ist yr-3-2006

Upload: prateek-sharma

Post on 08-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 Ist yr-3-2006

    1/30

    Complex ion defined as electrically charged radical whichconsists of a central metal ion surrounded by a group of ions or

    neutral moleculesEx. [ Ni(NH3)6]

    ++, [ Pt (NH3)4Cl2]++

    Central ion and ligands The cation to which one or more neutralmolecules or anions are attached is called the central ion while

    molecules or ions attached are called ligands

    Ex. [ Ni(NH3)6]++, [ Fe (CN)6)]

    - - -

    Ligands Central metal atom coordinatebonds

    Central ion ligand

    Should have lone

    pair of electrons

    Should have vacant

    orbitals

    attached to

  • 8/7/2019 Ist yr-3-2006

    2/30

    Donor atom atom of ligand which can donate the electron pair

    is called donor or coordination atom

    Coordination number Total number of ligands attached to a

    central ion is called the coordination number of the ion

    Charge of complex ion charge carried by a complex ion is the

    algebraic sum of charges carried by central ion and ligandscoordinated to it

    [Cu (NH3)6]++ , [Fe (CN)6]

    4-

  • 8/7/2019 Ist yr-3-2006

    3/30

    In coordination compound

    Metal exhibits two types of

    valency

    Primary Secondary

    ionizable non-ionizable

    Corresponds to

    Oxidation state coordination number Fixed for every metal

    CO

    NH3Cl

    NH3

    NH3

    ClNH3

    H3N

    H3N

    Cl

    Example CoCl3

    .6NH3

  • 8/7/2019 Ist yr-3-2006

    4/30

    Effective atomic number (EAN)

    In complex formation each ligand donates a electron pair to the

    central metal ion. Total number of electrons possessed by the

    central metal in complex including those gained by it in bonding iscalled its EAN

    Atom At. No. Complex Electron lost

    in ion

    formation

    Electron

    gained by

    coordination

    EAN

    Cr

    Fe

    Co

    Cu

    Pd

    Pt

    24

    26

    27

    29

    46

    78

    [Cr (CO)6]

    [Fe(CN)6]4-

    [CO(NH3)6]+++

    [Cu(CN)4]---

    [Pd(NH3)6

    ]4+

    [PtCl6]--

    ? ? ?

  • 8/7/2019 Ist yr-3-2006

    5/30

    Atom At. No. Complex Electron lost in

    ion formation

    Electron gained

    by coordination

    EAN

    Cr

    Fe

    Co

    Cu

    Pd

    Pt

    24

    26

    27

    29

    46

    78

    [Cr (CO)6

    ]

    [Fe(CN)6]4-

    [CO(NH3)6]+++

    [Cu(CN)4]---

    [Pd(NH3)6]4+

    [PtCl6]--

    0

    2

    3

    1

    4

    4

    12

    12

    12

    8

    12

    12

    36

    36

    36

    36

    54

    86

    Valence Bond Theory Developed by Pauling

    Coordination compounds contain complex ions in which ligands

    from coordinate bonds to the metal.

    So, ligand must have lone pair of electrons and metal must have

    empty orbital of suitable energy available for bonding.

    According to the atomic orbital of the metal used for bonding, shape

    and stability of the complex is predicted.

  • 8/7/2019 Ist yr-3-2006

    6/30

  • 8/7/2019 Ist yr-3-2006

    7/30

  • 8/7/2019 Ist yr-3-2006

    8/30

  • 8/7/2019 Ist yr-3-2006

    9/30

  • 8/7/2019 Ist yr-3-2006

    10/30

  • 8/7/2019 Ist yr-3-2006

    11/30

  • 8/7/2019 Ist yr-3-2006

    12/30

  • 8/7/2019 Ist yr-3-2006

    13/30

  • 8/7/2019 Ist yr-3-2006

    14/30

  • 8/7/2019 Ist yr-3-2006

    15/30

  • 8/7/2019 Ist yr-3-2006

    16/30

    Crystal field theory

    In an isolated metal ion, all the five d orbitals degenerate

    On approach of ligand, d orbital electrons will be repelled by

    ligands lone pair

    Repulsion raises the energy of d orbitals

    If field produced by the ligands is spherically symmetrical (allthe ligands are an equal distance from each of the d orbitals),

    energy of the d orbital will be raised but they still remain

    degenerated hypothetical situation

    But, field produced by the ligands is not spherically symmetricalbecause d orbitals differ in their orientations

    Energy of the orbitals lying directly in ligands direction will be

    raised more than the orbitals lying in between the ligands

  • 8/7/2019 Ist yr-3-2006

    17/30

    Crystal field theory

    So, d orbital splits into two sets of different energies

    This crystal field splitting forms the basis of Crystal Field Theory

    Relative energies of d orbital depends on the number of ligands

    and their arrangement around central metal ion

    So crystal field splitting will be different in different structureswith different coordination number

    Electrons of the metal ion are repelled by negative field of

    electrons, therefore, the metal electrons will occupy those d

    orbitals which have their lobes farthest away from the directionof ligand

    Complexes with coordination number 6 and 4 are more common

    giving octahedral, tetrahedral and square-planar complexes

  • 8/7/2019 Ist yr-3-2006

    18/30

    +0.6 (O

    -0.4 (O

  • 8/7/2019 Ist yr-3-2006

    19/30

  • 8/7/2019 Ist yr-3-2006

    20/30

  • 8/7/2019 Ist yr-3-2006

    21/30

  • 8/7/2019 Ist yr-3-2006

    22/30

  • 8/7/2019 Ist yr-3-2006

    23/30

  • 8/7/2019 Ist yr-3-2006

    24/30

  • 8/7/2019 Ist yr-3-2006

    25/30

    Crystal

  • 8/7/2019 Ist yr-3-2006

    26/30

  • 8/7/2019 Ist yr-3-2006

    27/30

    The d-d transition is the single broad peak with a maximum at20,300 cm-1

    1 kJmol-1 = 83.7 cm-1

    (o

    for [Ti(H2O)6]3+ is 20,300 / 83.7 = 243 kJmol-1

    Most convenient way for measuring (o values

    Single d electron occupies an energy level 2/5 (obelow the

    average energy level

    CFSE for this complex = 2/5 x 243 = 97 kJmol-1

  • 8/7/2019 Ist yr-3-2006

    28/30

    Magnitude of CFS depends on 3 factors

    Nature of ligand

    Charge on the metal ion Whether the metal is in 1st, 2nd and 3rd row of transition

    elements

    Magnitude of increases as the charge on the metal ionincreases

    M+++ complexes have greater than M++

    (o

    (o

    Oxidation state V Cr Mn Fe Co

    (+II) electronic configuration

    in cm-1d3

    12600

    d4

    13900

    d5

    7800

    d6

    10400

    d7

    9300

    (+III) electronic configuration

    in cm-1d2

    18900

    d3

    17830

    d4

    21000

    d5

    13700

    d6

    18600

    (o

    (o

  • 8/7/2019 Ist yr-3-2006

    29/30

    Value of CFS increases by about 30% between adjacentmembers down a group of transition elements

    Crystal field splitting in one group

    values range 7000 30000 cm-1

    Nature of Ligand CFS by various ligands

    Complex cm-1 kJmol-1

    [Co(NH3)6]3+ 24800 296

    [Rh(NH3)6]3+ 34000 406

    [Ir(NH3)6]

    3+

    41000 490

    Complex cm-1 kJmol-1

    [CrCl6]3- 13640 163

    [Cr(H2O)6]3+ 17830 213

    [Cr(NH3)6]3+ 21680 259

    [Cr(CN)6]3-

    26280 314

    (o

  • 8/7/2019 Ist yr-3-2006

    30/30