iterative techniques in matrix algebra

Upload: juan-juan

Post on 07-Aug-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    1/107

    Iterative Techniques in Matrix Algebra

    Jacobi & Gauss-Seidel Iterative Techniques II

    Numerical Analysis (9th Edition)

    R L Burden & J D Faires

    Beamer Presentation Slidesprepared byJohn Carroll

    Dublin City University

    c 2011 Brooks/Cole, Cengage Learning

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    2/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Outline

    1   The Gauss-Seidel Method

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 2 / 38

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    3/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Outline

    1   The Gauss-Seidel Method

    2   The Gauss-Seidel Algorithm

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 2 / 38

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    4/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Outline

    1   The Gauss-Seidel Method

    2   The Gauss-Seidel Algorithm

    3   Convergence Results for General Iteration Methods

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 2 / 38

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    5/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Outline

    1   The Gauss-Seidel Method

    2   The Gauss-Seidel Algorithm

    3   Convergence Results for General Iteration Methods

    4   Application to the Jacobi & Gauss-Seidel Methods

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 2 / 38

    G S id l M h d G S id l Al i h C R l I i

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    6/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Outline

    1   The Gauss-Seidel Method

    2   The Gauss-Seidel Algorithm

    3   Convergence Results for General Iteration Methods

    4   Application to the Jacobi & Gauss-Seidel Methods

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 3 / 38

    G S id l M th d G S id l Al ith C R lt I t t ti

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    7/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    The Gauss-Seidel Method

    Looking at the Jacobi MethodA possible improvement to the Jacobi Algorithm can be seen by

    re-considering

    x (k )i    =   1a ii 

    n  j =1 j =i 

    −a ij x (k −1) j 

    + b i 

    ,   for i  = 1, 2, . . . , n 

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 4 / 38

    Gauss Seidel Method Gauss Seidel Algorithm Convergence Results Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    8/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    The Gauss-Seidel Method

    Looking at the Jacobi MethodA possible improvement to the Jacobi Algorithm can be seen by

    re-considering

    x (k )i    =   1a ii 

    n  j =1 j =i 

    −a ij x (k −1) j 

    + b i 

    ,   for i  = 1, 2, . . . , n 

    The components of  x(k −1) are used to compute all the

    components x (k )i    of  x(k ).

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 4 / 38

    Gauss Seidel Method Gauss Seidel Algorithm Convergence Results Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    9/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    The Gauss-Seidel Method

    Looking at the Jacobi MethodA possible improvement to the Jacobi Algorithm can be seen by

    re-considering

    x (k )i    =   1a ii 

    n  j =1 j =i 

    −a ij x (k −1) j 

    + b i 

    ,   for i  = 1, 2, . . . , n 

    The components of  x(k −1) are used to compute all the

    components x (k )i    of  x(k ).

    But, for i  > 1, the components x (k )1   , . . . , x 

    (k )i −1  of  x

    (k ) have already

    been computed and are expected to be better approximations to

    the actual solutions x 1, . . . , x i −1  than are x (k −1)1   , . . . , x 

    (k −1)i −1   .

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 4 / 38

    Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    10/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    The Gauss-Seidel Method

    Instead of using

    x (k )i    =

      1

    a ii 

    n  j =1 j =i 

    −a ij x 

    (k −1) j 

    + b i 

    ,   for i  = 1, 2, . . . , n 

    it seems reasonable, then, to compute x (k )i    using these most recently

    calculated values.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 5 / 38

    Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation

    http://find/http://goback/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    11/107

    Gauss Seidel Method   Gauss Seidel Algorithm   Convergence Results   Interpretation

    The Gauss-Seidel Method

    Instead of using

    x (k )i    =

      1

    a ii 

    n  j =1 j =i 

    −a ij x 

    (k −1) j 

    + b i 

    ,   for i  = 1, 2, . . . , n 

    it seems reasonable, then, to compute x (k )i    using these most recently

    calculated values.

    The Gauss-Seidel Iterative Technique

    x (k )i    =

      1

    a ii 

    i −1 j =1

    (a ij x (k )

     j    ) −n 

     j =i +1

    (a ij x (k −1)

     j    ) + b i 

    for each i  = 1, 2, . . . , n .

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 5 / 38

    Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    12/107

    Gauss Seidel Method   Gauss Seidel Algorithm   Convergence Results   Interpretation

    The Gauss-Seidel Method

    Example

    Use the Gauss-Seidel iterative technique to find approximate solutionsto

    10x 1 −   x 2 +   2x 3   = 6

    −x 1 + 11x 2 −   x 3 + 3x 4  = 25

    2x 1 −   x 2 + 10x 3 −   x 4  = −113x 2 −   x 3 + 8x 4  = 15

    ,

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 6 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://goforward/http://find/http://goback/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    13/107

    g g p

    The Gauss-Seidel Method

    Example

    Use the Gauss-Seidel iterative technique to find approximate solutionsto

    10x 1 −   x 2 +   2x 3   = 6

    −x 1 + 11x 2 −   x 3 + 3x 4  = 25

    2x 1 −   x 2 + 10x 3 −   x 4  = −113x 2 −   x 3 + 8x 4  = 15

    ,

    starting with  x = (0, 0, 0, 0)t 

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 6 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    14/107

    g g p

    The Gauss-Seidel Method

    Example

    Use the Gauss-Seidel iterative technique to find approximate solutionsto

    10x 1 −   x 2 +   2x 3   = 6

    −x 1 + 11x 2 −   x 3 + 3x 4  = 25

    2x 1 −   x 2 + 10x 3 −   x 4  = −113x 2 −   x 3 + 8x 4  = 15

    ,

    starting with  x = (0, 0, 0, 0)t  and iterating until

    x(k )

    −x(k −1)

    ∞x(k )∞

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    15/107

    The Gauss-Seidel Method

    Example

    Use the Gauss-Seidel iterative technique to find approximate solutionsto

    10x 1 −   x 2 +   2x 3   = 6

    −x 1 + 11x 2 −   x 3 + 3x 4  = 25

    2x 1 −   x 2 + 10x 3 −   x 4  = −113x 2 −   x 3 + 8x 4  = 15

    ,

    starting with  x = (0, 0, 0, 0)t  and iterating until

    x(k )

    −x(k −1)

    ∞x(k )∞

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    16/107

    The Gauss-Seidel Method

    Solution (1/3)

    For the Gauss-Seidel method we write the system, for each

    k  = 1, 2, . . . as

    x (k )1   =   110x (k −1)2   −   15

    x (k −1)3   +  35

    x (k )2   =

      1

    11x (k )1   +

      1

    11x (k −1)3   −

      3

    11x (k −1)4   +

     25

    11

    x (k )3   = −

    1

    5 x (k )1   +

      1

    10 x (k )2   +

      1

    10 x (k −1)4   −

     11

    10

    x (k )4   =   −

      3

    8x (k )2   +

      1

    8x (k )3   +

     15

    8

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 7 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    17/107

    The Gauss-Seidel Method

    Solution (2/3)

    When  x(0) = (0,  0,  0,  0)t , we havex(1) = (0.6000,  2.3272,  −0.9873,  0.8789)t .

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 8 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    18/107

    The Gauss-Seidel Method

    Solution (2/3)

    When  x(0) = (0,  0,  0,  0)t , we havex(1) = (0.6000,  2.3272,  −0.9873,  0.8789)t . Subsequent iterations givethe values in the following table:

    k    0 1 2 3 4 5

    x (k )1   0.0000 0.6000 1.030 1.0065 1.0009 1.0001

    x (k )

    2

      0.0000 2.3272 2.037 2.0036 2.0003 2.0000

    x (k )

    3   0.0000   −0.9873   −1.014   −1.0025   −1.0003   −1.0000

    x (k )4   0.0000 0.8789 0.984 0.9983 0.9999 1.0000

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 8 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    19/107

    The Gauss-Seidel Method

    Solution (3/3)

    Becausex(5) − x(4)∞

    x(5)∞ =

     0.0008

    2.000   = 4 × 10−4

    x(5) is accepted as a reasonable approximation to the solution.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 9 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    20/107

    The Gauss-Seidel Method

    Solution (3/3)

    Becausex(5) − x(4)∞

    x(5)∞ =

     0.0008

    2.000   = 4 × 10−4

    x(5) is accepted as a reasonable approximation to the solution.

    Note that, in an earlier example, Jacobi’s method required twice as

    many iterations for the same accuracy.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 9 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    21/107

    The Gauss-Seidel Method: Matrix Form

    Re-Writing the Equations

    To write the Gauss-Seidel method in matrix form,

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 10 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    22/107

    The Gauss-Seidel Method: Matrix Form

    Re-Writing the Equations

    To write the Gauss-Seidel method in matrix form, multiply both sides of

    x (k )i    =   1a ii 

    −i −1 j =1

    (a ij x (k ) j    ) −

    n  j =i +1

    (a ij x (k −1) j    ) + b i 

    by a ii  and collect all k th iterate terms,

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 10 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    23/107

    The Gauss-Seidel Method: Matrix Form

    Re-Writing the Equations

    To write the Gauss-Seidel method in matrix form, multiply both sides of

    x (k )i    =  1

    a ii 

    i −1 j =1

    (a ij x (k ) j    ) −

    n  j =i +1

    (a ij x (k −1) j    ) + b i 

    by a ii  and collect all k th iterate terms, to give

    a i 1x (k )1   + a i 2x (

    k )2   + · · · + a ii x (

    k )i    = −a i ,i +1x (

    k −

    1)i +1   − · · · − a in x (

    k −

    1)n    + b i 

    for each i  = 1, 2, . . . , n .

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 10 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    24/107

    The Gauss-Seidel Method: Matrix Form

    Re-Writing the Equations (Cont’d)

    Writing all n  equations gives

    a11x(k)1   =   −a12x

    (k−1)2   − a13x

    (k−1)3   − · · · − a1nx

    (k−1)n   + b1

    a21x(k)

    1  +   a

    22x(k)

    2  =   −a

    23x(k−1)

    3  − · · · − a

    2nx(k−1)

    n  + b

    2

    .

    .

    .

    an1x(k)1   +   an2x

    (k)2   + · · · + annx

    (k)n   =   bn

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 11 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    25/107

    The Gauss-Seidel Method: Matrix Form

    Re-Writing the Equations (Cont’d)

    Writing all n  equations gives

    a11x(k)1   =   −a12x

    (k−1)2   − a13x

    (k−1)3   − · · · − a1nx

    (k−1)n   + b1

    a21x(k)

    1  +   a

    22x(k)

    2  =   −a

    23x(k−1)

    3  − · · · − a

    2nx(k−1)

    n  + b

    2

    .

    .

    .

    an1x(k)1   +   an2x

    (k)2   + · · · + annx

    (k)n   =   bn

    With the definitions of D , L, and U  given previously, we have the

    Gauss-Seidel method represented by

    (D − L)x(k ) = U x(k −1) + b

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 11 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    26/107

    The Gauss-Seidel Method: Matrix Form

    (D − L)x(k ) = U x(k −1) + b

    Re-Writing the Equations (Cont’d)

    Solving for  x(k ) finally gives

    x(k ) = (D − L)−1U x(k −1) + (D − L)−1b,   for each k  = 1, 2, . . .

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 12 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    27/107

    The Gauss-Seidel Method: Matrix Form

    (D − L)x(k ) = U x(k −1) + b

    Re-Writing the Equations (Cont’d)

    Solving for  x(k ) finally gives

    x(k ) = (D − L)−1U x(k −1) + (D − L)−1b,   for each k  = 1, 2, . . .

    Letting T g  = (D − L)−1U  and  cg  = (D − L)

    −1b, gives the Gauss-Seidel

    technique the form

    x(k ) = T g x(k −1) + cg 

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 12 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    28/107

    The Gauss-Seidel Method: Matrix Form

    (D − L)x(k ) = U x(k −1) + b

    Re-Writing the Equations (Cont’d)

    Solving for  x(k ) finally gives

    x(k ) = (D − L)−1U x(k −1) + (D − L)−1b,   for each k  = 1, 2, . . .

    Letting T g  = (D − L)−1U  and  cg  = (D − L)

    −1b, gives the Gauss-Seidel

    technique the form

    x(k ) = T g x(k −1) + cg 

    For the lower-triangular matrix D − L to be nonsingular, it is necessaryand sufficient that a ii  = 0, for each i  = 1, 2, . . . , n .

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 12 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    29/107

    Outline

    1   The Gauss-Seidel Method

    2   The Gauss-Seidel Algorithm

    3   Convergence Results for General Iteration Methods

    4   Application to the Jacobi & Gauss-Seidel Methods

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 13 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    30/107

    Gauss-Seidel Iterative Algorithm (1/2)

    To solve Ax =  b given an initial approximation  x(0):

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 14 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://goforward/http://find/http://goback/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    31/107

    Gauss-Seidel Iterative Algorithm (1/2)

    To solve Ax =  b given an initial approximation  x(0):

    INPUT   the number of equations and unknowns n ;

    the entries a ij 

    , 1 ≤

     i , j  ≤

     n  of the matrix A;

    the entries b i , 1 ≤  i  ≤ n  of  b;

    the entries XO i , 1 ≤ i  ≤ n  of  XO =  x(0);

    tolerance TOL;

    maximum number of iterations N .

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 14 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    32/107

    Gauss-Seidel Iterative Algorithm (1/2)

    To solve Ax =  b given an initial approximation  x(0):

    INPUT   the number of equations and unknowns n ;

    the entries a ij 

    , 1 ≤

     i , j  ≤

     n  of the matrix A;

    the entries b i , 1 ≤  i  ≤ n  of  b;

    the entries XO i , 1 ≤ i  ≤ n  of  XO =  x(0);

    tolerance TOL;

    maximum number of iterations N .

    OUTPUT   the approximate solution x 1, . . . , x n  or a message

    that the number of iterations was exceeded.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 14 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    33/107

    Gauss-Seidel Iterative Algorithm (2/2)

    Step 1 Set k  = 1

    Step 2 While (k  ≤ N ) do Steps 3–6:

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 15 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    34/107

    Gauss-Seidel Iterative Algorithm (2/2)

    Step 1 Set k  = 1

    Step 2 While (k  ≤ N ) do Steps 3–6:

    Step 3 For i  = 1, . . . , n 

    set x i  =  1

    a ii 

    −i −1

     j =1

    a ij x  j  −n 

     j =i +1

    a ij XO  j  + b i 

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 15 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    35/107

    Gauss-Seidel Iterative Algorithm (2/2)

    Step 1 Set k  = 1

    Step 2 While (k  ≤ N ) do Steps 3–6:

    Step 3 For i  = 1, . . . , n 

    set x i  =  1

    a ii 

    −i −1

     j =1

    a ij x  j  −n 

     j =i +1

    a ij XO  j  + b i 

    Step 4 If ||x − XO|| 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    36/107

    Gauss-Seidel Iterative Algorithm (2/2)

    Step 1 Set k  = 1

    Step 2 While (k  ≤ N ) do Steps 3–6:

    Step 3 For i  = 1, . . . , n 

    set x i  =  1

    a ii 

    −i −1

     j =1

    a ij x  j  −n 

     j =i +1

    a ij XO  j  + b i 

    Step 4 If ||x − XO|| 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    37/107

    Gauss-Seidel Iterative Algorithm (2/2)

    Step 1 Set k  = 1

    Step 2 While (k  ≤ N ) do Steps 3–6:

    Step 3 For i  = 1, . . . , n 

    set x i  =  1

    a ii 

    −i −1

     j =1

    a ij x  j  −n 

     j =i +1

    a ij XO  j  + b i 

    Step 4 If ||x − XO|| 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    38/107

    Gauss-Seidel Iterative Algorithm (2/2)

    Step 1 Set k  = 1

    Step 2 While (k  ≤ N ) do Steps 3–6:

    Step 3 For i  = 1, . . . , n 

    set x i  =  1

    a ii 

    −i −1

     j =1

    a ij x  j  −n 

     j =i +1

    a ij XO  j  + b i 

    Step 4 If ||x − XO|| 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    39/107

    Gauss-Seidel Iterative Algorithm

    Comments on the Algorithm

    Step 3 of the algorithm requires that a ii  = 0, for eachi  = 1, 2, . . . , n .

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 16 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    G S id l It ti Al ith

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    40/107

    Gauss-Seidel Iterative Algorithm

    Comments on the Algorithm

    Step 3 of the algorithm requires that a ii  = 0, for eachi  = 1, 2, . . . , n . If one of the  a ii  entries is 0 and the system isnonsingular, a reordering of the equations can be performed so

    that no a ii  = 0.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 16 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Ga ss Seidel Iterati e Algorithm

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    41/107

    Gauss-Seidel Iterative Algorithm

    Comments on the Algorithm

    Step 3 of the algorithm requires that a ii  = 0, for eachi  = 1, 2, . . . , n . If one of the  a ii  entries is 0 and the system isnonsingular, a reordering of the equations can be performed so

    that no a ii  = 0.

    To speed convergence, the equations should be arranged so that

    a ii  is as large as possible.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 16 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Gauss Seidel Iterative Algorithm

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    42/107

    Gauss-Seidel Iterative Algorithm

    Comments on the Algorithm

    Step 3 of the algorithm requires that a ii  = 0, for eachi  = 1, 2, . . . , n . If one of the  a ii  entries is 0 and the system isnonsingular, a reordering of the equations can be performed so

    that no a ii  = 0.

    To speed convergence, the equations should be arranged so that

    a ii  is as large as possible.

    Another possible stopping criterion in Step 4 is to iterate until

    x(k ) − x(k −1)

    x(k )

    is smaller than some prescribed tolerance.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 16 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Gauss Seidel Iterative Algorithm

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    43/107

    Gauss-Seidel Iterative Algorithm

    Comments on the Algorithm

    Step 3 of the algorithm requires that a ii  = 0, for eachi  = 1, 2, . . . , n . If one of the  a ii  entries is 0 and the system isnonsingular, a reordering of the equations can be performed so

    that no a ii  = 0.

    To speed convergence, the equations should be arranged so that

    a ii  is as large as possible.

    Another possible stopping criterion in Step 4 is to iterate until

    x(k ) − x(k −1)

    x(k )

    is smaller than some prescribed tolerance.

    For this purpose, any convenient norm can be used, the usual

    being the l ∞ norm.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 16 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Outline

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    44/107

    Outline

    1   The Gauss-Seidel Method

    2   The Gauss-Seidel Algorithm

    3   Convergence Results for General Iteration Methods

    4   Application to the Jacobi & Gauss-Seidel Methods

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 17 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    45/107

    Convergence Results for General Iteration Methods

    Introduction

    To study the convergence of general iteration techniques, we need

    to analyze the formula

    x(k ) = T x(k −1) + c,   for each k  = 1, 2, . . .

    where  x(0) is arbitrary.

    The following lemma and the earlier   Theorem on convergent

    matrices provide the key for this study.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 18 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://goforward/http://find/http://goback/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    46/107

    Convergence Results for General Iteration Methods

    Lemma

    If the spectral radius satisfies  ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    47/107

    Convergence Results for General Iteration Methods

    Lemma

    If the spectral radius satisfies  ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    48/107

    Convergence Results for General Iteration Methods

    Lemma

    If the spectral radius satisfies  ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    49/107

    Convergence Results for General Iteration Methods

    Lemma

    If the spectral radius satisfies  ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    50/107

    Convergence Results for General Iteration Methods

    Proof (2/2)Let

    S m  = I  + T  + T 2 + · · · + T m 

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 20 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    51/107

    Convergence Results for General Iteration Methods

    Proof (2/2)Let

    S m  = I  + T  + T 2 + · · · + T m 

    Then

    (I − T )S m  = (1 + T  + T 2 + · · · + T m ) − (T  + T 2 + · · · + T m +1) = I − T m +1

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 20 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    52/107

    Convergence Results for General Iteration Methods

    Proof (2/2)Let

    S m  = I  + T  + T 2 + · · · + T m 

    Then

    (I − T )S m  = (1 + T  + T 2 + · · · + T m ) − (T  + T 2 + · · · + T m +1) = I − T m +1

    and, since T   is convergent, the   Theorem on convergent matrices

    implies that

    limm →∞(I  − T )S m  =   limm →∞(I  − T m +1) = I 

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 20 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    53/107

    g

    Proof (2/2)Let

    S m  = I  + T  + T 2 + · · · + T m 

    Then

    (I − T )S m  = (1 + T  + T 2 + · · · + T m ) − (T  + T 2 + · · · + T m +1) = I − T m +1

    and, since T   is convergent, the   Theorem on convergent matrices

    implies that

    limm →∞(I  − T )S m  =   limm →∞(I  − T m +1) = I 

    Thus, (I  − T )−1 = limm →∞ S m  = I  + T  + T 2 + · · · =

    ∞ j =0 T 

     j 

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 20 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    54/107

    g

    Theorem

    For any  x(0) ∈   IRn , the sequence {x(k )}∞k =0  defined by

    x(k )

    = T x(k −1)

    +c

    ,   for each k  ≥ 1

    converges to the unique solution of

    x =  T x + c

    if and only if ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    55/107

    g

    Proof (1/5)First assume that ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    56/107

    g

    Proof (1/5)First assume that ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    57/107

    Proof (1/5)First assume that ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    58/107

    Proof (1/5)

    First assume that ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    59/107

    Proof (1/5)

    First assume that ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    60/107

    Proof (1/5)

    First assume that ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    61/107

    Proof (2/5)The previous lemma implies that

    limk →∞

    x(k ) =   lim

    k →∞

    T k x(0) +

     j =0

    T  j 

    c

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 23 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/http://goback/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    62/107

    Proof (2/5)The previous lemma implies that

    limk →∞

    x(k ) =   lim

    k →∞

    T k x(0) +

     j =0

    T  j 

    c

    =   0 + (I  − T )−1c

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 23 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    63/107

    Proof (2/5)The previous lemma implies that

    limk →∞

    x(k ) =   lim

    k →∞

    T k x(0) +

     j =0

    T  j 

    c

    =   0 + (I  − T )−1c

    = (I  − T )−1c

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 23 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    64/107

    Proof (2/5)The previous lemma implies that

    limk →∞

    x(k ) =   lim

    k →∞

    T k x(0) +

     j =0

    T  j 

    c

    =   0 + (I  − T )−1c

    = (I  − T )−1c

    Hence, the sequence {x(k )} converges to the vector  x ≡  (I  − T )−1cand  x =  T x + c.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 23 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    65/107

    Proof (3/5)

    To prove the converse, we will show that for any  z ∈   IRn , we havelimk →∞ T 

    k z =  0.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 24 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://goforward/http://find/http://goback/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    66/107

    Proof (3/5)

    To prove the converse, we will show that for any  z ∈   IRn , we havelimk →∞ T 

    k z =  0.

    Again, by the theorem on convergent matrices, this is equivalentto ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    67/107

    Proof (3/5)

    To prove the converse, we will show that for any  z ∈   IRn , we havelimk →∞ T 

    k z =  0.

    Again, by the theorem on convergent matrices, this is equivalentto ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    68/107

    Proof (3/5)

    To prove the converse, we will show that for any  z ∈   IRn , we havelimk →∞ T 

    k z =  0.

    Again, by the theorem on convergent matrices, this is equivalentto ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    69/107

    Proof (3/5)

    To prove the converse, we will show that for any  z ∈   IRn , we havelimk →∞ T 

    k z =  0.

    Again, by the theorem on convergent matrices, this is equivalentto ρ(T ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    70/107

    Proof (4/5)

    Also,

    x − x(k ) = (T x + c) −

    T x(k −1) + c

     = T x − x(k −1)

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 25 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://goforward/http://find/http://goback/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    71/107

    Proof (4/5)

    Also,

    x − x(k ) = (T x + c) −

    T x(k −1) + c

     = T x − x(k −1)

    sox − x(k ) =   T 

    x − x(k −1)

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 25 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    72/107

    Proof (4/5)

    Also,

    x − x(k ) = (T x + c) −

    T x(k −1) + c

     = T x − x(k −1)

    sox − x(k ) =   T 

    x − x(k −1)

    =   T 2x − x(k −2)

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 25 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://goforward/http://find/http://goback/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    73/107

    Proof (4/5)

    Also,

    x − x(k ) = (T x + c) −

    T x(k −1) + c

     = T x − x(k −1)

    sox − x(k ) =   T 

    x − x(k −1)

    =   T 2x − x(k −2)

    =

      ...

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 25 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    74/107

    Proof (4/5)

    Also,

    x − x(k ) = (T x + c) −

    T x(k −1) + c

     = T x − x(k −1)

    sox − x(k ) =   T 

    x − x(k −1)

    =   T 2x − x(k −2)

    =

      ...

    =   T k x − x(0)

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 25 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    75/107

    Proof (4/5)

    Also,

    x − x(k ) = (T x + c) −

    T x(k −1) + c

     = T x − x(k −1)

    sox − x(k ) =   T 

    x − x(k −1)

    =   T 2x − x(k −2)

    =

      ...

    =   T k x − x(0)

    =   T k z

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 25 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    76/107

    Proof (5/5)

    Hence

    limk →∞

    T k z   =   limk →∞

    T k x − x(0)

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 26 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    77/107

    Proof (5/5)

    Hence

    limk →∞

    T k z   =   limk →∞

    T k x − x(0)

    =   limk →∞

    x − x(k )

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 26 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    78/107

    Proof (5/5)

    Hence

    limk →∞

    T k z   =   limk →∞

    T k x − x(0)

    =   limk →∞

    x − x(k )

    =   0

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 26 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    79/107

    Proof (5/5)

    Hence

    limk →∞

    T k z   =   limk →∞

    T k x − x(0)

    =   limk →∞

    x − x(k )

    =   0

    But  z ∈   IRn  was arbitrary, so by the theorem on convergentmatrices, T   is convergent and ρ(T ) <   1.

    Numerical Analysis (Chapter 7)   Jacobi & Gauss-Seidel Methods II   R L Burden & J D Faires 26 / 38

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence Results for General Iteration Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    80/107

    Corollary

    T  

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    81/107

    Corollary

    T  

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    82/107

    Corollary

    T  

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    83/107

    Corollary

    T  

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    84/107

    1   The Gauss-Seidel Method

    2   The Gauss-Seidel Algorithm

    3   Convergence Results for General Iteration Methods

    4   Application to the Jacobi & Gauss-Seidel Methods

    Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 28 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    85/107

    Using the Matrix Formulations

    We have seen that the Jacobi and Gauss-Seidel iterative techniques

    can be written

    x(k ) =   T  j x

    (k −1) + c j    and

    x(k ) =   T g x(k −1) + cg 

    Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 29 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://goforward/http://find/http://goback/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    86/107

    Using the Matrix Formulations

    We have seen that the Jacobi and Gauss-Seidel iterative techniques

    can be written

    x(k ) =   T  j x

    (k −1) + c j    and

    x(k ) =   T g x(k −1) + cg 

    using the matrices

    T  j  = D −1(L + U )   and   T g  = (D − L)

    −1U 

    respectively.

    Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 29 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    87/107

    Using the Matrix Formulations

    We have seen that the Jacobi and Gauss-Seidel iterative techniques

    can be written

    x(k ) =   T  j x

    (k −1) + c j    and

    x(k ) =   T g x(k −1) + cg 

    using the matrices

    T  j  = D −1(L + U )   and   T g  = (D − L)

    −1U 

    respectively. If ρ(T  j ) or ρ(T g ) is less than 1, then the correspondingsequence {x(k )}∞k =0  will converge to the solution  x of Ax =  b.

    Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 29 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    88/107

    Example

    For example, the Jacobi method has

    x(k ) = D −1(L + U )x(k −1) + D −1b,

    Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 30 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    89/107

    Example

    For example, the Jacobi method has

    x(k ) = D −1(L + U )x(k −1) + D −1b,

    and, if {x(k )}∞k =0

     converges to  x,

    Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 30 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    90/107

    Example

    For example, the Jacobi method has

    x(k ) = D −1(L + U )x(k −1) + D −1b,

    and, if {x(k )}∞k =0

     converges to  x, then

    x =  D −1(L + U )x + D −1b

    Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 30 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    91/107

    Example

    For example, the Jacobi method has

    x(k ) = D −1(L + U )x(k −1) + D −1b,

    and, if {x(k )}∞k =0

     converges to  x, then

    x =  D −1(L + U )x + D −1b

    This implies that

    D x = (L + U )x + b   and   (D − L − U )x =  b

    Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 30 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    92/107

    Example

    For example, the Jacobi method has

    x(k ) = D −1(L + U )x(k −1) + D −1b,

    and, if {x(k )}∞k =0

     converges to  x, then

    x =  D −1(L + U )x + D −1b

    This implies that

    D x = (L + U )x + b   and   (D − L − U )x =  b

    Since D − L − U  = A, the solution  x satisfies Ax =  b.

    Numerical Analysis (Chapter 7) Jacobi & Gauss Seidel Methods II R L Burden & J D Faires 30 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    93/107

    The following are easily verified sufficiency conditions for convergence

    of the Jacobi and Gauss-Seidel methods.

    Numerical Analysis (Chapter 7) Jacobi & Gauss Seidel Methods II R L Burden & J D Faires 31 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    94/107

    The following are easily verified sufficiency conditions for convergence

    of the Jacobi and Gauss-Seidel methods.

    Theorem

    If A is strictly diagonally dominant, then for any choice of  x(0), both the

    Jacobi and Gauss-Seidel methods give sequences {x(k )}∞k =0  thatconverge to the unique solution of Ax =  b.

    Numerical Analysis (Chapter 7) Jacobi & Gauss Seidel Methods II R L Burden & J D Faires 31 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    95/107

    Is Gauss-Seidel better than Jacobi?

    Numerical Analysis (Chapter 7) Jacobi & Gauss Seidel Methods II R L Burden & J D Faires 32 / 38 Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    96/107

    Is Gauss-Seidel better than Jacobi?

    No general results exist to tell which of the two techniques, Jacobi

    or Gauss-Seidel, will be most successful for an arbitrary linear

    system.

    Numerical Analysis (Chapter 7) Jacobi & Gauss Seidel Methods II R L Burden & J D Faires 32 / 38

    http://find/

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    97/107

    Gauss-Seidel Method   Gauss-Seidel Algorithm   Convergence Results   Interpretation

    Convergence of the Jacobi & Gauss-Seidel Methods

    S

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    98/107

    (Stein-Rosenberg) Theorem

    If a ij  ≤ 0, for each i  = j  and a ii   > 0, for each i  = 1, 2, . . . , n , then oneand only one of the following statements holds:

    (i)   0 ≤  ρ(T g ) < ρ(T  j ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    99/107

    (Stein-Rosenberg) Theorem

    If a ij  ≤ 0, for each i  = j  and a ii   > 0, for each i  = 1, 2, . . . , n , then oneand only one of the following statements holds:

    (i)   0 ≤  ρ(T g ) < ρ(T  j ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    100/107

    Two Comments on the Thoerem

    For the special case described in the theorem, we see from part

    (i), namely

    0 ≤ ρ(T g ) < ρ(T  j ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    101/107

    Two Comments on the Thoerem

    For the special case described in the theorem, we see from part

    (i), namely

    0 ≤ ρ(T g ) < ρ(T  j ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    102/107

    Two Comments on the Thoerem

    For the special case described in the theorem, we see from part

    (i), namely

    0 ≤ ρ(T g ) < ρ(T  j ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    103/107

    Two Comments on the Thoerem

    For the special case described in the theorem, we see from part

    (i), namely

    0 ≤ ρ(T g ) < ρ(T  j ) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    104/107

    Eigenvalues & Eigenvectors: Convergent Matrices

    Theorem

    The following statements are equivalent.

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    105/107

    g q

    (i)   A is a convergent matrix.

    (ii)   limn →∞ An  = 0, for some natural norm.

    (iii)   limn →∞ An  = 0, for all natural norms.

    (iv)   ρ(A) 

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    106/107

    Let g  ∈ C [a , b ] be such that g (x ) ∈ [a , b ], for all x   in [a , b ]. Suppose, inaddition, that g  exists on (a , b ) and that a constant 0  

  • 8/20/2019 Iterative Techniques in Matrix Algebra

    107/107

    Corrollary to the Fixed-Point Convergence Result

    If g  satisfies the hypothesis of the Fixed-Point   Theorem then

    |p n  − p | ≤   k n 

    1 − k |p 1 − p 0|

    Return to the Corollary to the Convergence Theorem for General Iterative Methods

    http://goforward/http://find/http://goback/