jessica arbona & christopher brady dr. in soo ahn & dr. yufeng lu, advisors

48
Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

Upload: marshall-york

Post on 20-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

Jessica Arbona & Christopher BradyDr. In Soo Ahn & Dr. Yufeng Lu, Advisors

Page 2: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

• Goal• Adaptive Filter

◦ Adaptive Filtering System◦ Four Typical Applications of Adaptive Filters◦ How does the Adaptive Filter Work?

• Project Description◦ High Level Flowchart◦ Equipment List◦ Design Approach

• Procedure◦ MATLAB Simulation (Speech Data)◦ Hardware Design (Ultrasound Data) ◦ FIR filter structures (Ultrasound Data)◦ DSP/FPGA Implementation (Speech Data)

• Demonstration• Conclusion

2

Page 3: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

The goal of the project is to design and implement an active noise cancellation system using an adaptive filter.

3

Page 4: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

4

Page 5: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

The adaptive filtering system contains four signals: reference signal, d(n), input signal, x(n), output signal, y(n), and the error signal, e(n). The filter, w(n), adaptively adjusts its coefficients according to an optimization algorithm driven by the error signal.

5

Page 6: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

6

Adaptive System IdentificationAdaptive Noise Cancellation

Adaptive Prediction Adaptive Inverse

∑ ∑

NoiseFIR

AdaptiveFilter

AdaptiveFilter

Algorithme(n)

y(n)

d(n)

Delay x(n) ∑

Page 7: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

Cost Function

Wiener-Hopf equation◦D

Least Mean Square (LMS) Recursive Least Square (RLS)

7

dXXXopt rRf 1

)}({ 2 neEJ

Page 8: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

Widrow-Hoff LMS Algorithm◦

◦ d

8

)()(2)( nXnen

)(2

)()1( nnfnf

)()()()1( nXnenfnf

Page 9: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

• µ is the step size

• µ must be determined in for the system to converge

• f

9

)0(3

20

XXrL

Page 10: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

10

)()()()1( nXnXnRnR TXXXX

)1()1()1( 1 nrnRnf dXXX

)()()()1( nXndnrnr dXdX

Page 11: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

11

Page 12: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

12

Page 13: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

MATLAB/Simulink Xilinx System Generator

13

Xtreme DSP development kit: FPGA device (Virtex4 xC4SX35-10FF668) Two 14- bit DAC onboard channels Ultrasound Data

SignalWave DSP/FPGA board Audio CODEC (sampling frequency varies from 8kHZ to

48kHZ) Real-time workshop and Xilinx system generator in

MATLAB/Simulink TI DSP (TMS320C6713) and Xilink Virtex II FPGA (XC2V300-

FF1152) Speech Data

Hardware

Design Tools

Page 14: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

14

Least Mean Square◦ Design ◦ Test FIR filter structures◦ Implement

Hardware

Simulation

MATLAB◦ Least Mean Square (LMS)◦ Recursive Least Square (RLS)

Page 15: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

15

Page 16: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

16

Page 17: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

17

Speech Data Processing

MATLAB simulation with Tap (L) = 10◦ LMS◦ RLS

Speech Data

Recorded Voice Signal Recorded Engine Noise

Page 18: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

18

Figure 1: Desired Signal

Figure 2: Noise Signal

Figure 3: Reference Signal

Page 19: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

19

LMS RLS

Figure 4: LMS Filter Coefficients

Figure 5: RLS Filter Coefficients

Page 20: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

20

LMS RLS

Figure 8: Desired Signal and

Recovered Signal

Figure 9: Desired Signal and Recovered

Signal Green – Desired Signal Blue – Recovered Signal

Page 21: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

21

Page 22: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

22

Page 23: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

23

Page 24: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

24

Description:• L = 6• Adaptive FIR Filter

Page 25: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

25

Page 26: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

26

Page 27: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

27

Page 28: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

28

XtremeDSP- Virtex 4 Hardware Results

Orange – Input signalBlue – Output Signal

Page 29: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

29

Page 30: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

30

Page 31: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

31

Page 32: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

32

Page 33: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

33

Page 34: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

34

Page 35: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

35

Page 36: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

36

Page 37: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

37

Page 38: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

38

Page 39: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

39

Page 40: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

40

Page 41: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

41

Description:• L =10• Adaptive FIR Filter

Page 42: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

42

Page 43: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

43

Page 44: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

44

Page 45: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

45

Figure 12: Desired Signal and Recovered

Signal

Figure 13: Spectrum of Desired and Recovered

Signals

Page 46: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

46

Page 47: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

The adaptive filter is successfully simulated in MATLAB using various types of noise. The simulation results show a 24 dB reduction in the mean square error. These results are used in developing the Xilinx model of the system. After the system is successfully designed, alternative FIR structures are investigated in an attempt to improve efficiency. The standard FIR structure is found to be better suited for hardware implementation on a DSP/FPGA board.

47

Page 48: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

The adaptive filter is successfully simulated in MATLAB using various types of noise. The simulation results show a 24 dB reduction in the mean square error. These results are used in developing the Xilinx model of the system. After the system is successfully designed, alternative FIR structures are investigated in an attempt to improve efficiency. The standard FIR structure is found to be better suited for hardware implementation on a DSP/FPGA board.

48