.0

13.1

52

8

209 77

2208

9

3265

3528 63

918

208 0 51

6640

1676

8 040

814

657

9748

062

835

3521

477 0 0

1852

464

06 529

145

2838

1999

7 067

480

4216

250 0

674

7660

1665

7 033

5713

526

3.4

0.0

86.7 9 5

14 8

0.

0 75

.7 0 0

0.3

33.5

66

.2 0.0

1.8

52.4

45.9 0.0

2.9

13 0

84

.1 0.0

0.0

68.6

31.4 0.0

2.1

0.6

97.4 O CD CD CO

Ö C\l CO CO CNJ (D

0.0

2.6

27.1

70.3 0.0

9.2

55 8

867 0

2222

4

2444

3796

019

400 0

7285

9916

969 0

451

1342

911

760 0

744

3336

215

60

0 017

596

8044

052

914

524

966 0

674

7333

1763

3 067

469

4218

024 0

2360

1430

2

CNJ CO r f r - ( N CO TT t- CsJ CO Tj- t- CN CO Tt CNJ CO TT T - CM CO ^ r - CM CO NT T- CNJ CO Tt T- CN CO Tt r - CNI CO

h2co

f_hi

h2co

f_hi

h2co

f_hi

h2co

f_lo

h2co

f_lo

h2co

f_lo

h2co

f_lo

rcof

_hi

rcof

_hi

rcof

_hi

rcof

_hi

rco

fjo

rco

fjo

rco

fjo

rco

fjo

mai

z_hi

mai

z_hi

mai

z_hi

mai

z_hi

ma

ng

jom

an

gjo

ma

ng

jom

an

gjo

oilp

_hi

oilp

_hi

oil

pji

ioi

lp_h

i

oilp

joo

ilpjo

oilp

joo

ilpjo

pe

pp

jop

ep

pjo

pe

pp

jop

ep

pjo

pin

ejo

pin

ejo

pin

ejo

>- >- > X X X CO C/5 CO

> > - > - > X X X XCO CO CO CO

> > - > - > - X X X Xco co co co

X X X Xco co co co

> -> - > -> - X X X X CO CO CO CO

> - > > > - X X X X CO CO CO CO

> - > - > -> - X X X XCO CO CO CO

> -> -> -> - X X X XCO CO CO CO

> > - > > - X X X X co co co co

>- >- > X X XCO CO CO

Page 70: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

NG

S B

Y R

MU

R

AT

ING

S B

Y M

ED

. E

NV

. T

YP

E

RA

TIN

GS

BY

RM

U

RA

TIN

GS

BY

ME

D

EN

V.

TYP

E

03<DTO

SS

03 o o m o d o o m o c m c o m - 00 00 03 O 00 CO CN 03 c o r o c O M - o c o c O t-O O O Ö 03

N" inCD O 00 T- o CO CO CM

CM N CM CM IDT - T f CO 03

cn T - mr - 03 N o

cn m r - CMCDCOCD O O c n T fCM CM CM

° ^ s

« 1

CD 00 CN 0300 CO co in

in m cn h - co co CNJ co

O T f 03 N CO 03 CO CN CNJ O CN CN in

in T f 03 CN N co CO N T - CO CO CO

cn T - m

cn co co coN t OT— co m o

cn m T-

N- cn m tt NT m CD N (N co tt m

▼- m t-

O CN CNin 03

co03 CN T}- N- m T- co in co

CO

COCD

CN03

o o co r^O CO 00 00

^ Nj-

O O co CNd d n c\i

CN h -

O ^ co 03o r f ' 03 m

CN CN N-

co o in nCN CO T f 03

co in

O CN 03 00 O N O CN^ ^ CN TT O ^ CO in

cn m t— cn

O N fNo in 03 m

00T - CO

CO CO03 m

are

a

(km

2)

88

7 0

28

8

46

40

46

87 0 0

26

69

69

46 0

23

43

28

61

44

11

25

4

28

14

18

35

47

12

26

8

31

74

52

36

93

7

10

62

20

40

50

90

14

23 0

26

4

14

05

4

79

1 0

77

2

13

54

6

79

1

21

5

20

71

12

02

1

80

2

cro

p

su

ita

bil

ity

rati

ng T - CN CO N- •*- CN CO N- ^ CN CO N- CN CO Tt ▼" CN CO Tf T- CN CO T f CN CO Tf ^ CN CO T f t— CN CO tT

pin

e_

lc

po

ta_

h

po

ta_

h

po

ta_

h

po

ta_

h

py

rejc

py

rejc

py

re_

lc

py

re_

lc

ric

e_

hi

ric

e_

hi

ric

e_

hi

ric

e_

hi

rub

b_

hi

rub

b_

hi

rub

b_

hi

rub

b_

hi

rub

bjo

rub

b_

lo

rub

b_

lo

rub

bjo o o o o

t i l l c c c cTO TO TO TO > > > > c

ard

jo

ca

rdjo

ca

rdjo

ca

rdjo

ca

sh

jo

ca

sh

jo

ca

sh

jo

ca

sh

jo O O ° oI I I I “ — m “

pro

vin

ce

NIR

NIR

NIR

NIR

NIR IT cn CC DC

z z z z NIR

NIR

NIR

NIR IX DC CC DC

NIR

NIR

NIR

NIR DC DC DC DC

z z z zcn co co co z z z zLU LU LU LU

CO CO CO 00z z z zLU LU LU UJ

CD CD CO COz z z zLU LU UJ LU

0303

£

O CO T- CO O CN CN CO

T- cn in

O N" N" T—O T - co h -

m co

O N- T - CN o T- in m

T- CNJ m

O O T - T to co o m

CN CO

o co in oO CO CN CO

in co

O CO 03 o o cn 03 m

CN CO

O CO CO T- O CO TT cn

co m

O O CN T -O O 03 CN

co m

o o m coO -r- CO CO

co in

CO fTT" CO O CO N Tf 03 CO 03 CD Nto c o cn co m

co co in Tt

O 03 CN CO CO N CNco tj- in

N- 03

o r f in o cn co m03 T f t— CN CO N"

O •»— O 00 CO CO CO in T- m co

O CO 03 00o in Tj-CO ^ N

CO 03

N- O C-n io mCO CO CO

r - co

co m nCO 03 co

o o co r ~ N- co co * -N- CO

o (N T f N CN CO CN T - 03 N

co co

03CD

£

omCO

o o co mO CO T t CN

T - co m

O CO CN CNO h - T - ^r-

m N-

O Nf CO oO h - O CN

N" m

o co in cn

O CO N CO CN CO

O 00 CO 03o co n m

N- Tf

O CO r - CO O CN N O

CN h -

O CO CO o O -r- T - N

T - co in

O O 03 o o ^ T- r -

N" in

o m n co o o r^-

co co

to ^ oo o T - m T f cd to cn co mTO t 03 co 00 N-U 00 CO 00 CO

o co m 03 T f CN CO 03 m^ co o

O 00 CO 03 CN Tj- CO CO O 03T - co

o in in oN f CO CON T - N r - CN r -

O t T CN T f N ^ CN CO 03 o

CO 00

O CN CO T tN- N- mCO N N

co co

O 03 CO N - co m03 N N- CO

O h - 03 co N CO CN r- (D O

CO QO

0?

5 ' raTO k-

1

CN CO Tj- ^ CN CO Tj- ’» - C N C O tJ- CN CO T f

0

1

sz .c x: x:I I I I

ro ro oj roo o o oCL Q . Q . Q .

o o o o

d)1 0)1 (U1l— k_ k_ l_ > >> >> > Q- CL Q . CL

sz sz jz sz I I I I

CD CD CD (D O O O O

'k_ k_ i_

£ £ £ £I I I I

-Q -O -Q JD -Q JO n JOE S E E

.9 .Q . 2 . 2 ° ° ° j9 .9 _o .o .o

E E E S > > > > S S S S

o o o oI I I I

£ £ £ £ < /)< / )< / )< / ) TO TO TO TO U CJ O O

O O o ot i l l “ ” “ “

€ 6 - 8 $

1 >XCO

> - > - > > X X X X00 CO CO CO

> - > - > > - X X X XCO CO CO CO

> > - > - > X X X XCO CO CO CO

> - >■ > > X X X XCO CO CO CO

> - > - > -X X XCO CO CO

>- >X X

co co co co

0 0 0 0 Z Z Z Z LU UJ UJ LU

>-X

>-X

0 0 0 0z z z zLU UJ LU 111

0 0 0 0z z z zLU LU LU LU

Page 71: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

LUCL

ME

D.

EN

V. T

% a

rea

4.0

15

.9

76

.0 4.1

0.2

15.1

39

.24

5.2 CN TT CD in

o cn t- co(N ^ CD m o CD T- CO 3

.2 0.0 0.0

96

.8 c n co o in co in o T-

T- co

0.0

15

.44

3.5

4

0.8 0.4

13

.97

5.7

4.1

0.0

2.9

6.1

88

.6 0.5

1.8

TIN

GS

BY

a

rea

(k

m2

)

60

22

40

81

14

85

61

4 25

22

76

59

30

68

27 30

29

28

10

81

61

28

4 302

92

81

08

16

12

84

48

0 0 01

46

29

48

02

30

9 01

23

20 0

2331

65

70

61

57 55

21

03

11

43

46

14 0

43

79

29

13

38

3 70

27

9

RM

U

RA

%a

rea

5.0

17

.37

2.5 5.2 1.2

13

.83

9.4

45

.6 1.2

18

.970

.1 9.7 2.5

17

.770

.1 9.7 o CD co cn

d cm ö to cn

0.0

2.8

15

.68

1.6 1.7

13

.44

3.4

41

.5 5.3

15

.67

3.6

5

.6

0.5

2.7

9.7

8

7.0

9 >

S

O

TIN

GS

BY

a

rea

(k

m2

)

75

52

61

31

09

50

791

17

82

07

85

95

86

89

5

18

328

611

05

98

14

67

37

326

71

10

59

81

46

7 04

33 42

14

63

4 04

27

23

57

12

32

5

26

22

02

46

55

16

27

2

79

923

51

11

11

58

44 79

41

51

46

71

31

48 70

70

2

£

2? g 1 T- (N CO ^ T- c\j or T- CNJ CO Tj- T- cm co t— CN CO Tf ■<— cm co T- CM CO 'p- CN CO r f ■<- CM CO T CN

5 '■«03 i-

1

h2

co

fJo

h2

co

fJo

h2

co

fJo

h2

co

fJo o o o o

o o o o o o o ocr

op

cit

rjo

cit

rjo

cit

rjo

cit

rjo

co

co_

hi

coco

_h

ic

oco

_h

ico

coJV

i

co

co

joc

oc

ojo

co

co

joc

oc

ojo

o o o oI I I I c c c c

o o o o o o o o o o o o h

2co

f_h

ih

2co

f_h

ih

2co

f_h

ih

2co

f_h

i

rco

f_h

rco

f_h

rco

f_h

rco

f_h

ma

iz_

hm

aiz

_h

ma

iz_

hm

aiz

_h

ma

ng

jcm

an

gjc

pro

vin

ce

CO CO CO CO -Z.-Z.-Z.-Z. LU LU LU LU

CO CO CO CDz z z zUJ LU LU LU

CO CO CO CQz z z zLU LU LU LU

CO CO CO COz z z zLU LU UJ LU

CO CO CO COz z z zLU LU LU LU

CO CO CD CO Z Z Z Z UJ LU LU LU

CD CO CD CO Z Z Z Z LU LU UJ LU

CO CO CQ COz z z zLU LU LU LU

CO CO CO COz z z zLU LU LU LU E

NB

EN

B

LUCL

J?LU

0.0

2.4

42

.54

9.6

0 66

0 0

SO

9 0

CD CD xf CD O r - CO O

O)

O O Tf CD O T- CO O

03

3.3

6.5 1.0

89

.3 3.3

29.1 0.0

66

.6 O O CO h" O r - CO If)

cn0

.0 1.0

30

.06

2.5 o cn c d

o T- cn mCD

o o o o

QLU2

TIN

GS

BY

a

rea

(k

m2

) 02

83

50

37

58

78 68 540

11

71

7 012

29

94

10

72

3 012

29

94

10

72

3

38

67

64

120

10

56

9

38

63

44

5 07

88

8 012

23

86

1133

1 012

23

55

57

39

4 02

29

28

911

321 o o

J R

A%

are

a

0.0

12

8

34

.5

52

.7

0 66

0 0 S

O

9 0

o o m m o <<- T-

(7>

0.0 1.0

7.5

91

.5

11

.8

2.8 0.0

85

.4

11

.81

7.9

0.7

69

.7 O O 00 CNo T- T-

T- CO

0.0

2

2 2

3.7

74

.1 0.0 1.9

4.0

94.1 o o

O T-

riN

GS

BY

RM

l a

rea

(k

m2

) 01

51

740

81

624

1 68 540

11

71

7 012

28

86

1083

1 012

28

86

108

31

13

92

33

7 01

01

10

13

92

21

19 81

82

47 0

122

13

92

10

32

5 02

58

28

08

87

73 0

22

94

72

11

13

8 01

19

s. 2 r o> t- C\j CO TJ- i - cm n ' f T- (M Cl Tf T- CN CO Tf i - CM CO t— CM CO M* t— CM CO T- CN CO Tf T- CN CO ^ T- CN

5 '•a

1

h2

co

fJo

h2

co

fJo

h2

co

fJo

h2

cof_

lo

rco

fjo

rco

fjo

rco

fjo

rco

fjo

ma

ng

jom

an

gjo

cro

p

cit

rjo

cit

rjo

cit

rjo

cit

rjo

coco

_h

ico

co_

hi

coco

_h

ico

co_

hi 0 O O O

0 1 o 1 o ' o ' o o o o o o o o o o o o c

oc

njo

co

cn

joco

cn_

loc

oc

njo

h2

cof_

hi

h2

cof_

hi

h2

cof_

hi

h2

cof_

hi

rco

f_h

rco

f_h

rco

f_h

rco

f_h

ma

iz_

hm

aiz

_h

ma

iz_

hm

aiz

_h

O.E>

CD CD CD CDz z z zLU LU LU LU

CD CD CD CD Z Z Z Z LU LU LU LU

CD CD CD CDz z z zLU LU LU LU

CD CD CD CD Z Z Z Z LU LU LU LU

CD CD CD CD Z Z Z Z LU LU LU LU

CD CD CD CD Z Z Z Z LU LU LU LU

CD CD CD CD Z Z Z Z LU LU LU LU

CD CD CD CD Z Z Z Z LU LU LU LU

CD CD CD CD z z z zLU UJ LU LU E

NG

EN

G

Page 72: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

RA

TIN

GS

BY

RM

U

RA

TIN

GS

BY

ME

D

EN

V T

YP

E

RA

TIN

GS

BY

RM

U

RA

TIN

GS

BY

MED

. EN

V. T

YP

E:D

. EN

V. T

%

are

a

89.7 4.1

4.8

12.5

40.6

41.7 2.6

18 9

73

.2

5 1

0.2

18.9

72.0 8.5

0.2

16.0

79.5 4.0

0.0

0.0

58.9

40.8 0.0

0.0

38.9

61.1 0 2

9.0

47.3

37.3 0.0

15.4

43.5

40

.8 0.0

19 9

75

.7

4 1

co 2? p CD ro 2 w 1-

1355

261

4

723

1888

6140

6307 38

928

4911

056

764 30

2858

1088

612

84 3024

1912

009

600 0 0

8901

6157 0 0

5876

9233 30

1365

7141

5637 0

2331

6570

6157 0

3010

1143

461

4

CO0)CO 89

.7 5.2

5.4

11.5 0.0

83.1 2.5

19.5

72.0 6.0

2.5

17.2

70.6 9.7

2.1

13.9

78.7 5.3

0.0

0.0

58.8

41.2 0.0

0.0

38.9

61.1 1.9

11.2

49.4

37.5 0.0

15.1

43.4

41.5 0.0

20.8

73.6 5.6

TIN

GS

BY

Rr

area

(k

m2)

1354

679

1

816

1737 0

1255

6

382

2952

1087

490

1

373

2601

1066

814

67 324

2103

1188

879

4 0 088

7962

30 0 058

7192

38 292

1692

7461

5664 0

2286

6551

6272 0

3150

1111

584

4

RA

suita

bilit

yra

ting CO ^ T - ( \J CO T t r - CNJ CO T f t - CM CO T f t— c n n r - CN CO T t T - <n n T t T - c n n T f T - c n m n - r - ( M n ■ 'f

crop

ma

ng

jom

ang_

lo

oilp

_hi

oilp

_hi

oilp

_hi

oilp

_hi

oilp

joo

ilpjo

oilp

joo

ilpjo

pe

pp

jop

ep

pjo

pe

pp

jop

ep

pjo

pin

ejo

pin

ejo

pin

ejo

pin

ejo

po

tajii

po

taji

pota

_hpo

ta_h

i

pyre

Jo

pyre

_lc

pyr

ejo

p

yre

jo

rice_

hiric

e_hi

rice_

hiric

e_hi

rub

bjii

rub

bjii

rubb

_hi

rub

bjii

rub

bjo

rub

bjo

rub

bjo

rub

bjo

8.E E

NB

EN

B CD CQ CO COz z z zLU LU LU LU

CO CO CO CQz z z zLU LU LU LU

CO CO CO CQz z z zLU LU LU LU

CO CQ CQ COz z z zLU LU LU LU

CO CQ CQ CQz z z zLU LU UJ LU

CO CQ CQ COz z z zLU LU LU LU

CO CO CQ CQz z z zLU LU LU LU

CQ CQ CQ CQz z z zLU LU LU LU

CQ CQ CO COz z z zLU LU LU LU

LUCL

> 5LU 03

CN T- cd m o o o o o o O O TT CD ° N- T- f^ O T- 03 CO o ▼- co o 03 T- CN O O CO P- o o o mcn cn co m o o o a

o T- CO 03 O T- CO O 03 Ö CN CO COrr m

O Tf' CO T— CO CD o N- in xj- o r- 00 03co m CD y - C l in03 o r- O CN CO CDQuu

CD r~- rj- CD CO O-

cd mo r - o CN N O (N ^ N

O CN tT CO CN 03 CNO CO N 03co o m 0

481 co in

T- ino

481 Tt CN03 m

o 03 m m CN T- o O CN CD CN 00 CO o c n m tj- CN in 03

C/5 >- £cd ro z

CD T- TT CD r^ T- 03 g T- O) g CN T- COm cd O CN

TT 1^COCO T- cn m o

N- r-T- CO CO r- m (O

co r-

0?

TOO)TO

03 O cd m o o o CD y - CD o o m m O N- CO CO h- m o N- r- m o 03 00 CN O O co CN o CN N r-

S £ o o o 03 o y - h- T - 03O h- T -

03 O CN CO CO CO CD O h- CN 03co m o CO rrm co o T- 03 CO CN CDCD T - y -

£ o CN (O rtCN 1

CD ^cd m 68 54 0 17 O CN 0 3 0 0

CN CO NO CN CD T-

CN CO COO CO CN TJ-

co o min CN CN o

T - Tj-

087

268

8140

86

O 0 3 O O CN CO OO

O CN CN i n CN 0 3 CN

o c o c o CO m o h -

C0 TO ^CDz1-

03 h- N- CDT - CO g t— CO g cn o m

N- r-03 CO O CO h- cn m o

co cot— CO g CN CD N

CN 0 0

RA

abili

tyra

ting co r- CN CO tT T - CN CO N - r - CN CO T t T- CN CO TT T - CN CO N - T- CN CO N - CN CO T f T - CN CO T f r- (N CO Tf

crop

ma

ng

jom

an

gjo

oilp

jiio

ilpjii

oilp

_hi

oilp

_hi

oilp

joo

ilpjo

oilp

joo

ilpjo

pe

pp

jop

ep

pjo

pe

pp

jop

ep

pjo

pin

ejo

pin

ejo

pin

ejo

pin

ejo

pota

_hi

pota

_hi

po

tajii

pota

_hi

pyre

_lo

pyr

ejo

pyre

_lo

pyr

ejo

rice_

hiric

e_hi

rice_

hiric

e_hi

rubb

_hi

rubb

_hi

rubb

_hi

rubb

_hi

rub

bjo

rub

bjo

rub

bjo

rub

bjo

prov

ince

EN

GE

NG O CD CD O

z z z zLU LU LU LU

O O Ü Üz z z zLU LU LU LU

Ü Ü O Ü z z z zLU LU LU LU

ü ü ü ü z z z zLU LU LU LU

O CD CD CDz z z zLU LU LU LU

O CD CD CDz z z zLU LU LU LU

CD CD CD CDz z z zLU LU LU LU

CD CD CD CDz z z zLU LU U J LU

CD CD CD CDz z z zLU LU U J LU

Page 73: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

LUCL

§ 1

CNO 7

.3

M.6 CD

0 0

CS

I

ec

?

0 0

0 0

o o c o c oÖ CD CN CD

O CO N CO O CD CD CD

11

.9

34

.2

38

.7

15

3

3

5

19

0

12

8

54

.9

0 0

37

.9

37

.9

16

0

OLU

> -

“ S § gCD CD

SO O T - CN

CO CDO O Tr- CN

CO CDO N CD (N

N CD CDCO CO N CN CD CD O CD

T f (N O N CN CN T f CD

O CD CD O CO T f CNCO i - p

O ro - 5 z " "

CN o t-h - c o

O T -c o

CO N r -c o CO CO

T f O O T -CN N CO CO

N (D CD CO CO CN T—

0O 00 CO r - h - c o

2

Z>

DC>c o

c oOz

£

03CD

i o t- h - C\J N O (D

T -

O CD O T - O ▼— CO U")

CO T -

o i n t j- t-

o o c o 1 0

CN T f CD T f O CD CD (D

O CO CD T - l f ) O O ) ID

T f CO T -

N T - 0 0 T fcn r - cn h -

CN LO

CN T f ID CD O ( \ i r - IO

T f T f t-

ID CD CO N O CO CD CD T f CD CD T f

CN O T -

O CN CD CD O CD CN

c o

CD CO CO T f T f O ID CD

T f 0 0 CO CO CO CO

0 0 CD CO CD CO CO CD CN O CO T - T - T - CO c o c o

T f r - (N O ) CD T - T f CO CD CD CD 0 0

CD CN -r-

N - CN O N- CO N CD CD

h - CD CN 0 0 0 0 CO

t g>

ca

1

CN CO T f r - (N CO tJ- T - i >4 r ; t j -

O CD CD O O N N CD

CO CO T -

O O (D T -O O O CD O

CD

O CD CD O CO TJ- CNCO 00 c o

Is- c o

CDCN

CD CD CD O ▼“* ▼— CD

T f T f y-

O CN O CO OO O O (D O

CD

CD O N T f CD CD CD ▼- CD CD CN

0 0 0 0 CO

o c d o r*"-CO cd

oCN

o

o o o o 1 1 1 1

ca

rd

jo

ca

rd_

lo

ca

rd_

lo

ca

rd

jo

ca

sh

jo

ca

sh

jo

ca

sh

jo

ca

sh

jo

O O o o 1 1 1 1

cit

rjo

cit

r_lo

cit

rjo

cit

rjo £ £ £ £

1 1 1 1o o o o

1 1 1 1 o o o o<J O O CJo o o o o o o o c

oc

njo

co

cn

jo

co

cn

jo

co

cn

jo £ r £ £ v j

h2

co

f_lo

va

ni

va

m

va

m

va

m

- 5 - 5 - 5

o o o o o o u o o o o o CJ o o o

o o o o O ( J o o

CN CN CN CN i : r r r

CQ CD CD CDz z z zLU LU LU LU

CD CD CD CDz z z z

§ § § §

CD CD CD COz z z z

5 5 5 5 WN

BW

NB

WN

BW

NB

WN

BW

NB

WN

BW

NB

WN

BW

NB

WN

BW

NB CO CG CD CD

z z z z

§ § § §

CD CD CD CDz z z z

§ 5 § 5 WN

BW

NB

WN

BW

NB

WN

B

U JCL> -

>CD

C002

1

O O N- CDO t - CO o

CD

CN CD N CD O CO CD CD

CD T -

O O 0 0 CD O O T f CD

CN T f CO CN CD CN

(D N

CO (D N T - T t CO

CO 0 0 T f CD "*—

O O CNLDCDCD

QO

03CD

O O CD CDo ■»— ■»—

CD

CD T- co •*— O O N CN

CO T f CN

O 1 ^ T - O CD (N

h - CN

3

DC

f f l J ^

0

12

2

88

6

10

83

1 r - o N CD O T f T f CDT f 0 0 O CD ID N CD

CO ro ü “

CD CN CD t- CDCN T f T— CD ▼—

Z

£

£ ?

5 co03

1

CN CO T f T - CN CO T f t- CN CO T f

0 0

7 4

35

.3

33

9

0

0

20

8

48

4

16

0

2

2

1 4

3

1

83

2

0

0

3 6

17

4

78

0

0 0

3

6

17

4

78

0

15

8

9

8

0.0

70

4

15

2

O N ID T f CD T f T-

O CD CD CD T f O CN

CN 00 CO 00 CD CN f - (D

O O CD COCN T f T f

O O CD c oCN T f Tf

CD o o u o O h - CD ID

CD ■»— O CO CO

0 0 CO T f T - ^ CN CO CO ID CD CD

CO ID CD T - CD

T f CO CNT - CD

CO

O •*— h - CN O CO T— CD CN CD CD O O T - 0 0 T - O T - 0 0 T - o r - o CN T fO T f r o (N

T f TfO CD CO O

CO T f CNCN r - c o N

c oO T f tD 0 3 O T f CD CD CD 0 0 O CD

CN CDCOCN

O CD CD CN CD 0 0 CD

O O CN CD CO CO CO

CN CN TP- CN CD N CD T f

O T f (O NCD CD CO

o T f cd r -CD CD CO

CD N O T fCN h - CD §

CN CO N T - CO CO

CN 00 GO CO CO r -

▼- T - CO T f o CO T f o CN N 00CN ID

T— CN CO Tf r - CN CO T f r - (N CO T f (N CO T f — CN CO T f T - CN CO T f

va

nij

o

va

nij

o

va

nij

o

va

nij

o

ca

rd

jo

ca

rd_

lo

ca

rd

jo

ca

rd

jo

ca

sh

jo

ca

sh

jo

ca

sh

jo

ca

sh

jo

ch

iljo

ch

iljo

ch

iljo

ch

il_

lo

cit

rjo

cit

rjo

cit

rjo

cit

rjo

co

co

_h

i

CO

CO

jll

co

co

_h

i

co

co

_h

i o o o o I I I I

o o o o o o u o o o o o o o o o

o o o oI I I I

c c c co u o oo o o oO O <J o h

2c

of_

hi

h2

co

f_h

i

h2

co

f_h

i

h2

co

f_h

i

O O O 0z z z zLU LU LU LU W

HY

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

WH

Y

O

- Io

CN

Page 74: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

NG

S BY

RM

U R

ATI

NG

S BY

MED

. EN

V. T

YPE

R

ATI

NG

S BY

RM

U

RA

TIN

GS

BY M

ED

ENV.

TYP

EED

EN

V.

% a

rea

8.7

0.0

91.1 0.0

16 3

27

.2

54.8

C 91s es9 09 0 0 0.

08.

013

.870

.1 O O C O CO

O O CM 10 C O T- 8

2 14

6

23 6

49

6 0.0

38 2

48.7

10.7 0.0

37.9

37

9

16.0 0.0

16 4

71

.6

10.3 0.0

0.0

42.8

TIN

GS

BY M

! ar

ea

(km

2)

1810 0

1885

7 033

7756

2011

338 0

6330

1106

931

62 016

5628

6014

498 0 0

1703

131

62

1703

3019

4878

1026

3 079

0010

078

2211 0

7839

7849

3320 0

3391

1482

321

27 0 088

55

MU

Rfi

%ar

ea 0.1

8.7

91.2 0.0

16.7

26.1

57.3 0.2

30.2

54

315

.3 0.0

15.6

10.8

73.5 0.0

0.5

84.4

15.1

12.3

18.3

18

7

50.7 0.4

43.1

46.1

10

.4 0.7

41.9

41

.515

.9 O C O T - ^

0 co cd in ■«- co T- 0.

00.

042

.9

STIN

GS

BY R

l ar

ea

(km

2) 2918

0018

867 0

3449

5397

1185

0 4962

5311

237

3157 0

3236

2240

1522

0 010

217

465

3129

2551

3782

3871

1049

2 7489

2795

3521

60 144

8665

8590

3297 0

3475

1409

431

27 0 0

coco

R;>

suita

bilit

yra

ting CM CO T j- T - CM CO r - ( \ J CO ^ r - CM C O T T r - (M C O T f *— O J CO T - CM C O t T r - CM CO t T CM C O T f r - CM C O

crop

h2co

f_lc

h2co

f_lc

h2co

f_lc

rcof

_hrc

of_h

irc

of_h

rcof

_h

rcof

jcrc

of_l

crc

ofjc

rcof

jc

mai

z_h

mai

z_h

mai

z_hi

mai

z_h

man

gjo

man

gjo

man

gjo

man

gjo - C - C s z s z

I I I I Q- Q-0 0 0 0 oi

lpjo

oilp

jooi

lpjo

oilp

jo

pepp

jope

ppjo

pepp

jope

ppjo

pine

jopi

nejo

pine

jopi

nejo

pota

_hi

pota

_hi

pota

_hi

prov

ince

WN

BW

NB

WN

B

WN

BW

NB

WN

BW

NB

WN

BW

NB

WN

BW

NB

WN

BW

NB

WN

BW

NB

WN

BW

NB

WN

BW

NB

WN

BW

NB

WN

BW

NB

WN

BW

NB

WN

BW

NB

WN

BW

NB

WN

BW

NB

WN

BW

NB

WN

BW

NB

WN

BW

NB

WN

B

TIN

GS

BY M

ED.

ENV.

TY

PE

area

%

are

a(k

m2)

2899

32

610

80

12 1

3211

36

1

0 0

044

3 5.

015

56

17 5

5636

63

3

0 00

44

3 5 0

4924

55

328

84

32 4

0 0

0 45

1 5.

177

2 8.

776

74

86.3

00

0

0 0.

066

52

74 8

1481

16

6

257

2 912

8 1.

420

8 2 3

7398

83

2

0 0

038

5 4

313

82

15.5

7045

79

2

0 0

032

0 3.

615

49

17.4

6943

78

0

0 0

0 66

7 7.

537

50

42.1

2959

33

.3

0 0.

096

6 10

922

89

25.7

<5.tr

TOCDTO55

D

35 8

0

0 40

8 0 0

5.7

32 3

62

0 0.0

12.1

40.1

47.8 0 0

5.1

12.1

82

.9 0.0

1.7

76.1

22.1 2 9

1.9

8.2

87 0 O CO N I D

O ^ Oy— CO

O T - CO T -

O T f ( O ( J ) 0.0

14.2

45.1

40.7 0.0

15.5

38

6

TIN

GS

BY R

M

area

(k

m2)

3183 0

3634 0

510

2871

5516 0

1075

3572

4250 0

451

1073

7373 0

154

6774

1969 257

172

726

7742 0

429

1308

7160 0

364

1496

7037 0

1266

4013

3618 0

1378

3438

RA'

1 su

itabi

lity

ratin

g CM C O T T r - C \J C O ^ r - CM C O T t r- C M C O ^ CM C O T - CM CO T J T - CM CO T - CM C O ^ T - CM C O T t T- CM C O

crop

h2co

f_lc

h2co

f_lc

h2co

f_lc

rcof

_hi

rcof

_hi

rcof

_hrc

of_h

O O O O

O O O OO O O O

mai

z_hi

mai

z_hi

mai

z_hi

mai

z_hi

man

gjo

man

gjo

man

gjo

man

gjo

oilp

_hi

oilp

_hi

oilp

_hi

oilp

_hi

oilp

jooi

lpjo

oilp

jooi

lpjo

pepp

_lo

pepp

_lo

pepp

jope

ppjo O O O O

I I I I0) <D 0) (D c c c cQ_ CL CL CL po

ta_h

ipo

ta_h

ipo

ta_h

i

0.E§ W

HY

WH

YW

HY

WH

YW

HY

WH

YW

HY

WH

YW

HY

WH

YW

HY

WH

YW

HY

WH

YW

HY

WH

YW

HY

WH

YW

HY

WH

YW

HY

WH

YW

HY

WH

YW

HY

WH

YW

HY

WH

YW

HY

WH

YW

HY

WH

YW

HY

WH

YW

HY

WH

YW

HY

WH

Y

Page 75: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

RAT

ING

S B

Y R

MU

R

ATIN

GS

BY

MED

. EN

V. T

YPE

RAT

ING

S B

Y R

MU

R

ATIN

GS

BY

MED

. EN

V. T

YPE

030303 5

4.2

S 6

8

S O

l

0 0

00

0.0

17

.4

28

.4

48

.8

0.0

22

.4

12

.9

54

.8

0.0

37

.9

38

1

15

.3

£

are

a

(km

2)

11

20

9 0 0

21

78

18

51

8 0

35

98

58

83

10

09

5 0

46

46

26

69

11

33

8 0

78

39

78

78

31

62

%a

rea

57

.1

0.0

0.0

10

.5

89

.5

0.0

26

.3

23

4

50

.3

0.0

29

.8

13

0

57

.3

0.0

44

.4

40

.3

15

.3

are

a

(km

2)

11

82

2 0 0

21

68

18

52

8 0

54

39

48

37

10

42

0 0

61

65

26

81

11

85

0 0

91

90

83

49

31

57

> , o i *— CN CO TT ▼- CN CO TJ- T— CN CO T- CN CO T f

5 'TS .■2 L-

3

py

rejo

py

rejo

py

rejo

py

rejo

rub

bjo

rub

bjo

rub

bjo

rub

bjo

cro

p

5Q. ri

ce

_h

i

ric

e_

hi

ric

e_

hi

ric

e_

hi

rub

b_

hi

rub

b_

hi

rub

b_

hi

rub

b_

hi

O CO m co co co co co co co CO CO CO CO CD CD CO CD

.E> § §§55 § § § § § § § § § § § §

Q.

0.0

37

.9

37

.9

16

0

0.0

2.9

78

.2

8.0

0 8

L 9

8

0 0

0 0

0.0

29

.9

54

.6

13

.1

0.0

52

.2

25

.5

8.0

0 0 ) 0 ) 0 CO TJ- CN

O N ( \ ^ CD O) TT

O O 1 - T fcn n -

O O) CN CD 00 03 CN

O N- CD N-00 CO CO h - CO

CN 04 N 03 r - N O CN CN m r - 0O CO N

N- CN

N 03 in O) O C l N O O CD M- CO TT 0O CD m co N tj-Ö T - <r- LO

r r T f T-O O CN CD Ö O CO CD

COm N co co

T- m cd T f Ö CD^ CO T -

T f i n o NTT CD 03 03

O in CN CN T- CO CO

O O h - CN 03 CO

tT 03 T f CN 03 T - CO CO

CN N CO CNT- CD m c\j

00 00 COo N m— CD ^—

h - m N- CD N- Is-in T -

N r - CO m CN ■*—

V- CN CO Tr T - CN CO N- T - CN CO T t T - CN CO TT T“ CN CO T f

o o o o o o o o o o o o O O O O o o o oI I I I I I 1 1

TD TD TD TD1 1 1 1 — I _ l _ l _ l J J J J

va

r

va

r

va

r

va

r

03 03 CD 03 O O O CJ

( / ) ( / ) C/3 (/)CD CD CD (DO O O O

r r r rO O CJ o 0 ö ö ö

CD CD CD C0 —J _J _J _J _1 _I _I _1 _I _I _I _I _1 _1 _I _I

§ § § §- Z . - Z . - Z . - Z . Z . Z . Z . Z . Z . Z . Z Z . Z . - Z Z . Z .

% a

rea

35

.5 oo 7

.1

42

.6

32

.5

0.0

6.4

25

.7

33

.7

0.0

5.0

17

.5

63

.3

0.0

5.0

55

.3

32

.4

0.0

3.6

17

.4

78

.0

2.2

20

.9

55

.2

16

8 O Tj- CD COO T - X- cd

CO T-

oo 3

.1

69

.5

22

.5

0.0

10

.0

73

.2

16

.8

so 03 00 CN

CN CO 03o in co CN

CD co oO CO CD CD

N- in coO CO N- N-

N- CN 00O O 03 CO

CN N- N-•*- co co T- CD in CN ^

0

86

25

11

o N- tj- in co oo in

° O T - T-

ra | coCD N CO

CO CNin CN o

CN CON- in CD

T - inN- 03 CO

N" CNCO in 03

r - CDT- CN CO O

T - CO T-03 O T- T— CO

N" T—( O ^ O

s03 o in N 03 o T - in tj- o co o O 1 - r - 00 O t- 00 ■<- CN m co o O tJ- CD O o T - 03 03 o h - n - o

CD£

in ö in co o in N"

O CD CO O >r- T f TT

O in CN CN CO CD

O CN O NT t T t

O ^ CD 03 T - r ^

CN CD NCO TT T -

O in N N o in CN T -in Tr

O N O N

40

81 o CD cd in

OO N COo in N in

CO CD 03

0

51

0

28

71

55

16 o in CN o

inO TJ- CD N

CD 03 CO▼“ O O T— CO CO 03 CN

o in cd ^CN N CN

o O CD CD T- CO CN

O T}- N- •r-ID CO CN

« 1T f N CD

Tj- CON- co m T - co co

o in CNT— CO N"

CO TT O T- o oCN CN ■<—

CO CD O co T- in CO CN

h - CN O

t c 5 cS § ^

CN CO N- T - CNJ CO T f ^ (N (O T - CN CO T j

o

o o o o I I I I

J) J) J) J) > , > , > > > > Q. Q. Q. Q.

SZ SZ SZ SZI I I I

0 <D <D <D O O O O

r r r j:I I I I

X I X I X I X I X I X I X I X I 3 3 3 3

O O O O O O O OI I I I _I _I ,_l ,_l I I I I

-Q -Q -Q -Q r— (— f— r— "O "O “O “O^ cd cd cd cd cd cd cd> > > > o o o o

o o o oI I I I

SZ -C JZ -C ( / ) ( / ) ( / ) ( / ) CD CD CD CD O O O O

O O o oI I I I “

o o o o

O O o o

■s ' - s ' i ' b

>-X

> - > - > - > - X X X X

>->■>->■ X X X X

> > > - > - X X X X

> - > > - > - X X X X

> - > > - > - X X X X

£ 5 § § § § § § § § § § § § § § §

1 1 1 1C/3 </) CO CO

1 1 1 1CO CO CO CO

1 1 1 1CO CO CO CO

1 1 1 1CO CO CO CO

Page 76: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

RA

TIN

GS

BY

RM

U

RA

TIN

GS

BY

ME

D.

ENV.

TY

PE

R

ATI

NG

S B

Y R

MU

R

ATI

NG

S B

Y M

ED.

ENV.

TY

PE

03<D03

« I

03<D03

a?

re J

03 v—

Q .

O

03<D

03<D

ra J

i * ?S 'ra -2 ^

Q.O

0.0

27.5

33.3

21.7 0.0

50.4

24.8

13.3 o o o r-

O O O CO CD 0.0

50.4

24.8

13.3 o o o r-

o o O 00 CDO CO O O) O 00 O CD CO 0.

026

.614

.259

.2 O O N- o d o in oo 00 0.

026

.614

.259

.2 o o d d

025

6731

0220

27 047

0023

1212

38 0 0 092

07 047

0023

1212

38 0 0 092

07 082

1 083

86 024

8013

2255

27 0 079

91 744 0

2480

1322

5527 o o

12.4

14.4

43

.9

29.3 5.3

48.4

25

.920

.5 5.4

46.5

27

.720

.5

6 86 0 0 V

I 0 0 0.

01.

111

.287

.7 6.4

14.6

50.7

28

.2 9.9

43.5

30.2

16.4 5.3

14.0

15.5

65.3 O O CD

d d ro cci00 T- 23 4

7.

3

1153

1344

4098

2734 494

4514

2413

1908 501

4335

2585

1908 0

100 0

9229 0

100

1045

8184 59

513

6647

3426

34 923

4054

2820

1532 492

1305

1443

6089 0 0

7797

1532

2185 68

5

T- CNJ CO Tt

coco

jo

1co

cojo

2

coco

jo

3co

cojo

4 CM CO ^ r- CN CO Tf r- (N CO ^ T- CN CO r- CM CO ^ CVJ CO Tf" T- (N CO T- CN

coco

_hco

co_h

coco

_hco

co_h

cocn

jcco

cnjc

cocn

jcco

cnjc

h2co

f_h

h2co

f_h

h2co

f_h

h2co

f_hi

h2

cofjo

h2co

f_lo

h2co

f_lo

h2co

f_lo

rcof

_hi

rcof

_hi

rcof

_hi

rcof

_hi o o o o

« J .J .J .Jo o o o u o o o

ma

izjii

mai

z_hi

mai

z_hi

mai

z_hi

ma

ng

jom

an

gjo

ma

ng

jom

an

gjo

oilp

_hi

oilp

jii

__i _i _i _iCO CO CO COZ Z Z Z

_I _I _I _ICO CO CO CO2 Z 2 2

_i _i _i _iCO CO CO CO2 2 2 Z

_i _i _i __iCO CO CO CO2 2 2 2

—i —i __i __iCO CO CO CO2 Z 2 2 N

SL

NS

LN

SL

NS

L —I —I __I __ICO CO CO CO2 2 2 2

__i __i __i __ico co co co2 2 2 2

—i —i __i —ico co co co2 2 2 2 N

SL

NS

L

o o n-O O 00 T-

T- 00 0.0

1.4

31.7

66.2 0.0

1.4

31.7

66.2 ro o o oo

(N O O CM CD 1.3

37.7 0.0

61.1

V99

nz

LI

0 0 0 0

2.7

67 8

19

2 O ^ CN ^ O O T— co

CO

0.0

1.4

81.8

16.8 O h-

o d

0 4010

8149

01

0 8719

0739

87 0 8719

0739

87 136 0 0

5587 76

2268 0

3678 0

165

1305

4000 0

165

4085

1158 0 24 677

5321

0 8649

2510

11

0 40

0 0

0.7

18 0

81

.4 0.0

2.0

28.7

69.2 0.0

2.0

28.7

69.2 CM CD O O

00 T- o O O) 6.2

16.5 0.0

77.3 0.0

2 7

31.3

66

.0 0 0

2 7

58 2

39

.1 0 0

0.4

11.2

88

.4

0ZL

9 LL V

5 0 0 o r--

d o

0 4010

8149

01

012

217

3041

70 012

217

3041

70 491

113 0

5418 37

399

6 046

53 016

518

8439

73 016

535

0423

53 0 24 677

5321

032

546

7610

21

0 40

r- CNJ CO TT r- (M CO ^ T- CN CO Tf r- CM CO t” (N CO ^ T- CN CO TJ- T- CN CO ^ T- CN CO Tf r- CM CO T- CN

coco

_hco

co_h

coco

_hco

co_h

coco

jcco

cojc

coco

jcco

cojc

cocn

jcco

cnjc

cocn

jcco

cnjc

h2co

f_hi

h2co

f_hi

h2co

f_hi

h2co

f_hi

h2co

f_lo

h2

cofjo

h2co

f_lo

h2co

fJo

rcof

_hi

rcof

_hi

rcof

_hi

rcof

_hi o o o o

o o o o o o o o

mai

z_hi

mai

z_hi

mai

z_hi

mai

z_hi

ma

ng

jom

an

gjo

ma

ng

jom

an

gjo

oilp

_hi

oilp

_hi

2 2 2 2 CO CO CO CO

2 2 2 2CO CO CO CO

1 ^ ^ ^ CO CO CO CO CO CO CO CO

I ^ ^ ^CO CO CO CO

2 2 2 2CO CO CO CO CO CO CO CO

2 2 2 2CO CO CO CO

I I 11CO CO CO CO S

IM SIM

Page 77: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

NG

S BY

RM

U

RAT

ING

S B

Y M

ED

ENV.

TYP

E R

ATIN

GS

BY

RM

U

RAT

ING

S BY

MED

. EN

V. T

YPE

2

% a

rea

85

.7 8.0

24

.2

3.3

33

.3

21

.7 0.0

60

.92

3.6

14.4

0.0

5

0 4

2

4.8

1

3.3

0.0

2

9 9

5

8.7

1

0.4

0.0

0

.0

71

.3

20

4 o o co co o ' O CO T-

T- CO 0.0

2

7.5

4

4 0

2

0 2

0.0

2

9 9

3

0.9

2

0.4 O CD CD O

O UO CO GOin T-

are

a(k

m2

)

7991 74

4

22

58

30

93

10

22

02

7 05

67

92

20

21

34

8 04

70

02

31

21

23

8 02

78

95

47

49

66 0 0

66

48

19

05 0 0

15

18

75

89 0

25

70

41

02

1881

02

78

92

88

01

90

5 05

18

61

27

27

44

%a

rea

46.1

23.1 6.6

55

.22

2.6

15

.6

5.3

46

.5

27

.82

0.5 5.8

18

.059

.11

7.2

0.0

0.0

71

.82

8.2

0.0

0

.0

19 4

8

0 6 6.4

1

3.9

5

8 2

2

1.5

0.6

2

8 5

4

2.7

2

8 2 0.6

6

3.2

19

8

16 4 5.3

4

7.8

2

6 5

2

0.5

are

a(k

m2

)

43

05

21

54

61

95

14

52

10

91

45

6

49

44

33

52

59

21

90

8

54

31

67

75

50

91

60

0 0 06

69

52

63

4 0 01

81

47

51

5

59

51

29

95

42

92

00

6 532

65

63

98

62

63

4 535

89

71

84

71

53

2

49

44

45

82

46

91

90

8

™ CO Tt o j m tt C\J CO Tj- T- C\J CO Tj- T— (N CO Tf CM CO Tf T- CM CO r - CNJ CO TT T- CM CO •*- CM CO

CD

1

oil

pjo

oil

pjo

oilp

_lo

oilp

_lo

pin

ejo

pin

ejo

pin

ejo

pin

ejo

py

rejo

py

rejo

py

rejo

py

rejo

rub

bjo

rub

bjo

rub

bjo

rub

bjo

cro

p

o o

pe

pp

jop

ep

pjo

pe

pp

jop

ep

pjo

po

ta_

hi

po

ta_

hi

po

ta_

hi

po

ta_

hi

rice

_h

iri

ce_

hi

rice

_h

iri

ce_

hi

rub

b_

hi

rub

b_

hi

rub

b_

hi

rub

b_

hi o o o o

I I I I c c c cCD CO CO CO> > > >

pro

vin

ce

NS

LN

SL

NS

LN

SL

NS

LN

SL

NS

LN

SL

NS

LN

SL _i _i _i _i

CO CO CO CO Z Z Z Z

_i _i _i _iCO CO CO CO2 2 2 2 N

SL

NS

LN

SL

NS

L _i _i __i _ico co co co2 Z 2 Z

— i — i — i —i CO CO CO CO Z Z 2 Z N

SL

NS

LN

SL

NS

L _i _i __i __iCO CO CO CO2 Z 2 Z

% a

rea

18 0

8

1.4

0.0 1.4

31

.56

6.4 0.0 1.4

31

.7

66

2 0.0

7

.9

69

6

22 5 0.0

2

.5

33 3

3

4.9

0.0

0

.0

72 9

22

.1 0.0

7

.3

28 5

3

7.5 0.0

9

.7

14.7

6

6 4 0.0

1

8.7

5

1.2

19

2 0.0

1.

4 3

1.7

6

6 2

are

a(k

m2

)

1081

4901

087

189

44

00

0 087

19

07

39

87 0

47

34

19

41

35

5 015

02

00

32

10

3 0 04

39

31

33

0 04

39

171

4

22

56 0

58

28

88

40

00 0

112

73

08

211

58 0

8719

07

39

87

%a

rea

18

.08

1.4

0.0

2

.0

28

5

69

5 0.0

2

.0

28

.7

69

2 0.0

5

.7

52 3

4

1.9

0.0

2.5

44

.25

3.4

0.0

3.

1 5

5 3

4

1.5 0.0

5

2 4

0 9

54

0 0.0

9

7 24

4

66

0 0.0

2

6 4

3

4.5

39

.1 0.0

2

.0

28 7

6

9 2

are

a(k

m2

)

1081

490

1 012

21

71

74

18

3 012

21

73

04

17

0 03

46

31

50

25

26 0

150

26

59

32

13 0

188

33

33

2501

03

12

2461

32

49 0

58

21

46

73

97

3 01

58

92

08

02

35

3 012

21

73

04

17

0

>, O) CO ^ t- CNJ CO T f r - CN CO t T - OM CO Tj- T - CN CO T f r - CM CO T f t— CM CO T f T - CM CO T t r - CM CO Tj- r - CM CO ^

CO

1

Pe

PP

jop

ep

pjo

pe

pp

jop

ep

pjo

pin

ejo

pin

ejo

pin

ejo

pin

ejo

py

rejo

py

rejo

py

rejo

py

rejo

va

nij

ov

an

ijo

va

nij

ov

an

ijo

cro

p

d do o o

ilp

joo

ilp

joo

ilp

joo

ilp

jo

po

taji

ip

ota

_h

ip

ota

_h

ip

ota

_h

i

rice

_h

iri

ce_

hi

rice

_h

iri

ce_

hi

rub

b_

hi

rub

b_

hi

rub

b_

hi

rub

b_

hi

rub

bjo

rub

bjo

rub

bjo

rub

bjo

8,E SI

MSI

M ^ ^ ^ ^CO CO CO CO

2 2 2 2 CO CO CO CO

2 2 2 2 CO CO CO CO

I I 1 ICO CO CO CO

2 2 2 2CO CO CO CO

1 I I ICO CO CO CO

I I I ICO CO CO CO

l l l lCO CO CO CO CO CO CO CO

o

Page 78: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

RA

TIN

GS

BY

RM

U

RA

TIN

GS

BY

ME

D

EN

V T

YP

E

RA

TIN

GS

BY

RM

U

RA

TIN

GS

BY

MED

. EN

V. T

YP

E

03CU

CD O LO Tj- T— oo LT) in co T- c d 03 TT r- Tf CD N N m CD CM O O CO (7) CO N Tj- oo CD Tf CN CO OO t—CO T™ CD CO

o co T-CD CO

O CO co ^ T— cor- Tf CT) T-

r- TT COT- CD CO D

T- CDO 03 T- CD

r- COT- c d •»- r^’

▼“ CO Tj- CO CM o c\i CD

CO o ^T- oo

area

(km

2)

434

8629

2888

3314

4639

1923

1399

928

3621

1443

99

2435

6096

522

0691

1588

61

8073

6617

122

5242

1439

20

7135

7675

239

968

3186

11

3722

8824

214

2291

2109

95

5770

7735

214

3549

2189

64

1557

813

060

2570

4236

10

1457

651

934

3669

3855

27

%ar

ea 0.1

4.5

61.2

34.1 t T CO N CD

O 0 3 CD COm c o

1.5

18.0

42.4

38.1 2.2

16.9

47.7

33.2 1.9

17.4

14

.3

66 4 1.1

19.7

31.9

47.3 2.3

22.5

28

0

47.3 4.2

0.9

0.1

94.8 CN CD 0 0

s ^ c d o o

Q_

O

r - 03 x r m m co cm T—

CO N" N " CD N CN N i n

CO T— CO CO 03 CNJ r- T-CO N r - Tj- (M O CO N

O 03 T f CM 03 N 03 N

t r - co N m T- i n T-

ID r- N CNo i n 03 oo

^ m CN Tj- h - 00 N O

CD CN i n CN CO CD CD N

CD00

c o co i n O O CD

03 Tf T- O 'T- CM O Tf

O N f ^ N ^ CO O) rt

O CD 00 r -O N c o DJ

m O ) co cdco 03 i n

CM ■<— COi n O CD CD

o T- 03 ° g 00 CD

CN O CD CD 03 r t N"

O O O TT 03 i n 00 CD

03i n

CN 00 COCN *r- r” 'r“ CN T- S m n T - CN T - T - CM

T- co 03

T— CN CO ^ T~ CN CO TT r- CM CO ^ T - CM CO r f T— CN CO T- CM CO N- r - (N CO T f ^ cm co

ca

rdjo

card

_lo

card

_lo

ca

rdjo

ca

sh

joc

as

hjo

cash

_lo

ca

sh

jo

ch

iljo

ch

iljo

chil_

loc

hil

jo

cit

rjo

cit

rjo

cit

rjo

cit

rjo

coco

_h

ico

co_

hi

coco

_h

ico

co_

hi o o o o

I I I I o o o o o o o o o o o o o o o o c

oc

njo

co

cn

joc

oc

njo

co

cn

jo

h2

cof_

hi

h2

cof_

hi

h2

cof_

hi

h2

cof_

hi

h2

co

fJo

h2

co

fJo

h2

co

fJo

h2

cof_

lo

t 'o

CD CD O Oz z z zQ. O. Q. 0. _l _l _l _I

CD CD CD CDz z z zCL 0. 0. CL_l _l _I _l

CD CD CD CDz z z z0. 0. 0. CL _l _I _1 _1

CD CD CD CDz z z zQ_ CL 0. CL _i _ j _i _i

CD CD CD CDz z z zCL CL 0. 0. _i _i _i _i

CD CD CD CDz z z zQ. CL CL CL _i _i _l _l

CD CD CD CDz z z zCL CL CL CL _ l _J _J _l

CD CD CD CDz z z zCL CL CL CL _l _l _I _I

CD CD CD CDz z z zCL CL CL CL _j _ j _j _j

CDzo.

< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <

0.0

2.

1 81

.1

16 6 0.0

4

6 7

8.5

16

6 1.0

3.6

66

.72

2.8

0 0

4 6

78

.5

16 6

0.0

1

0 0

.0

98

.9 0 0

1.1

9.2

8

9.7

0.0 11

9.2

89

.7

31

.3

17

.8

0.0

3

3 6

31 3

2

5.3

2

.5

25.1 o

ö

02

27

8921

18

23 0

50

98

63

918

23

111

39

87

34

225

11

05

09

86

39

18

23 5

111 4

10

88

6 011

61

01

79

87

3 011

61

01

79

87

3

34

46

19

63 0

36

94

34

46

27

84

27

92

76

5 o

0.0

11

.9

71

.21

6.9

0.0

16 4

6

6.7

16

9 1 0

9.6

5

4.3

35

.1 0 0

17

.9

65

.4

16

.7L 86

6 0 0

1

0 0 0 0

1 1

9 2

89

.8

0 0

1.1

9.2

8

9 8

32

8

5 9

0 8

60

.5

32

.83

0.3

2.7

34

.2 oo

01

31

27

83

41

86

0 01

80

77

33

91

86

0

111

10

57

59

73

38

65 0

19

68

72

03

18

35 5

111 98

10

79

2 011

61

00

89

88

2 011

61

00

89

88

2

36

07

65

0 936

65

6

36

07

33

40

29

23

76

7 o

t- CN CO TT T— CN CO TT T— CN CO T - CN CO r r CN CO t T T— CM CO t “ CN CO ^ r - CN c o T - (N CO T f

card

joca

rdjo

card

joca

rdjo

cash

joca

shjo

cash

joca

shjo

chilj

och

iljo

chilj

och

iljo o O O O

■B -B •■g' -B

coco

_hi

coco

_hi

coco

_hi

coco

_hi o o o o

1 1 1 1 o o o o u u u o o o o oU (J u o co

cnjo

cocn

joco

cnjo

cocn

jo

h2co

f_hi

h2co

f_hi

h2co

f_hi

h2co

f_hi

h2co

fJo

h2co

fJo

h2co

fJo

h2co

f_lo

rcof

_hi

> > - > > - X X X I UJ LU LU UJ

> - > > > - X X X X LU LU LU LU

>- >- >- >- X X X X LU LU LU LU

>- > > > X X X X LU LU LU LU

> - > > - > X X X X LU LU LU LU

> > > > X X X X LU LU LU LU

> > - > - > X X X X LU LU LU UJ

X X X X LU LU LU LU

> > >- > X X X X LU LU LU LU

>-XLU

Page 79: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

RA

TIN

GS

BY

RM

U

RA

TIN

GS

BY

ME

D

EN

V.

TYP

E

RA

TIN

GS

BY

RM

U

RA

TIN

GS

BY

MED

. EN

V. T

YP

EE

D.

EN

V.

' %

are

a

13.1

16.5

66

.6 0.7

14

6

44

.4

36

.2 CO CO CD oo o co m n

•<— r -

0.5

3

.5

60

.4

32 5 7.6

1

5.7

18

0

55

6 1.7

18 0

4

4 4

3

2.8

0.7

18

6

31.1

4

7.0 1.1

15 7

47

.73

2.7

0.1

1.9

35

.05

9.3

0.0

0.3

23

.5

AT

ING

S B

Y M

E a

rea

(k

m2

)

60

00

47

59

04

30

53

72

31

35

67

08

32

03

46

51

66

12

6

35

22

17

59

97

14

01

35

66

03

21

82

16

05

82

76

95

21

49

18

2

34

97

27

18

55

82

66

42

55

02

3

77

83

82

57

22

03

46

91

50

37

3

30

25

85

28

81

42

80

02

15

42

1

52

35

72

12

52

18

65

01

50

00

7

24

28

65

51

60

39

7

27

21

58 0

15

25

10

76

11

V/IU

R

%a

rea

16

.62

0.8

61

.3 1.8

18

.94

0.2

39.1 1.3

4.9

17

4

76

.4 0.9

8.8

56

.73

3.6

4.2

6.4

23

.66

5.7

2.1

20

.3

40

.23

7.4 1.3

18 4

2

8.5

5

1.8 1.7

19

.34

2.5

36

.5

0.1

1.8

41

.057

.1 0.0

0.9

20

.4

AT

ING

S B

Y R

f a

rea

(k

m2

)

75

99

39

54

83

28

11

73

82

52

86

64

91

84

54

51

79

18

9

60

84

22

41

47

96

31

35

05

06

39

53

40

44

92

60

17

41

54

05

9

19

41

92

95

73

10

82

19

30

14

24

96

62

93

12

61

84

24

61

71

60

1

58

27

84

31

31

30

76

62

37

72

9

80

05

88

45

21

94

99

31

67

18

5

26

68

33

01

88

06

62

61

97

3 04

08

893

61

1

t rCNJ CO tJ- T- CN CO Tf r - (N CO N- T- CN CO Tf T- CN CO Tt T- CN CO tT T- CN CO N" T- (N CO Tf — CN CO Tf T - CN CO

5 ToCT3 v—

1

rco

fjo

rco

fjo

rco

fjo

rco

fjo

ma

ng

jom

an

gjo

ma

ng

jom

an

gjo

oil

pjo

oil

pjo

oil

pjo

oil

pjo

pe

pp

jop

ep

pjo

pe

pp

jop

ep

pjo

pin

ejo

pin

ejo

pin

ejo

pin

ejo

cro

p

rco

f_h

rco

f_h

rco

f_h

ma

iz_

hm

aiz

_h

im

aiz

_h

im

aiz

_h d r r r

I I I I _Q._Q.jQ._Q.5 5 o o p

ota

_h

ip

ota

_h

ip

ota

_h

ip

ota

_h

i

pyr

e_

lop

yre

jop

yre

jo

u.Eo

CD CD CD 2 2 2 CL CL CL _J _J _ l

CD (D CD CD 2 2 2 2 CL CL CL CL __I __I __I __1

CD CD CD CD 2 2 2 2 CL a CL CL __I _I __I __I

CD CD CD CD 2 2 2 2 CL CL CL CL _I _I _I _I

CD CD CD CD 2 2 2 2 CL CL CL CL__l _l __1 __l

CD CD CD CD 2 2 2 2 CL CL CL CL —1 _I —1 _1

CD CD CD CD 2 2 2 2 CL CL CL CL — I —I — I — I

CD CD CD CD 2 2 2 2 CL CL CL CL__l _ l __i __I

CD CD CD CD 2 2 2 2 CL CL CL CL __1 __1 __1 __1

CD CD CD 2 2 2 CL CL CL __l _l __l

Q

LU

< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <

> = LU TO

1.1

28

.4

54

.8 0.0 1.1

49

.93

3.3 2

11.

4

1.4

95.1 O CD UO CD

O ^ CO ID

6 86

0 0 l

l

0 0 0.0 1.1

9.2

89

.7

0.0 1.0

9.3

89

.7 1.0

3.6

66

.7

22

.8 2.1

1.7

58

9

37

.3

0.0

0.0

71

.6

Q o5UJ2> -

m g ™ 00 £ E O2 w

12

0

312

1

60

33 0

12

0

54

90

36

64

23

31

58

14

9

10

46

6 05

09

86

39

18

23 0

11

6 4

10

88

6 0

11

6

10

17

98

73 0

111

10

22

98

73

111

39

87

34

2

25

11

23

3

191

64

79

41

03 0 0

78

85

U R

fi%

area 1.

9

30

.66

7.5

0.0 1.9

48

.14

9.9 2

1

1.5

7.5

89

.0

0.0

16 4

66

.7

16 9

L 86

6 0 l

l

0 0 0.0 1.1

9.2

89

.8

0.0 1.0

9.2

89

.8 1.0

9.6

54

.53

4.9

2.1

5.3

47

.7

45

.0

0.0 2.6

63

.6

TIN

GS

BY

RM

ar

ea

(km

2)

21

4

33

65

74

27 0

21

4

52

95

54

97

22

6

16

2

82

7

97

91

■ 01

80

7

73

39

18

60 0

11

69

81

07

92 0

11

6

10

08

98

82 0

111

10

13

98

82

111

10

57

59

98

38

40

22

65

82

52

46

49

52 0

281

69

99

&? g 5 CN CO TJ- T - CN CO Tj- T- CN CO r f T- CN CO Tf r - CN CO ^ t— CM CO N" T- CN CO N* CN CO Tf ^ CN CO N- T- CN CO

5 - - STO1

o o o o

o o o o o u o o

ma

ng

jom

an

gjo

ma

ng

jom

an

gjo

oilp

joo

ilpjo

oilp

joo

ilpjo

pe

pp

jop

ep

pjo

pe

pp

jop

ep

pjo

cro

p

rcof

_hrc

of_

hi

rco

f_h

i

mai

z_hi

mai

z_hi

mai

z_hi

mai

z_hi

oilp

_hi

oilp

_hi

oilp

_hi

oilp

_hi

pin

ejo

pin

ejo

pin

ejo

pin

ejo

pota

_hi

pota

_hi

pota

_hi

pota

_hi

pyr

ejo

pyr

ejo

pyr

ejo

o,E>

> >- > X X X LU HI LU

> - > > - > X X X X LU LU LU LU

> > - > - > - X X X X LU LU LU LU

> > > - > - X X X X LU LU LU LU

> - > > > - X X X X LU LU LU LU

> > > > X X X X LU LU LU LU

>- >- >- > X X X X LU LU LU LU

> - > - > > - X X X X LU LU LU LU

> > >- >- X X X X LU LU LU LU E

HY

EH

YE

HY

Page 80: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

RA

TIN

GS

BY

RM

U

RA

TIN

GS

BY

MED

. E

NV

. TY

PE

R

ATI

NG

S B

Y R

MU

R

ATI

NG

S B

Y M

ED

. E

NV

. TY

PE

82TO r--

oo n co n r - d (D N

T“ CO N "

^ O) (No cx> T— in

T- T- CD

CO CM 0 0 CD

d cd o mT - CO T f

area

(km

2) inCOCDCD

CD

COCO 17

016 CM CO

Is- CO CD Is- h - CD

581

3906

134

646

3886

7

581

3604

903

3232

504

3722

3810

7M

350

1074

1

CO X- CN CN ■*- 'r- T- CN

03CDto

h -CO

h -CN

CM

39.0

47.2

0.2

24.2

14.3

61.3

0.2

26.6

34.1

39.1 1.4

19.4

31.5

47

.8

£

S g CDCO

1226

851

140

1788

1421

6413

N r- CD 00 CN T- m co O N ^ TfCN io o m lO CD N N CO CD CD Tfro | oCDCO

cd co m co o m T- T- CD co T- CN

00 O N- CO CN CD CD CN in N(N CD CM T— CD CO N- CD 00 Tf r- T- CN

> CD N- CN CO 'T X— CN CO N- r- CN CO T— CN CO N-

s öS -2 -

crop

pyre

_lo

rice_

hiric

e_hi

rice_

hiric

e_hi

rubb

_hi

rubb

_hi

rubb

_hi

rubb

_hi

rub

bjo

rub

bjo

rub

bjo

rubb

_lo o o o o

1 1 1 1 c c c cCO 03 03 03> > > >

CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CDoC 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 28

Q. Q_ Q- CL CL _J _J _J _J CL d Q. d_J —l —1 -J Q_ Q_ CL 0._J _J _J _J CL CL CL a. _1 _1 _1 _1Q. < < < < < < < < < < < < < < < < <

% a

rea

21.9 0.0

5.8

61.4

32.5 0.0

1.1

28 4

54

.8 oo 1.

149

.933

.3 oo 1.

1 9

2 89

.7

in in tt oo N- co in N O O «1- coCN CN CO o O O N- CN CD CD o 0 N COro J S

CD N m CD CO ^ co § ■«r- Tj- CDm co T- O CO T- CD

030) CD O r- co m O CD CD m o CD T- CD o r- CN COCO d ° ^ ^ O r- o N o T- m Q o t- CD CT>TO

CDCN m O CD CM O N" m h- y— CD CN o rf in NT- CD CD o CD 00 CN T- O COro i . CO ^ co m y— IO N" CN CO TT CO h- CN CN Tfm m T- o coy~“ CD

CO

1

_o

g 1>

r r r r I I I I8 8 8 S

■C C -C ■=

x: _cz -C _cz I I I I

£ £ £ £ £ D £ £ 13 13 3 3

O O O OI I I I

£ £ £ £ £ £ £ £ 13 13 13 13

o o o o_I __I __I __Ic c c cca ca ca co> > > >

> > >- >- X X X X LU LU LU LU

> >- >- >- X X X X LÜ LU LU LU

> > - > > - X X X X LU LÜ LU LÜ

> >- > >- X X X X LU LU LU LU

Page 81: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

MAP 1: Major environment typesPapua New Guinea

. r -

X v --------------V

y% \Environment type

■ mangrove swamps estuaries and coastal plains

■ beach ridges and plains raised coral reefs recent alluvial plains relict alluvial plains alluvial flood plains

H swamps alluvial fansvolcanic plains and fans

■ volcanic plateaux and cones■ steeplands - karst

I hillsSi mountains

provincial boundaries

J

Page 82: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

/<;,_______

MAP 2: Suitability of environment subtypesfor low input

Arabica Coffee productionHarding model

■ high moderate marginal not suitable

----- provincial boundaries

<r

V . I

Page 83: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

%

MAP 3: Suitability of environment subtypesfor high input

Arabica Coffee productionHarding model

<*3

<r

highmoderate marginal not suitable

----- provincial boundaries

Page 84: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

%»V

MAP 4: Suitability of PNGRIS RMU’sfor low input

Arabica Coffee productionHarding model

£

<r

■ high moderate marginal not suitable

------provincial boundaries

Page 85: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

%

MAP 5: Suitability of PNGRIS RMU'sfor high input

Arabica Coffee productionHarding model

<r

8 high moderate marginal not suitable

------provincial boundaries

Page 86: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

a

\a

<5 ^

MAP 6: Suitability of PNGRIS RMU's for Oilpalm production

moderate marginal not suitable

-------provincial boundaries

Page 87: LAND SUITABILITY ASSESSMENTS suitability... · Land evaluation systems have been used with land resource survey data in PNG since the 1960’s to assess land suitability for agricultural

PNGRIS PUBLICATIONS (ISSN 1320-5765)

Agricultural Laud Use o f Papua New Guinea: [map with explanatory notes]. Scale 1:1 000 000. PNGRIS Publication No. 1. ISBN 0 642 19604 4

Forest Resources o f Papua New Guinea: [map with explanatory notes]. Scale 1:1 000 000. PNGRIS Publication No. 2. ISBN 0 642 19603 6

Land Resource Survey, Upper Ramu Catchment, Papua New Guinea. PNGRIS Publication No. 3. ISBN 0 642 19605 2

Land Suitability for Selected Crops in Papua New Guinea. PNGRIS Publication No. 8. ISBN 0 642 19609 5

Rainfall Erosivity in Papua New Guinea. PNGRIS Publication No. 9. ISBN 0 642 19607 9

RELATED PUBLICATIONS

Geomorphology o f Papua New Guinea: [map with explanatory notes]. Scale 1:1 000 000. Land Research Series No. 33. (CSIRO Division of Land Use Research). ISBN 0 643 00092 5

Vegetation o f Papua New Guinea: [map with explanatory> notes]. Scale 1:1 000 000. Land Research Series No. 35. (CSIRO Division of Land Use Research). ISBN 0 643 00138 7

Papua New Guinea Inventory o f Natural Resources, Population Distribution and Land Use Handbook. Natural Resource Series No. 6 (CSIRO Division of Water and Land Resources).

ISSN 1320-5765 ISBN 0 642 19609 5