krzysztof fitzner dominika jendrzejczyk wojciech gierlotka * agh university of science and...

26
KRZYSZTOF FITZNER DOMINIKA JENDRZEJCZYK WOJCIECH GIERLOTKA * AGH University of Science and Technology, Faculty of Non- Ferrous Metal, Krakow, Poland *National Tsing-Hua University, Department of Chemical Ingeenering, Material Thermodynamics Laboratory Hsinchu ,Taiwan EUROPEAN CONCERTED ACTION ON EUROPEAN CONCERTED ACTION ON “Lead-free Solder Materials” COST 531 “Lead-free Solder Materials” COST 531

Post on 21-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

KRZYSZTOF FITZNER

DOMINIKA JENDRZEJCZYK

WOJCIECH GIERLOTKA*

AGH University of Science and Technology,

Faculty of Non- Ferrous Metal,

Krakow, Poland

*National Tsing-Hua University, Department

of Chemical Ingeenering, Material

Thermodynamics Laboratory

Hsinchu ,Taiwan

EUROPEAN CONCERTED ACTION ONEUROPEAN CONCERTED ACTION ON“Lead-free Solder Materials” COST 531“Lead-free Solder Materials” COST 531

TASKTASKDETERMINATION OF THERMODYNAMIC DETERMINATION OF THERMODYNAMIC

PROPERTIESPROPERTIESAND PHASE EQUILIBRIA IN:AND PHASE EQUILIBRIA IN:

FORCES OF WG8

1. Jan Vrestal and his group (Brno)

2. Dragana Zivkovic and her group (Bor)

3. Arkadij Popovic and Laslo Bencze (Liubliana and Budapest)

4. Krzysztof Fitzner , Dominika Jendrzejczyk, Wojciech Gierlotka (Krakow)

Introduction

Introduction

WORK DONE IN KRAKOW: E.M.F. MEASUREMENTS METHOD:WORK DONE IN KRAKOW: E.M.F. MEASUREMENTS METHOD:GALVANIC CELLS WITH THE SOLID OXIDE ELECTROLYTEGALVANIC CELLS WITH THE SOLID OXIDE ELECTROLYTE

gas in let

gas outle t

solid e lectro lite

P t - lead w ire

reference e lectrode N i, N iO

resistance furnace

quartz am pule

A l O capillary2 3

quartz tube

A l O - crucib le2 3

w orking electrode

(kanthal + R e) lead w ire

solid electrolyte

Fig. 1

Ag-In-Sb

Re + kanthal, Ag-In-Sb//ZrO2 + Y2O3//NiO, Ni , Pt ( I )

Electrode reactions are:

a)   at the RHS electrode:

3Ni + 6e = 3 Ni + 3 O-2 (1)

  b) at the LHS electrode:

  2 In + 3 O-2 = 6e + In2O3 (2)

Consequently, the overall cell I reaction is:

3 Ni O + 2 In = In2O3 + 3 Ni (3)

)(3

ln 0EERT

FaIn (4)

Ag-In-Sb

Fig. 2 a) xAg/xSb=3:1 Fig. 2 b) xAg/xSb=1:1

Fig. 2 c) xAg/xSb=1:3

Ag-In-Sb

Table 1 xAg/xSb=3:1 Table 2 xAg/xSb=1:1

Table 3 xAg/xSb=1:3

Ag-In-Sb

GE = xAgxIn(L0

AgIn + L1AgIn(xAg – xIn)) + xAgxSb(L

0AgSb +

L1AgSb(xAg – xSb)) + xInxSb(L

0InSb + L1

InSb(xIn – xSb))+

xAgxInxSb(xAgL0

AgInSb + xInL1

AgInSb + xSbL2

AgInSb)

(5)

Table 4

Ag-In-Sb

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

This work 1200 K

- calculatedA

ctiv

ity

of in

diu

m

xIn

Fig. 3 xAg/xSb=1:1

Ag-In-Sb

Fig.4 xIn / xSb = 2:3

T = 1253K

Ag-In-Sb

Fig. 5 Liquidus in Ag – In - Sb system

Ag-In-Sb and Cu-In-Sn

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MO

LE_F

RA

CTI

ON

O

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

MOLE_FRACTION SN SnIn

O

Fig. 6

Ag-In-Sn

‘ In2O3 ‘ + liquid

SnO2 + liquid

Fig. 7

Ag-In-Sn

Re + kanthal, Ag-In-Sn, ’In2O3’ //ZrO2 + Y2O3//NiO, Ni , Pt

The overall cell reaction is:

3 NiO + 2 In = ‘In2O3,’ + 3 Ni (6)

32ln5,0)(

3ln 0

In OInaEERT

Fa (7)

Ag-In-Sn

100

125

150

175

200

225

250

275

300

900 950 1000 1050 1100 1150 1200 1250 1300

In

AgIn0.8Sn

AgIn0.7Sn

AgIn0.6Sn

AgIn0.5Sn

AgIn0.4Sn

AgIn0.3Sn

e.m

.f./[

mV

]

xInxIn

Fig. 8 a) xAg/xSn=3:1

xIn

e.m

.f./[

mV

]

Fig. 8 b) xAg/xSn=1:1

Fig. 8 c) xAg/xSn=1:3

e.m

.f./[

mV

]

Ag-In-Sn

xIn E(mV) = a + b*T

1.0 363,72 – 0,1009 *T 1,21

0.8 363,29 – 0,1065 *T 0,26

0.7 358,91 – 0,1079 * T 0,31

0.6 362,45 – 0,1165 * T 0,11

0.5 371,80 – 0,1301 * T 0,47

0.4 360,00 – 0,1296 * T 0,46

0.3 375,30 - 0,1315 * T 0,50

xIn E(mV) = a + b*T

1.0 363,72 – 0,1009 *T 1,21

0.8 373,34 – 0,1156 *T 0,45

0.7 368,46 – 0.1152 * T 0,2

0.6 360,75 – 0,1148 * T 0,48

0.5 356,70 – 0,1163 * T 0,38

0.4 361,28– 0,1257 * T 0,36

0.3 356,63 – 0,1320 * T 0,38

xIn E(mV) = a + b*T

1.0 363,72 – 0,1009 *T 1,21

0.8 370,15 – 0,1108 * T 0,25

0.7 371,36 - 0,1160 * T 0,12

0.6 332,63 – 0,0890 * T 0,51

0.5 364,60 – 0,1210 * T 0,86

0.4 355,34 – 0,1198 * T 0,55

0.3 362,53 – 0,1343 * T 0,39

0.2 343,36 – 0,1304 * T 0,37

Table 5 xAg/xSn=3:1 Table 6 xAg/xSn=1:1

Table 7 xAg/xSn=1:3

Ag-In-Sn

T = 1273 K

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Act

ivit

y of

indi

um

Fig. 9 a) Binary Ag-In

xIn

emf method

- calculated

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Act

ivit

y of

indi

um

Fig. 9 e) Binary Sn-In

xIn

COST database

- calculated

Act

ivit

y of

indi

um

xIn

emf method

Popovic

Miki

- calculated

Fig. 9 c) xAg/xSn=1:1 A

ctiv

ity

of in

diu

m

xIn

emf method

Popovic

- calculated

Fig. 9 b) xAg/xSn=3:1

Act

ivit

y of

indi

um

xIn

emf method

Popovic

- calculated

Fig. 9 d) xAg/xSn=1:3

Ag-In-Sn

T = 12532 K

Fig. 10 xSn/xIn=2:3

xAg

Hm

ix (

J*m

ol-1)

Ag-In-Sn

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

En

thal

py

of

mix

ing

, J/

mo

l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Mole fraction, In

Jendrzejczyk

xIn

Hm

ix/ (

J*m

ol-1)

T= 1003K

Fig. 11 xAg/xSn=1:1

Ag-In-Sn

Fig. 12 Liquidus in Ag – In - Sn system

Cu-In-Sn

‘ In2O3 ‘ + liquid

SnO2 + liquid

Cu

Fig. 13

Cu-In-Sn

Re + kanthal, Cy-In-Sn, ’In2O3’ //ZrO2 + Y2O3//NiO, Ni , Pt

The overall cell reaction is:

3 NiO + 2 In = ‘In2O3 ’+ 3 Ni (8)

32ln5,0)(

3ln 0

In OInaEERT

Fa (9)

Cu-In-Sn

0,15

0,2

0,25

0,3

800 900 1000 1100 1200 1300

In

CuIn0.8S n

CuIn0.7S n

CuIn0.6S n

CuIn0.5S n

CuIn0.4S n

CuIn0.3S n

0,1

0,15

0,2

0,25

0,3

800 900 1000 1100 1200 1300

In

CuIn0.8Sn

CuIn0.7Sn

CuIn0.6Sn

CuIn0.5Sn

CuIn0.4Sn

CuIn0.3Sn

CuIn0.2Sn

0,15

0,2

0,25

0,3

800 900 1000 1100 1200 1300

In

CuIn0.8S n

CuIn0.7S n

CuIn0.6S n

CuIn0.5S n

CuIn0.4S n

CuIn0.3S n

CuIn0.2S n

e.m

.f./[

mV

]

xInxInFig. 14 a) xCu/xSn=3:1

e.m

.f./[

mV

]

Fig. 14 b) xCu/xSn=1:1

Fig. 14 c) xCu/xSn=1:3

e.m

.f./[

mV

]

xIn

Cu-In-Sn

xIn E(mV) = a + b*T

1.0 363,72 – 0,1009 *T 1,21

0.8 368,25 – 0,1113 *T 0,43

0.7 384,50 – 0,1113 * T 0,26

0.6 365,67 – 0,1150 * T 0,54

0.5 373,34 – 0,1248 * T 0,10

0.4 368,73 – 0,1264 * T 0,69

0.3 364,08 - 0,1297 * T 0,55

xIn E(mV) = a + b*T

1.0 363,72 – 0,1009 *T 1,21

0.8 360,20 – 0,1048 * T 0,13

0.7 365,78 - 0,1117 * T 0,45

0.6 361,74 – 0,1124 * T 0,80

0.5 366,90 – 0,1217 * T 0,26

0.4 366,27 – 0,1272 * T 0,31

0.3 358,56 – 0,1297 * T 0,44

0.2 372,68 – 0,1517 * T 0,76

xIn E(mV) = a + b*T

1.0 363,72 – 0,1009 *T 1,21

0.8 365,33 – 0,1086 * T 0,68

0.7 368,13 - 0,1125 * T 0,15

0.6 371,79 – 0,1197 * T 0,24

0.5 367,16 – 0,1201 * T 0,24

0.4 366,19 – 0,1249 * T 0,57

0.3 366,68 – 0,1325 * T 0,62

0.2 357,72 – 0,1344 * T 0,40

Table 8 xCu/xSn=3:1 Table 9 xCu/xSn=1:1

Table 10 xCu/xSn=1:3

Cu-In-Sn

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1A

ctiv

ity

of in

diu

m

Fig. 15 e) Binary Sn-In

xIn

COST database

- calculated

Fig. 15 a) Binary Cu-In

T = 1273 K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

emf method

Popovic, Bencze

Activity of indium

xIn

Fig. 15 c) xCu/xSn=1:1

Popovic, Bencze

emf method

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

emf method

Popovic, Bencze

Activity of indium

xIn

Fig. 15 b) xCu/xSn=3:1

Popovic, Bencze

emf method

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

emf mrthod

Popovic, Bencze

Activity of indium

xIn

Fig. 15 d) xCu/xSn=1:3

Popovic, Bencze

emf method

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Activity of indium

xIn

Kang, Castanet

Cu-In-Sn

Fig. 16 a) xCu /xSn=1:1 Fig. 16 b) xCu /xIn=1:1

Fig. 16 c) xSn /xIn=1:1

T = 1073K

-3000

-2500

-2000

-1500

-1000

-500

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

xSn

Hm

ix /(

J*m

ol-1)

Mikula et al

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

0 0.1 0.2 0.3 0.4 0.5 0.6

xCu

Hm

ix /(

J*m

ol-1)

Mikula et al

-2500

-2000

-1500

-1000

-500

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

xIn

Hm

ix /(

J*m

ol-1)

Mikula et al

This work was supported by the State Committee for Scientific Research at AGH University Science and Technology, Faculty of Non-Ferrous Metals under fund number 11.11.180.125 and under COST 531 Action no. 112/E-356/SPB/COST/T-08/DWM 571/2003-2006