irgc sb final 07jan web

Upload: welinton-eustaquio

Post on 05-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Irgc SB Final 07jan Web

    1/52

    Policy Brie

    international risk governance council

    Guidelines for the Appropriate

    Risk Governance ofSynthetic Biology

  • 8/2/2019 Irgc SB Final 07jan Web

    2/52international risk governance council Guidelines for the Appropriate Risk Governance of Synthetic Biology

    P 2

    ATC AirTrafcControl

    BWC BiologicalWeaponsConvention

    CCS CarbonCaptureandStorage

    COP ConferenceoftheParties

    CBD ConventiononBiologicalDiversity

    DNA Deoxyribonucleicacid

    ENMOD EnvironmentalModicationConvention

    EPA USEnvironmentalProtectionAgency

    EU EuropeanUnion

    FAO UNFoodandAgricultureOrganization

    FDA USFoodandDrugAdministration

    GATT GeneralAgreementonTariffsandTrade

    GM Geneticallymodied

    GMO Geneticallymodiedorganism

    GURTs Geneticuse-restrictiontechnologies

    IASB InternationalAssociationforSyntheticBiology

    ICGEB InternationalCentreforGeneticEngineeringandBiotechnology

    ICT Informationandcommunicationtechnologies

    IP Intellectualproperty

    IRGC InternationalRiskGovernanceCouncil

    LMO Livingmodiedorganism

    NIH USNationalInstitutesofHealth

    NGO Non-GovernmentalOrganisation

    OECD OrganisationforEconomicCo-operationandDevelopment

    RNA Ribonucleicacid

    SRM SolarRadiationManagement

    TRIPS Trade-RelatedAspectsofIntellectualPropertyRights

    UN UnitedNations

    US UnitedStatesofAmerica

    USDA USDepartmentofAgricultureWTO WorldTradeOrganization

    InternationalRiskGovernanceCouncil,2010.

    ReproductionoforiginalIRGCmaterialisauthorisedprovidedthatIRGCisacknowledged

    asthesource.

    ISBN978-2-9700672-6-9

    Abbreviations used in the text:

  • 8/2/2019 Irgc SB Final 07jan Web

    3/52international risk governance councilGuidelines or the Appropriate Risk Governance o Synthetic Biology

    P 3

    Contents

    PreaceExecutive summary

    Introduction

    1. What is synthetic biology?Box: Genetics and molecular biology

    2. Current developments in synthetic biology

    2.1 Current and past activities

    2.2 Some potential uture applications

    3. Risks o synthetic biology

    4. Existing policy and regulatory rameworks, and their decits

    4.1 Regulatory and governance contexts

    4.2 Risk Governance Defcits

    5. Risk governance in synthetic biology

    5.1 The concept o appropriate risk governance

    5.2 Regulation and governance o frst-generation synthetic biology5.3 Policy and regulatory strategies in biosaety and biosecurity related to research,

    innovation and technology development

    5.4 Intellectual property (IP) issues and maintaining incentives or innovation

    5.5 Risk regulation and barriers to innovation

    5.6 Local, regional and international perspectives on regulatory oversight and risks

    5.7 Technological risk management options

    5.8 Policy and regulatory strategies related to public and stakeholder dialogue

    6. Guidelines Avoiding uture risk governance decits or synthetic biology

    6.1 Guidelines relevant to research and technology development

    6.2 Guidelines relevant to public and stakeholder engagement

    6.3 Systemic guidelines

    Conclusion

    Reerences and bibliography

    Acknowledgements

    About IRGC

    4

    5

    7

    9

    11

    14

    14

    18

    21

    24

    24

    26

    29

    29

    2930

    33

    34

    35

    36

    37

    40

    40

    41

    42

    43

    44

    50

    51

  • 8/2/2019 Irgc SB Final 07jan Web

    4/52international risk governance council Guidelines or the Appropriate Risk Governance o Synthetic Biology

    P 4

    TheInternationalRiskGovernanceCouncil(IRGC)aimstoimprovethegovernanceofemerging,systemicrisksthroughhelpingdecision-makers,particularlygovernments,

    toanticipateandunderstandsuchrisksandtheoptionsformanagingthembefore

    they become urgent policy priorities. IRGCs risk governance recommendations

    are communicated to policymakers to inform their work in designing policies and

    regulations,drawingtheirattentiontoaspectsoftheissuethatmightbeinappropriately

    neglectedorignored.

    IRGCscoreprocessinworkingonsyntheticbiologycomprisedthefollowing:

    Analysing the scientic and technological developments and their associated

    opportunitiesandrisks,aswellastheinstitutionsandriskgovernancestructures

    andprocessesthatarecurrentlyinplaceforassessingandmanagingthese;Identifyingpotentialissuesofconcernattheearliestpossibletime;

    Identifyingandunderstandingriskgovernancedecitswhichappeartohinderthe

    efcacyoftheexistingriskgovernancestructuresandprocesses;

    Developingguidelinesthataddressthesedecits.

    ThispolicybriefonsyntheticbiologyispartofIRGCsworkontheriskgovernanceof

    innovativetechnologies.PreviousIRGCprojectsonsuchtechnologiesincludeworkon

    nanotechnology,carboncaptureandstorage(CCS)andsolarradiationmanagement

    (SRM).IRGChasidentiedsyntheticbiologyasanewtechnologyforwhichtheremay

    besignicantdecitsinriskgovernancestructuresandprocesses,inpartbecauseof

    uncertaintiesaboutthedirectionsthatthetechnologymighttake.

    OfparticularconcerntoIRGCisthatimportantsocialandeconomicbenetsofferedby

    innovativetechnologiesarenotcompromisedbyinadequateriskgovernance,which

    could result in unduly restrictive regulation. Synthetic biology has the potential to

    providepotentialsolutionstosomeofthechallengesthattheworldfacesintheelds

    ofenvironmentalprotection(e.g.,detectingandremovingcontaminants),health(e.g.,

    diagnostics,vaccinesanddrugs)andenergyandindustry(e.g.,biofuels).Atthesame

    time,IRGCaims toensure that risksare not underestimatedbythosedeveloping

    the eld, and it recognises that some potentially severe risks might demand the

    recommendationofnewprecautionarymeasures.

    InOctober2009,IRGCorganisedamulti-stakeholderworkshopinGenevaentitled

    RiskGovernanceofSynthetic Biology, atwhich manyoftheissues raised inthis

    policybriefwerediscussed.Itwasattendedby24participantsfromtheUnitedStates

    (US),Canada,ChinaandmanyEuropeancountries,includingexpertsfromacademia,

    governments, non-governmental organisations (NGOs) and the private sector. An

    IRGC concept note [IRGC,2009b] was published asa brieng document for this

    workshop(availableonIRGCswebsite,www.irgc.org.)

    Thispolicybriefdoesnotintendtoproposeawideandexhaustivereviewoftheeldof

    syntheticbiology,buttoreectandelaborateonthediscussionsattheworkshopand

    subsequentriskgovernancedevelopmentsintheeld.Moreover,IRGCrecognises

    thatgovernments,industryandothersectorsarealreadyseekingwaystoresolvethe

    uncertaintiesassociatedwiththeriskgovernanceofsyntheticbiology.Theaimofthis

    policybriefistoprovideguidancetodecision-makerstoachievethisgoal.

    Preace

  • 8/2/2019 Irgc SB Final 07jan Web

    5/52international risk governance councilGuidelines or the Appropriate Risk Governance o Synthetic Biology

    P 5

    Executive summary

    Synthetic biology is a new scienticdiscipline emerging from the convergence ofbiotechnology,geneticsandadvancesinthesystems-scalefundamentalunderstanding

    oflivingorganisms,alongwithaspectsofphysics,chemistryandcomputerscience.Itis

    predicatedonanengineeringapproachtobiology:anunderstandingofthemechanisms

    bywhichlivingcellsfunction,coupledtotheavailabilityoftoolsforinterveninginand

    alteringthesefunctionsatthegeneticlevelorevenforrebuildingsomebiological

    entitiesandprocessesfromscratchusingchemicalmethods.Thisismakingitpossible

    todesignlifeinmuchthesamewayaswemightdesignanautomobileoranelectronic

    circuit.Insteadofrelyingonhaphazardtinkeringorsmall-scalegeneticmodicationto

    directlivingsystemstowardsnewobjectives,itmaybecomepossibletoradicallyalter

    whatcellsandorganismscanachieveinarational,systematicway.

    Thisdisciplineoffersgreatpromiseinareassuchashealthandmedicine,chemical

    manufacturingandenergygenerationandconversion.Butthereareattendantrisks,not

    justintermsofthesafetyofengineeredorsyntheticorganismsbutalsoinabroader

    senseofhowsuchapowerfultechnologicalcapacitymighttransformtheenvironment

    and society, affect economic development, and alter existing power relationships

    betweenbasicscience,industry,consumers,governments,andnations.

    This document develops the concept of appropriate risk governance: one that is

    enablingofinnovation,minimisesrisktopeopleandtheenvironment,andbalancestheinterestsandvaluesofallrelevantstakeholders.Itprovidessuggestionsforhow

    anappropriate trade-offbetween thesefactorsmightbe attained,andargues that

    regulationmustnotsimplyprohibitorrestrictanydevelopmentforwhichpotentialrisks

    canbeadducedbutshouldseektherightbalancebetweenpotentialsocialbenets

    anddangerseventhoughthesemaybothbeuncertainandspeculativeatthisearly

    stageintheeldsevolution.

    Someofthenear-termresearchinandapplicationsofsyntheticbiologywillbealready

    governedbyexistingregulatoryframeworks.However,thesearenotalwaysmutually

    compatible or consistent, and there are some areas of potential conict between

    different aims and priorities. Moreover, such frameworks have shortcomings and

    loopholeswhenappliedtosomeofthepotentialoutcomesofsyntheticbiologyforexample,safety risks for geneticallymodiedorganisms mightnot bebest judged

    fromthebehaviouroftheparentorganism,oncemodicationispursuedatthedeep

    systemic level that synthetic biology should enable.The objective here is to seek

    waysofaddressingsuch riskgovernancedecits thatallowa voice toall relevant

    stakeholdergroups.

    Withthisinmind,thepolicybriefoffersaseriesofguidelinesforpolicymakersinvolved

    in regulatingorotherwiseguiding oraffectingthe course of syntheticbiology.The

    guidelinesaddressfactorsrangingfrombiosecurityrisksinthefundamentalresearch

    and development stages, to the questionofhow tobalance transparencyagainst

    theneedforcommercialcondentiality.Amongthekeyconsiderationsare thatnew

    regulationsshould not repeat the mistakesof existingones,that theyshould take

    carenottoforeclosefutureadvancesthatcouldbeofsignicantsocialbenet,and

  • 8/2/2019 Irgc SB Final 07jan Web

    6/52international risk governance council Guidelines or the Appropriate Risk Governance o Synthetic Biology

    P 6

    thatthereshouldbeaninternationalefforttostandardiseproceduresandregulationswhilerecognisingthatparticularregionsandnationsmayhavespecicrequirements

    orvulnerabilities.

    Furthermore,aneffectiveapproachtoriskgovernanceofsyntheticbiologymustbe

    capableofevolvingasscienticandtechnicalknowledgeexpandsandaslessonsare

    learnedaboutthemostappropriateformsofregulationandgovernance:forexample,

    ifandhowthetechnologycanregulateitself,andhowintellectual-propertyframeworks

    mightbeststimulateinnovationinasustainableway.Thisrequiresexibilityintheface

    ofuncertaintyabouttheeventualapplications,products,processes,benetsandrisks,

    whilerecognisingthedangersofirreversibleharms.

  • 8/2/2019 Irgc SB Final 07jan Web

    7/52international risk governance councilGuidelines or the Appropriate Risk Governance o Synthetic Biology

    P 7

    Introduction

    SyntheticbiologyisoneofarangeofdevelopmentsinscienceandtechnologythatIRGChasidentiedasraisingchallengesforriskgovernance.Buildingondevelopmentsin

    thelifesciencesoverthepastseveraldecades,inessenceitinvolvestherepositioning

    ofbiologyasanengineeringdiscipline,sothatlivingorganismsbecomeamenable

    torationaldesignandsynthesis.Advancesinbiotechnologyandgeneticengineering

    inthepastseveraldecadeshavepresagedtheemergence ofthisneweld, but it

    nowpromisestotaketheirapproachtoanewlevelinourabilitytoplan,controland

    manipulatelivingsystems.

    Syntheticbiology represents just one illustrationof how rapidadvancesin the life

    sciencesareopeningupahostofpotentiallydramaticnewapplicationsinmedicine

    andhealthcare,agriculture,industrialchemistryandenergyproduction,amongother

    elds. Thesedevelopments also introduce possible new risks thatarenecessarily

    speculativeandhardtoassess.Yetthereisoftenpressurefordecision-makingabout

    riskgovernanceandregulationtobeginmanyyearsbeforeactualproductsappearon

    themarket.Errorsofjudgementattheseearlystagescanhaveamajorimpactonthe

    trajectoryofanewtechnology,aswellasontheeffectivenessandefciencyofrisk

    governanceitself[Tait,2007].

    Such decisions, taken in a context of high uncertainty, also affect the investment

    environmentforinnovativetechnology.Complexregulatorysystemsgiverisetolong

    leadtimesfornewproductsandthustotheneedforlong-terminvestmenttosupport

    development. But investors are reluctant to commit funding without knowing what

    futureregulatorysystemswilllooklikeandthuswhatthelikelycostsofcompliance

    willbe.

    Thesepressures onpolicy-makers to take early decisionsabout risk governance,

    basedonincompleteormerelyspeculativeinformationaboutthescaleoftheactual

    risks,makeitdifculttoapplyconventionalriskgovernanceapproaches.Thereisa

    needforexibility,includingacapacitytomodifyearlydecisionsinthelightofemerging

    evidenceaboutrisksandopportunities.Suchanadaptiveapproachmust,however,

    alsoacknowledgetheneedtoidentifyandavoidpotentialirreversibleharms,which

    cannotbeamelioratedbylateradjustmentsinpolicy.

    Theconceptofriskgovernancethatweadoptheretakesabroadviewofrisk.Itincludes

    bothwhathasbeentermedriskmanagementorriskanalysis,aswellasconsidering

    howrisk-relateddecision-makingunfoldswhenarangeofactorsisinvolved,requiring

    coordinationandpossiblyreconciliationbetweenaprofusionofroles,perspectives,

    goalsandactivities[IRGC,2005].Ourgoalistodevelopguidelinesforappropriate

    risk governance of innovative technology that integrate in-depth, independent

    understanding of threekey areasand their interactions: (i) strategies for scientic

    researchandinnovationstrategiesinthepublicandprivatesectors;(ii)regulationand

    governanceofnewtechnology;and(iii)theinterestsandperspectivesofthepublic

    andotherstakeholders[Wield,2008].Ithaslongbeenunderstoodthatdecisionson

    riskregulationaredeterminedbyinteractionsamongthesethreeconstituencies;here

  • 8/2/2019 Irgc SB Final 07jan Web

    8/52international risk governance council Guidelines or the Appropriate Risk Governance o Synthetic Biology

    P 8

    weaimtoassesstheiroutcomesintermsofsocietalbenetsdeliveredorforegone.Thetargetaudienceforthispolicybriefincludespolicymakers,politicians,companies

    andresearcherswith interestsinbiotechnology,energy,health,agriculture,climate,

    environment,tradeandsecurity.

    Policy-makers and regulators can increasingly be seen as shaping, rather than

    responding to, innovative science and technology. They may inuence the future

    developmentofthescience,guideproductdevelopmentincertaindirections,andeither

    generateordiminishconictbetweenstakeholdergroups.Theguidelinesproposed

    herefocusonwhatpolicy-makersandregulatorscanachieveinthiscontext.Whilewe

    cannotpredicthowtheeldwillevolve,someregulatoryrethinkingmaybeneededif

    syntheticbiologyistogrowintoamature,safeandacceptedsetoftechnologies,with

    innovativeandsociallyvaluableproductsbroughttomarket[Rodemeyer,2009].

    Section1 ofthispolicybrief outlines the scopeand meaning ofsyntheticbiology,

    and Section 2 describes current developments and potential applications. Section

    3 considers the associated risks, and Section 4 outlines the existing regulatory

    frameworks for handling theseand identies potential risk governance decits. In

    Section5weconsidertheissueofappropriateriskgovernanceofsyntheticbiology

    and suggest approaches orguidelines for risk assessment and management that

    couldenablethepotentialbenetsofsyntheticbiologytobedeliveredwhileavoiding

    or minimising associated risks and ensuring proper accountability. Section 6 then

    proposesasetofguidelinestosupportpolicydecision-making.Twopreviousconcept

    notes[IRGC,2008;2009b],andalsoanIRGCworkshopinvolvingdiverseexpertsin

    syntheticbiology,haveprovidedbackgroundmaterial.

  • 8/2/2019 Irgc SB Final 07jan Web

    9/52international risk governance councilGuidelines or the Appropriate Risk Governance o Synthetic Biology

    P 9

    1. What is synthetic biology?

    Syntheticbiologyappliestheprinciplesofengineeringtolivingorganisms,regardingthemassystemsthatareamenabletodesignandfabricationforpredictableandclosely

    speciedfunctions.Bytailoringthepartsofanorganismthegeneticinstructions,the

    moleculesandmolecularassemblies,and theinteractionsbetweendifferentgenes,

    moleculesandcellsitaimstocreateorganismsthatfunctionandbehaveinways

    quitedifferentfromthenaturalspeciesonwhichtheyarebased.

    Throughout the twentieth century, cell biologists have steadily characterised the

    molecularcomponentsoflifeinincreasingdetail.Itisapparentthatlifearisesfrom

    theinteractionsoftheseparts:genesencodedinDNA,proteinsencodedingenes,as

    wellascellularcompartments,ionsandothersubstancesinthecelluid(cytoplasm),

    smallRNAmoleculesalsoencodedinthegenome,andothercomponents.Howthose

    interactionsareorchestratedremainsoneofthebigquestionsofmolecularbiology,in

    particularhowinformationandorganisationaretransmittedthroughoutahierarchyof

    sizescalesfromindividualmoleculestothewholeorganism.

    At the same time, biologists have sought to intervene in and to modify these

    interactions,changinganorganismsfunctionandphysiologytoinuencehuman

    health,forexample,ortoalterthepropertiesofagriculturalcrops,ortoconferuseful

    technologicalbehavioursonmicro-organisms.Theseeffortshaveresultedinaviewof

    lifesmechanismsthatowesastrongdebttoengineering.Theuseoftermssuchas

    bioengineeringandgeneticengineeringtestiestothewaytheengineeringparadigm,

    whichinvokesprinciplesofdesignandcontrol,hasalreadyimposeditselfonthelife

    sciences.Nonetheless,onthewholeourinterventionsinbiologyhavetendedtobe

    directedtowardseithercrudesabotageoftheprocessesoflifepreventingmicro-

    organismsorcancercellsfromproliferating,say orminor,adhocmodicationsof

    existingbehavioursinwhichmuchofthemechanicsremainsablackbox.

    Syntheticbiologynowaimstousetheengineeringparadigmformuchmoredramatic

    andsystematicinterventioninbiology:toapplyingbasicdesignprinciplesinorderto

    producepredictableandrobustbiologicalsystemswithnovelfunctionsandproperties

    that do not exist in nature. It has been described as the engineers approach to

    biology[Breithaupt,2006]andsomesyntheticbiologistsclaimthattheiraspirationistomakebiologyintoanengineeringdiscipline[Endy,2005;ArkinandFletcher,2006],

    somethingthatrequiresareductionistunderstandingofbiologicalcomplexity[Pleiss,

    2006].Thisengineeringapproachtobiology,combinedwithsyntheticbiologysheavy

    reliance on information technologies, makes the eld intrinsically interdisciplinary.

    Althoughsomeresearchersapproachsyntheticbiologyasadiscoveryscienceatool

    forinvestigatinghownatureworksitisultimatelylikelytobecomeamanufacturing

    technology,offeringnewsyntheticroutestosuchthingsasmedicines,newmaterials

    andfuels,environmentalorphysiologicalsensors,andmicro-organismsthatcleanup

    pollutants.

    Severalofthefundamentalscienticissuesandcurrentappliedobjectivesofsynthetic

    biologyoverlapwiththoseinother,morematureelds,especially biotechnology and

    Synthetic biologyaims to apply basicdesign principlesin order to produce

    predictable and

    robust biologicalsystems with novelunctions andproperties that donot exist in nature

    It is ultimatelylikely to becomea manuacturingtechnology, oeringnew synthetic routesto such things as

    medicines, newmaterials and uels

    Atypicalanimalcellwithits

    specialisedcompartments

  • 8/2/2019 Irgc SB Final 07jan Web

    10/52international risk governance council Guidelines or the Appropriate Risk Governance o Synthetic Biology

    P 10

    systems biology.Traditionally,biotechnology involves themanipulationofbiologicalmolecules, cells orwhole organisms to address technological challenges. But the

    degreeofmodicationinvolvedhastendedtobesmallandoftenbasedonastrongly

    empiricalapproachthatdoesnotredesignanorganismorcomponentatadeeplevel.

    Forexample,therearenowwelldevelopedwaystointroducegenesfromonespecies

    intothegenomesofanotherandtostimulatetheexpressionofthoseforeigngenesto

    produceanexcessoftheproteinproduct.Butwhenanaturallysynthesisedcompound

    involvesthecoordinatedactionofmanygenes,thesetechniquesstruggletoachieve

    therequiredcoordinationintimeandspace,inpartbecausetheinteractionsofgenes

    arepoorlyunderstood.Thislimitsthescopeofwhatbiotechnologycando.

    Itishopedthatmuchoftheunderstandingneededformoredramaticinterventionsand

    redesignofbiologicalsystemswillcomefromthedisciplineofsystemsbiology[Ideker,

    2004;Kitano,2002].Thisinvolvesthemappingofpathwaysandnetworksofinteraction

    betweengenes,proteinsandotherbiomolecularcomponents,soas toascertainthe

    logiccircuitryofnaturalorganismsatthelevelofcellsandsub-cellularcompartments,

    tissuesandthewholeorganism.Whilecellandmolecularbiologyandgeneticshave

    beenlargelyconcernedsofarwithstudyingindividualcomponentsandsmallgroupsof

    theminisolation,systemsbiologyaimstodiscoverhowtheyallttogetherinarobust,

    functionalsystem.Assuch,itshouldprovidetheanalyticalframeworkinwhichsynthetic

    biologywilloperate.Simulationtoolsandmodelsdevelopedinsystemsbiologywillbe

    usedinsyntheticbiologytodesignandengineernovelcircuitsorcomponents[Barrett

    etal.,2006].Inthisrespect,syntheticbiologywillinvolveusingsystemsbiologynotfor

    pureunderstandingofnaturalsystemsbutforpracticaldesignofsemi-synthetic,and

    ultimatelyperhapswhollysynthetic,ones.

    Itisimportanttoemphasisethat,asiscommonforanemergingtechnology,there

    isno consensus aboutwhere the boundariesofsynthetic biology lie orwhat form

    itmightmostproductivelytake.Itmay(andatpresent,generallydoes)involvethe

    useandmodicationofexistingorganisms;butthede novodesignandsynthesisof

    organismsisalsoagoalofsomeresearchers.Itiswidelybelievedthatthedesign

    elementshouldinvolvetheuseofstandardisedpartsandfollowaformaliseddesign

    process [ArkinandFletcher,2006]that takesit beyond thecapabilitiesofpreviousformsofgeneticengineering.Greatersophisticationandcomplexitymighttherebybe

    achieved,offeringtheabilitytomovefrominsertingonegeneatatimeintoanexisting

    biologicalsystemtotheconstructionandinsertionofwholespecialisedmetabolicunits

    [Stone,2006].Syntheticbiologyisnotrestrictedtousinggeneticorotherbiological

    materialfromexistingorganisms[POST,2008],andinvolvestinkeringwiththewhole

    systeminsteadofindividualcomponents[Breithaupt,2006:22].

    Despitethediversityanduiddenitionsofsyntheticbiology,fourinter-relatedresearch

    areascanbeidentiedthatcurrentlycontributeitsmajorthemes:

    Electronicdevicesaredesignedtoperforminawell-denedwaywheninserted1.intoanycircuit.Itiswidelythoughtthatthegenecircuitcomponentsofsynthetic

    Synthetic biologyinvolves tinkering

    with the wholesystem instead

    o individualcomponents

    There is noconsensus

    about where theboundaries o

    synthetic biologylie or what orm

    it might mostproductively take

  • 8/2/2019 Irgc SB Final 07jan Web

    11/52international risk governance councilGuidelines or the Appropriate Risk Governance o Synthetic Biology

    P 11

    biology,whichmightforexampleturnothergenesonandofforotherwisemodulatetheiractivity,willhavetobesimilarlystandardisedandreliable,sothattheycan

    besimplypluggedintocircuitsandperformpredictably.Theengineeringprinciples

    ofstandardisation,decouplingandabstraction[Endy,2005]maybeadoptedto

    develop biological components that are interchangeable, functionally discrete

    andcapableofbeingeasilyandreliablycombinedinamodularfashiontoenable

    predictableperformanceinawidevarietyoforganisms.

    Genome-drivencellengineeringfocusseson thedesignandsynthesisofwhole2.

    genomes something that has been made possibleby advances inchemical

    technology that will rapidly synthesise long stretches ofDNA with a specied

    sequence(thelinearorder of thebasicchemicalunits,whichencodesgeneticinformation). DNA synthesis is now a commercial technology and offers DNA

    sequences approaching the length of entire bacterial genomes.To use these

    constructsforsyntheticbiologyinvolveseithereditingthegenomicsequences

    ofexistinggenomestomakeamorestreamlinedandefcientgeneticchassis,

    whichcouldprovideaplatformformakingorganismswithnewgenomes[Gibson

    etal.,2010],or(moreambitiously)thewhollydenovodesignandsynthesisof

    genomes.

    Thechemicalcreationofprotocellswithlifelikefunctionssuchasreplicationand3.

    metabolism,forexamplebyinsertingnaturalormodiedbiomolecularcomponents

    intoarticial,hollow,cell-likesacscalledvesicles[Szostaketal.,2001].

    Morerevolutionaryresearchapproachesincludeattemptstocreateanalternative4.

    genetic alphabetwith new nucleotidesbeyond the four found innatural DNA.

    This could lead to pseudo-biomolecules or even synthetic proto-organisms

    thatare invisible tonaturalbiologicalsystems,as wellas suggestingways of

    commandeeringnaturalcellularmachinerytomakesubstanceswithachemical

    basisdifferentfromthosefoundinnature.

    Someoftheseareasareexplainedinmoredetailinthenextsection.

    Box: Genetics and molecular biology

    InthetraditionalpictureofgeneticsdevelopedsincethediscoveryofDNAs

    chemical structure in 1953, the double-helical molecule of DNA encodes

    in its sequence of chemical building blocks (called nucleotide bases) the

    informationneededtoconstructaproteinmoleculefromaminoacids.Mostof

    theseproteinsareenzymesthatenablebiochemicalprocessesinthecellto

    takeplace.Eachproteinisencodedbyaseparategene,andthenucleotide

    sequenceofageneonDNAistranslated(expressed)bycellularmolecular

    machineryintoasequenceofaminoacidsthatdeterminesthecorresponding

    proteinsshapeandfunction(Figure1).ThusDNAwasseenasarepositoryof

    encodedproteinstructures.

    DNAdoublehelix

  • 8/2/2019 Irgc SB Final 07jan Web

    12/52international risk governance council Guidelines or the Appropriate Risk Governance o Synthetic Biology

    P 12

    While this basic picture still holds, it

    is now complicated in many ways.

    Most importantly, the interaction of

    genesandproteinsistwo-way:some

    proteinswillattach themselves(bind)

    to DNA to regulate the way other

    genesareexpressed(turningagene

    onoroff,say),sothatineffectgenes

    caninuenceothergenes.Thiscross-

    talk between genes means that theyare linked into a complex network of

    interactions,leadingsomeresearchers

    todescribegeneticsusingmetaphors

    such as a society of genes, rather

    thanthetraditionalpictureofabook

    ofinformation(Figure2).Tracing

    these interactionnetworks ineffect,deducingthe wiring diagram of the

    cellsgeneticcircuitry(Figure3)isakeyaimofsystemsbiology,andthis

    informationisessentialifwearetodesignnewgenenetworkswithspecic

    functions,whichcanbeinsertedintogenomesusingthecuttingandsplicing

    toolsofbiotechnology.

    Figure 1:Thetraditionalpictureof

    genetics:howgeneticinformation

    ofDNAisconverted,viaRNA,into

    proteinstructureswithawell-dened

    shapeandfunction.

    Figure 2:Partofthenetworkofgenesrelatedtothefunctionofaproteincalled

    DISC1,whichplaysavarietyofrolesinthefunctioningofcells.Mostgenesand

    theircorrespondingproteinsareembeddedinnetworksofinteractionlikethis

    one.[Copyright:2009Hennah,Porteous;originalsource:http://www.plosone.

    org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0004906]

  • 8/2/2019 Irgc SB Final 07jan Web

    13/52international risk governance councilGuidelines or the Appropriate Risk Governance o Synthetic Biology

    P 13

    Figure 3:ThegenenetworkthatregulatesthebehaviourofTcells,involvedin

    theimmuneresponse.Thefeedbacksandinteractionsareanalogoustothosein

    computerlogiccircuits[FromGeorgescuetal.,2008;Copyright(2008)National

    AcademyofSciences,USA]

  • 8/2/2019 Irgc SB Final 07jan Web

    14/52international risk governance council Guidelines or the Appropriate Risk Governance o Synthetic Biology

    P 14

    Parallelshavebeendrawnbetweentodayssyntheticbiologyandtheearlydaysofthecomputerindustry.Ontheonehand,thisimpliesthatthetechnologicalrevolution

    broughtbysyntheticbiologywillbeasimportantastherevolutionininformationand

    communication technologies (ICT)brought aboutby electrical engineering [NEST,

    2005;NEST, 2007;RoyalSociety, 2008]. On the otherhand, it suggests that the

    preciseformandcontentofthatrevolutionisashardtopredictatthismomentasit

    wasforICTinthe1970s.

    Becauseofthefundamentalchangethatitproposestointroduceinthemethodology

    for modifying living organisms, synthetic biology may beable to fullmany of the

    promises that traditional biotechnology is still struggling to full,in such important

    areasasbiomedicine,thesynthesisofpharmaceuticals,thesustainableproduction

    of chemicals and energy, and safeguarding against bioterrorism. While traditional

    biotechnologyhashadsomenotableachievementsinseveraloftheseareas,they

    havegenerallybeenslowand expensiveto develop. Incontrast,syntheticbiology,

    withits rational,knowledge-basedapproachto biologicaldesign,mightattainsuch

    goalsmorequicklyandcheaply.Itwillalsoenabledevelopmentsthatarenotobviously

    feasiblewithconventionalbiotechnologicaltools,suchasthecoordinationofcomplex

    sequences of enzymatic processes in the cell-based synthesis of useful organic

    compounds.Thus,whilerst-generationsyntheticbiologyis likely tosimplyenable

    straightforwardextensionsofwhattodaysbiotechnologycanachieve,ultimatelyits

    goalsanditscapabilitieswillnotbemereextrapolationsofthissortbutmaydifferin

    qualitativeways, probablybringingaboutapplications thatwe cannot yetenvisage

    [IRGC,2008].Examplesofsomeofthecurrentachievementsandprojectedaimsare

    detailedbelow[seealsoNEST,2005].

    2.1 Current and past activities

    2.1.1 Synthetic gene circuits

    Mostofthekeyearlyworkinsyntheticbiologyinvolveddevisingsimplesyntheticgene

    circuitsandusingthetechniquesofbiotechnologytoinsertthemintobacterialgenomes

    and look for the correspondingchanges inthe behaviour ofthe cells[Elowitzand

    Leibler,2000;Gardneretal.,2000;Weiss,2004].Manyofthesecircuitswereinspired

    bythoseusedinelectronicengineeringforthelogicoperationsofcomputation:for

    example,switchestoturnothergenesonoroff,oroscillatorsthatinduceregularbursts

    oftheproductionofcertainproteins.Inoneinstance,oscillationsinthesynthesisofa

    uorescentproteinproducedbybacterialcellscausethemtoashwithasteadypulse

    whenilluminatedwithultravioletlight[ElowitzandLeibler,2000].

    Aswellasdemonstratingaproofofprinciplethefeasibilityofdesigninggenecircuits

    thatcancontrolcellbiochemistryinpre-determinedwaystheseeffortsmighthave

    genuine technological and biological applications. They mightenable genes tobe

    activatedandreactivatedatwill,orinresponsetooutsidesignals.Theycanbeused

    totesttheoriesofhowinformationprocessingworksinnaturalcells forexample,

    Parallels have beendrawn between

    todays synthetic

    biology and the earlydays o the computer

    industry

    Synthetic biology

    may be able toull many othe promises

    that traditionalbiotechnology is still

    struggling to ull

    Greenuorescentproteinexpressedinthecellsofaleaf

    [FromSantaCruzetal.,1996);

    Copyright(1996)NationalAcademy

    ofSciences,USA

    2. Current developments in synthetic biology

  • 8/2/2019 Irgc SB Final 07jan Web

    15/52international risk governance councilGuidelines or the Appropriate Risk Governance o Synthetic Biology

    P 15

    howthedetectionofparticularchemicalsignalsatthecellsurfacetriggersachangeincellbehaviour.Logic-processingoperationsincellsmightalsobeusedtodevelopnew

    kindsofbiologicalsensorsthatsignalthepresenceofpollutantsorbiomoleculesinthe

    environmentorthebody,andtoenablebacteriatocommunicatewithoneanotherin

    newways[Butleretal.,2004].Theengineeringoflogicgatesinmammaliancellsmight

    signicantlyextendtherealmofsyntheticbiologytomedicalapplications.

    To develop these capabilities in a systematic way analogous to the evolution of

    microelectronic circuitry, it seems fruitful to learn the lessons of the electronics

    industry:tocreatestandardisedcomponents(suchasswitchesandoscillators) that

    canbereliablypluggedintoanycircuit,forexample,andtoestablishalibraryofwell-

    characterisedgenedevices.Somestandardisedbiologicalparts,devicesandsystems

    (sometimescalledBioBricks)arebeingmadefreelyavailableonlineinanopenaccess

    library called the Registryof StandardBiological Parts. BioBrickscan beused for

    creatinggeneticcircuits,forexamplebyusinglogicgatesandoscillators,revealing

    directanalogieswithelectronicengineering[Lowrie,2010].

    Oneexampleofthewaysuchresearchmightbeappliedisanattempttodevelopa

    plantwhoseleafshapeorowercolourchangeswhenalandmineisburiedbelow

    it,bygeneticallyalteringtheplantrootstodetectexplosivestracesinthesoilandto

    communicatethatinformationtotheleavesorowers[Antunesetal.,2006].

    2.1.2 Creation o synthetic organisms

    Theannouncementofasyntheticorganismin2010byCraigVenterandhisco-workers

    [Gibsonetal.,2010]highlighted,amongother things,howambiguous thisterm is.

    Venterandcolleaguesdidnotbyanymeansbuildabacterialcellfromscratch;rather,

    theyreplacedthegenomeofanexistingcell(aparticularlysimpleformofbacteriaof

    thegenusMycoplasma,whichhasanunusuallysmallgenome)withonedesigned

    andmadebychemicalmethods.Thisnewgenomewasbasedonthenaturalone,

    butwithsomeadditionsanddeletions.ThustheMycoplasmacellswereessentially

    reprogrammedwithanewsetofgeneticinstructions,whichhadthemselvesbeen

    designedandmadeinthelaboratory.

    Thiswasanaturalandanticipateddevelopmentinexplorationsoftheconceptofa

    minimalgenome,whichVenters groupand othershadbeenpursuing forseveral

    years[Glassetal.,2006;Glassetal.,2007;Lartigueetal.,2007;Gibsonetal.,2008].

    The idea is that a genome strippeddown to the bare minimum ofgenesneeded

    toensure the organisms survivalcould act asa chassis onwhich new genomes

    couldbedesignedandbuilttoconfernewfunctionsbiosynthesisofanewfuelfrom

    naturalsources,sayontheorganism.Theverynotionofaminimalgenomeisitself

    ambiguouswhatgenesacellneedsmaydependonwhatenvironmentalchallenges

    itwillfacebuttheunderlyingconceptthatbacterialgenomescanbesimpliedand

    tailorednowseemstobevindicated.However,itremainstobeseenwhetherwecanunderstandthegenecircuitryofeventhesesimplebacterialgenomeswellenoughto

    enablewide-rangingandsystematicdesignofnewones.

    The underlyingconcept thatbacterial genomescan be simpliedand tailored nowseems to bevindicated

    New kinds obiological sensorsthat signal thepresence o

    pollutants orbiomolecules in theenvironment or thebody

  • 8/2/2019 Irgc SB Final 07jan Web

    16/52international risk governance council Guidelines or the Appropriate Risk Governance o Synthetic Biology

    P 16

    2.1.3 Biological computationThewayinwhichgeneticinformationisencodedandreadoutincellsisakindofdigital

    computation.Thishasledtosuggestionsthatsuchlogicmightbeusedbothtocontrol

    andmodifybiologicalprocessesin cells, formedicinesay [Benensonet al.,2004],

    and to use biological systems for purely technological information processing, for

    exampleinsensortechnologies.Onegroupisexploringcomplexlogicsystemsbased

    onribozymes(catalyticformsofRNA)thatwillenableexternalmolecularsignalsto

    activatedrugs[StojanovicandStefanovic,2003].OthershaveshownthatarticialDNA

    moleculescanbedesignedtoperformlogicoperations,computationsandcontrollable

    behaviouringeneral[LaBeanetal.,1999;Seeman,2003;Rothemund,2006].Synthetic

    biologymightpermitsuchsystems,whichhavebeenmadeandinvestigatedinvitro,tobeincorporatedinlivingcells.

    2.1.4 Building articial cells or compartments rom scratch

    Incontrasttothetop-downre-engineeringofnaturalorganismsexempliedbythework

    ofCraigVentersgroup,someresearchersarepursuingthegoalofmakingcell-like

    entitiesfromscratch,puttingthemtogetherfromeithernaturalorsyntheticmolecular

    components [Szostak et al, 2001; see http://www.protocell.org]. This bottom-up

    constructionofarticialprotocellscouldofferatestinggroundforideasabouthowlife

    beganonEarth,forexamplebyelucidatingtheminimalrequirementsoflife-likesystems

    thatcangrow,divideandevolve.Suchcellsmayalsohavepracticalapplications,forexampleactingasfactoriesfor thesynthesisofbiologicalmoleculesmuchas

    geneticallyengineeredmicro-organismscan,exceptthatsucharticialsystemswould

    bemuchsimplerandthereforeeasiertodesign,control,adaptandsustain.Asystem

    inwhichmicroscopiccompartments(vesicles)thatassemblethemselvesfromthelipid

    moleculesthatconstitutecellmembranesencapsulatepared-downgeneticmachinery

    (DNAandRNA)hasbeenshowntogenerateproteinswhenprovidedwiththeraw

    ingredients[NoireauxandLibchaber,2004].

    Onekeyaimistodevelopsyntheticprotocellsthatcanreplicateandpassongenetic

    information,probablyusingmodiedformsofthegeneticmachineryofnaturalcells.

    Very simple forms of self-replication have already been reported, for example in

    vesicleslikethosementionedabovebutmadefromself-assemblingmoleculeswhose

    formationiscatalysedbythevesiclesthemselves[Luisi,2006;Luisietal.,2006].

    2.1.5 Materials and nanotechnology

    Oneprominenttheme innanotechnology involves themimicryofnaturalmolecular

    systems that have evolved effective solutions to engineering problems of a sort

    encountered in technology, suchas storing information, harvesting lightor making

    materialswithatomic-scale precision.But it sometimes turns out thatsuch natural

    systems can themselves becommandeered for that purpose,oftenwith chemical

    modicationsthatmightbeimplementedatthelevelofthegenesthatencodethem.In

    thisrespect,syntheticbiologypotentiallyhasmuchtooffermolecularnanotechnology

    [Ball,2005].

    Some researchersare pursuing the

    goal o making cell-like entities rom

    scratch

    This bottom-upconstruction could

    oer a testingground or ideas

    about how liebegan on Earth

  • 8/2/2019 Irgc SB Final 07jan Web

    17/52international risk governance councilGuidelines or the Appropriate Risk Governance o Synthetic Biology

    P 17

    Forexample,protein-likemoleculeshavebeengeneratedusingdirectedevolutionofbiosyntheticpathwaysthatwillrecogniseandbindtoarangeofinorganicmaterials(for

    example,semiconductors)andthatcanactastemplatesandadhesivesforassembling

    functionalinorganicparticlesandthinlms,providingapotentialinterfacebetweenthe

    biologicalandinorganicworlds[Whaleyetal.,2000;Sarikayaetal.,2003].Molecular

    rotarymotorproteinshavebeenusedtorotatemicroscopicmetalblades[Soongetal.,

    2000],andtheproteinsresponsiblefortransportingsmallpacketsandobjectsaround

    incellshavebeenharnessedforthecontrolledtransportofarticialsmallparticles,

    offeringmolecularshuttlesthatmightbeusedtocreatecomplexmaterials,repairtiny

    defectsonsurfacesorinlivingcells,andtostoreandretrieveinformation[Hesset

    al.,2001].Chemicallymodiedviruseshavebeenusedastemplatesforcrystallising

    metallic and magnetic nanowires [Mao et al., 2003]. All these uses of biological

    molecularpartsmightgaininpowerandversatilityfromtheuseofsyntheticbiologyto

    assisttheirsynthesisincellsandtheirorganisation.

    2.1.6 Developing genomes rom using non-natural nucleotides, proteins

    rom non-natural amino acids

    Althoughproteinsand nucleicacidsare astonishinglydiversein theirstructuresand

    functions,theyincorporateonlyaverylimitedrangeofbasicbuildingblocks:20(amino

    acids) forproteins,four (nucleotides) forDNA. It ispossible thattheir repertoireof

    functionsmightbewidenedbyincludingmorediversebuildingblocksforexample,makingproteinsmorewater-repellentortemperature-resistant,ormakingDNAmore

    electricallyconducting.ExpandingthegeneticcodeofDNAcouldalsoallownewtypes

    ofinformationtobeencoded.Severalgroupshavemanagedtoincorporatenon-natural

    aminoacidsintoproteins[Wangetal.,2001;Chinetal.,2003,MontclareandTirrell,

    2006]andnon-naturalnucleotidesintoDNAandRNA[Kool,2002].Onegrouphas

    modiedbothbacterialandyeastcellstogeneticallyencodenon-naturalaminoacids

    sothattheymaybeinsertedintoproteinsatspeciedlocations[Wangetal.,2001;

    Chinetal.,2003].Insomecases,thecellsareabletomakethenewaminoacidsfrom

    simplerawingredientsintheenvironment.

    Partofthemotivationforsuchworkisfundamental:toexplorethelimitsofbiological

    informationtransferorthestructurespaceofproteinmolecules.Butthesestudies

    haveimportantpotentialapplicationstoo:forexample,drugsthatinteractwithnatural

    proteinsandnucleicacidsinnewways,orprotein-basedmaterialswithnewstructures

    and properties. For example, one aim of some articial genetic coding schemes

    thatusenon-naturalnucleotides[Kool,2002]istousechemicallymodiedDNAto

    detectthesmallgeneticmutationsthatcausecanceranddrugresistance.Articial

    genes incorporated intomicrobescanencode non-natural proteinswith interesting

    materialproperties(forexample,onesthatformliquidcrystalsandmaterialsfortissue

    engineering),includingsomewithnon-naturalaminoacids[Tirrelletal.,1991].

    2.1.7 In-cell synthesis o chemicals and materialsThereisawell-establishedeldcalledmetabolicengineering,whichaimstogenetically

    Anaminoacid

  • 8/2/2019 Irgc SB Final 07jan Web

    18/52international risk governance council Guidelines or the Appropriate Risk Governance o Synthetic Biology

    P 18

    engineerthemetabolicprocessesofsimpleorganismssothattheyproduceusefulchemicalsonanindustrialscalesomevitaminsandnechemicals,forexample,

    aremadethisway.However,thishasoftenreliedontinkeringratherthanrational,

    design-basedstrategies,frequentlyleadingtoonlyminorchangestothecellssynthetic

    capabilities.

    Syntheticbiologycouldgivethisapproachthemorerationalavouroftrueengineering.

    Theabilitytoharness,combine,modifyandadaptthegeneticallyencodedroutesby

    whichcellsmakecomplexorganicmoleculeswillopenupnewandefcientroutes

    to natural and non-natural compounds with medicinal and industrial value. These

    modulesmightbeengineeredintobacteriatogreatlyexpandthepowerofthekinds

    offermentationprocessescurrentlyusedwithgeneticallymodiedbacteriatomakepharmaceuticals.Somesuccesswiththisapproachhasalreadybeendemonstrated

    withtheengineeringofE.colibacteriatoproducetheantimalarialartemisinin,anatural

    productfoundinverysmallquantitiesinaspeciesofplant[Martinetal.,2003;Withers

    andKeasling,2007].Becauseofthemulti-stagenatureofthesynthesisofartemisinin

    inplants,thisre-engineeringofbacteriaisbeyondthereachofconventionalgenetic

    modication,requiringacomplicatedredesignofthebacterialgenome.

    2.2 Some potential uture applicationsThe developments described above open upsome new, often rather speculative,

    possibilitiesforsyntheticbiology.Someareasfollows.

    2.2.1 Biomedicine

    A smart drug would be one that contains an autonomous diagnostic capability; it

    coulddirectlysensemoleculardiseaseindicators,whichmayinitiatedrugactivation

    orrelease.Ideally,asmartdrugwouldbedeliveredtoapatientlikearegulardrug,

    but wouldonly become active incellsaffectedbya disease.The techniques and

    philosophyofsyntheticbiologyhavealreadybeenusedtodevelopprototypesofsuch

    drugsbasedonakindofcomputationperformedbysyntheticstrandsofDNA.

    Synthetic biology could help in the design of biocompatible devices, e.g., smallassembliesofmoleculesthatwillsensechangesinparticularbiochemicalsignalssuch

    ashormonesandwillproceedtosecreteachemicalorbiologicalcompoundinresponse

    [Benensonetal.,2004].Thiskindofdevicecouldbeusedtosensedamagetobody

    tissuessuchasbloodvesselsorbone,andtorepairthem.Syntheticbiologycould

    providewaystogeneratethesedevicesthemselves in situwithincellsinresponseto

    physiologicalsignalsofdamageordistress.

    Modiedvirusesarecurrentlybeingexploredastransportagentsforgenetherapy,

    whichcanpenetrate cellsanddeliverhealthy genesto the target tissue ina way

    thatpromotestheirintegrationwiththecellsgenome.Syntheticbiologymightoffer

    greatexibilityforthedesignandmodicationofsuchvirusvectors.Theymight,for

    example,betailoredtorecognisespeciccellsandtargetthemfordrugdeliveryor

    destruction.

    Synthetic biology

    could open up newand ecient routesto natural and non-natural compounds

    with medicinal andindustrial value

    A smart drugwould be delivered

    to a patient like aregular drug,

    but would onlybecome active in

    cells aected by a

    disease

    Artemisiaannua

  • 8/2/2019 Irgc SB Final 07jan Web

    19/52international risk governance councilGuidelines or the Appropriate Risk Governance o Synthetic Biology

    P 19

    Onevisionofpersonalisedmedicineistodevelopdrugsthatareadaptedintheirmodeofaction, formulation, dosage, and release rates tothe individual requirements of

    thepatient.Butthisisfeasibleonlyifsuchmedicineswithsubtledifferencescanbe

    manufacturedreliablyatasmallscale.Syntheticbiologymightbeusedtodevisecells

    thatwillmanufacturesuchdrugsaccordingtoprecisegeneticspecications.

    Itispossiblethatwewillbeabletomodifyhumancellstogivethemnewfunctions

    notpresentinourbody.Onemightimagine,forexample,cellsinvolvedintheimmune

    responsebeingprogrammedbydesign to recogniseandattack specic virusesor

    bacteria. Not only would this address the growing problem of antibiotic-resistant

    pathogenic bacteria but it could also reduce the chance of resistance spreading

    rapidly.

    2.2.2 Applications o non-natural biopolymers

    Thereiscurrentlygreatinterestindevelopingdrugsfromnucleicacids,suchassmall

    RNAmoleculesthatinterferewiththeexpressionofgenes.Modiednucleicacidswitha

    non-naturalchemicalcompositionmightbegivenadvantageouscharacteristicsfroma

    pharmaceuticalperspective,forexamplepassingmoreeasilyacrosscellmembranes.

    Organismswithanexpandedgeneticcodethatallowsmorethanthe20naturalamino

    acidstobeincorporatedintoproteinsshouldlikewiseenablethemanufactureofprotein

    drugswithnovelorenhancedproperties,forexamplebylengtheningtheirshelf-life

    ormakingthemlessormorepronetointerfereinunintentionalwayswithbiochemical

    processes.Enzymeswithnon-naturalaminoacidsmightalsoshowgreaterorless

    catalyticactivitywhenusedfortheproductionofpharmaceuticals.

    Pseudo-biomolecules with non-natural chemical structures could be designed to

    beinvisibletothenaturalchemistryofthecell,forexampleenablingthedesignof

    biomolecularsensorsthatoperateindependentlyfromnaturalproteinnetworksand

    pathways.Amongthepotentialusesofsuchinvivomolecularsensorsmightbethe

    veryearly detectionofcancer signals.Encodinggenetic information innon-natural

    nucleicacidsmightalsoreducetherisksofgeneticmodicationofnaturalorganisms,

    becausetheuseoftheaddedgenescouldthenbemadedependentonanexternal

    supplyoftheingredientsneededtomakethenon-naturalnucleicacids:withoutthem,

    theaddedgenescouldnotbereplicated.Thiswouldofferasimplewaytoswitchthe

    geneticmodicationonandoff,forexamplebywithholdingthenecessaryingredients

    fromatransgenicplant.

    Nucleic acids have been recognised asversatile components for the synthesisof

    nanoscale structures and devices [Seeman, 2003; see above]. Expanded genetic

    alphabetsshouldallowthecell-basedsynthesisandreplicationofDNAnanodevices

    withawiderrangeofproperties:greaterrobustness,say,ortheabilitytointeractwith

    inorganiccomponents.

    Synthetic biology

    might be used todevise cells thatwill manuacturedrugs according

    to precise geneticspecications

  • 8/2/2019 Irgc SB Final 07jan Web

    20/52international risk governance council Guidelines or the Appropriate Risk Governance o Synthetic Biology

    P 20

    2.2.3 Sustainable chemicals manuacturing and energy productionTheinevitabledwindlingoffossil-fuelreservesduringthiscenturywillforceindustrial

    chemistrytondanewsourceofrawmaterialsformakingproductssuchasdrugs,

    fuelsandplastics.Oneofthecurrentgoalsinsyntheticbiologyistodevelopengineered

    micro-organismsthatcangenerateusefulcarbon-based(organic)chemicals,of the

    sortcurrentlyobtainedfrompetroleum,fromnewfeedstockssuchasbiomass.This

    isa particularly valuableobjective in thearena of fuelproduction, wheremicrobial

    productioncouldbebasedonrenewablesources.Oneofthekeyaimsoftheminimal

    genomeapproachto syntheticorganisms[Glassetal.,2006] is todesign themto

    turnbiomass,perhapsespeciallythe recalcitrantparts ofplants thatare noteasily

    degradedbyexistingmicro-organisms,intobiofuelssuchasethanol.

    2.2.4 Environmental remediationBioremediationtheuseofnaturallyoccurringorganismssuchasbacteriaandfungi

    tobreakdownorganicpollutantssuchasoilandsewage,ortoconcentratetoxicheavy

    metalsfromsoils hasemergedin recentdecadesas oneofthebesttechniques

    for decontaminatingnatural and man-made environments. Synthetic biology might

    enablesuchorganismstoberationallydesigned,bothtoimprovetheirefciencyand

    tobroadentherangeofpollutantsthattheycandegradeorremove.

    2.2.5 Systems-scale molecular nanotechnologyAsshownabove,thereareseveralways inwhichengineeredproteins, virusesand

    organismsmightassistinthedevelopmentofnewmaterials,suchasthoseusedin

    biomedicine,microelectronics,mechanicalengineeringandenergyconversion.

    So far, much of the work in this area has demonstrated specic functions using

    individualbiologicalcomponents:forexample,desalinationorltrationusingproteins

    thatperformananalogousfunctionincellmembranes,ortransportofnanoparticles

    usingmotorproteins.Butinlivingcells,suchsystemsaretightlycoupledtoothers

    inanintegrated,autonomousmolecularassemblythatbuildsandrepairsitselfand

    generatesitsenergyfromambientsources.Itwouldbedesirabletoachievethissort

    ofintegrationinsyntheticsystems[Ball,2005].Forexample,couplingphotosyntheticdevicestomotorproteinscouldenablelight-drivenmolecularmotion.Itisconceivable

    thatthebestwaytodothiswillbetoincorporateallofthecomponentsintothegenetic

    programsofengineeredorganisms.Inotherwords,syntheticbiologymighthelpus

    tomimicnotjustsomeofthemolecularengineeringprinciplesoflivingcellsbuttheir

    systems-scaleoperation.

    One o the key aimso the minimal

    genome approachto synthetic

    organisms is todesign them to

    turn biomass intobiouels such as

    ethanol

  • 8/2/2019 Irgc SB Final 07jan Web

    21/52international risk governance councilGuidelines or the Appropriate Risk Governance o Synthetic Biology

    P 21

    Syntheticbiologyisanemergingdisciplinewithhugepotentialandscope.However,thereisnodirectcorrespondencebetweenthenatureandextentofthebenetsandthe

    associatedsafetyandsecurityrisks.Eachnewdevelopmentwillneedtobeassessed

    on its merits, balancing risks and benets and, where necessary or appropriate,

    considering innovativeapproachestoenablinginnovationwhileavoidinghazardsto

    peopleortheenvironment.

    IRGChasidentiedtwoframesofsyntheticbiologydevelopment:

    rst-generation evolutionarysyntheticbiologythatbuildsonexistingapplications

    of genetic engineering, deploying more rapid development methodologies

    accessibletoawiderrangeofactorsatreducedcosts;and

    second-generation revolutionary developments where feasible forms of

    innovationandapplicationareasarelesscertain.

    Eachoftheseregimeswillhaveadistinctsetofrisks,withtheformerobviouslyless

    speculativeandmorewell-denedthanthelatter[Mukundaetal.,2009].Adistinction

    alsoneedstobemadebetweenthechallengesofregulatingthe conductofsynthetic

    biologyresearchitselfandtheneedtoregulatetheproducts and practical outcomes

    of that research. For basic research and knowledge generation, risk governance

    shouldfocusmainlyontheresearchprocessesthatarelikelytogiverisetohazards.

    Forproductsandotherapplicationsarisingfromthisknowledge,on theotherhand,

    governanceshouldfocuslessontheprocessesinvolvedandmoreontheproductsandoutcomesthemselves.

    Inconsideringproductsandpotentialapplications,thispolicybrieffocusesonrst-

    generation developments, for whichwedohave some informationon likely future

    outcomes.However,commentsontheconductofbasicresearchonsyntheticbiology

    wouldapplytobothrst-andsecond-generationdevelopments.

    Reportsassessingpotentialrisksassociatedwithsyntheticbiologyhavebeenprepared

    byanexceptionallydiversesetoforganisations.Theseincludeofcialgovernmental

    bodies[NSABB,2006;POST,2008],nationalacademies[RoyalAcademyofEngineering

    2009;RoyalSociety2008,2009;DFG,2009],foundation-and/orgovernment-funded

    consortia[BalmerandMartin,2008;Caruso,2008;Gaisser,etal.,2008;Garnkel,et

    al.,2007;NEST,2007;Rodemeyer,2009]andNGOs[FriendsoftheEarth,2010;ETC,

    2010].Thesereportshavefocussedonthefollowingareas:

    Insufcientbasic knowledge about the potential risks posedby designedand1.

    syntheticorganisms.Forexample,arecentEuropeanUnion(EU)reporthasraised

    questionsaboutourabilitytoassessthesafetyoforganismsthatcombinegenetic

    elementsfrommultiplesources,thatcontaingenesandproteinsthathavenever

    existedtogetherinabiologicalorganism,orthatincorporatebiologicalfunctions

    thatdonotexistinnature[EuropeanCommission,2009].

    Uncontrolled release of novel genetically modied organisms with potential2.

    environmentalorhumanhealthimplications,eitherarisingfromaccidentalrelease

    Each newdevelopment willneed to be assessedon its merits

    Regulatingthe conductosynthetic biologyresearchRegulatingthe products

    andpractical

    outcomeso thatresearch

    3. Risks o synthetic biology

  • 8/2/2019 Irgc SB Final 07jan Web

    22/52international risk governance council Guidelines or the Appropriate Risk Governance o Synthetic Biology

    P 22

    intotheenvironmentorfromapplicationsentailingdeliberaterelease(forexample,bioremediation and some varieties of living therapeutics) [e.g. Friends of the

    Earth,2010].Areexistingbiosafetymeasuresadequate?Whoisresponsiblefor

    ascertainingandquantifyingrisks,andforimplementinganyclean-upmeasures

    thatmightneedtobeundertaken?

    Bio-terrorism,biologicalwarfareandtheconstructionofnovelorganismsdesigned3.

    tobehostiletohumaninterests.Geneticmanipulationoforganismscanbeused,

    orcanresultbychance,inpotentiallydangerousmodicationsforhumanhealthor

    theenvironment.Bioterroristsmight,forexample,createnewpathogenicstrains

    ororganisms resistant toexisting defences. It has even been suggested that

    pathogens mightbe engineered toattackonlyaparticulargeneticsubset ofa

    population[Garnkeletal.,2007].Itisbynomeansclearthatsuchabusescouldbe

    entirelyeliminated,anymorethantheycanbeforotherdual-usetechnologies.

    Asidefrom theriskofabusescoordinatedbygovernmentsororganisedgroups,4.

    there are concerns about the emergence of a bio-hacker culture in which

    lone individuals develop dangerous organisms much as they currently create

    computerviruses.Thebasictechnologiesforsystematicgeneticmodicationof

    organismsare widely availableandarebecomingcheaper, although it iseasy

    tounderestimatethedegreeoftechnicalprociency,experienceandresources

    neededtomakeeffectiveuseofthem.Manyresearchersintheeldanticipatethat

    therealharmsthatmightbeinictedbysuchhackeractivitiesareprobablysmall,

    buttheynonethelesswarrantcarefulconsideration,anditishardtoseehowthey

    mightbepreventedthequestionismoreaboutlawenforcementthanscientic

    protocol.Onesuggestionistoaimtoremovetheglamourwhich,byanalogywith

    computerviruses,mightbecomeattachedtobio-hacking.

    Patentingandthecreationofmonopolies,inhibitingbasicresearchandrestricting5.

    productdevelopmenttolargecompanies.

    Trade and global justice, for example exploitation of indigenous resources by6.

    enabling chemical synthesis of valuable products in industrial countries (e.g.

    artemisininproductionformalariatreatment),ordistortingland-useagendasfor

    geneticallyengineeredbiomass[FriendsoftheEarth,2010;ETC,2010].

    Claims that synthetic biology is involved in creating articial life, and related7.

    philosophicalandreligiousconcerns.TheaccusationofplayingGod[Peters,2002]

    hasalreadybeenlevelledatsyntheticbiologyinthewakeoftherstorganismwith

    asyntheticgenome[Gibsonetal.,2010;VandenBelt,2009].Aswithreproductive

    technologiesandstem-cellresearch,thelackofasharedconceptualframework

    makesithardtodebatethisissueamongthevariousinterestedparties:thescience

    mayhaveoutstrippedourethicalpointsofreference.

    Many of these ethical and safety issues have already been acknowledged and

    discussed extensively by the synthetic-biology community [Schmidt, 2009b]. The

    increasinglyactivedebatearoundtherisksofsyntheticbiologyfocussesinEuropeon

    theexperienceofsimilardebatesaboutgeneticallymodied(GM)crops[Tait,2009b],

    Genetic

    manipulation oorganisms canbe used, or can

    result by chance,in potentially

    dangerousmodications or

    human health or the

    environment

  • 8/2/2019 Irgc SB Final 07jan Web

    23/52international risk governance councilGuidelines or the Appropriate Risk Governance o Synthetic Biology

    P 23

    whichhaveresultedinadefactomoratoriumonmanypotentialapplications.IntheUS,publicattitudestoGMcropshavebeenmuchmorepermissive.Ananalogyisoften

    madeinthesynthetic-biologycommunitywiththeAsilomarConferenceonRecombinant

    DNAin1975,atwhichguidelineswereagreedonhowthistechnologymightbeused,

    andavoluntarymoratoriumwasestablishedoncertainkindsofexperiments,suchas

    thecloningofDNAfrompathogenicorganisms.

    It is easy (and perhaps appropriate) for an enumeration of the potential risks of

    syntheticbiologytosoundalarming.Butthesemustbeweighedagainstthebenets,

    notleastinthesensethatthereisanethicalcomponenttothedecisiontoforegoa

    newtechnologytoo:therecanbesociallysignicantpenaltiestotheseeminglysafe

    option of doing nothing. Forone thing, thepowerful capabilities syntheticbiology

    mightprovidefordevelopingandmanufacturingdrugs,includingonessorelyneeded

    indevelopingcountries,shouldnotlightlybesetaside,justaswedonotprohibitall

    drugsthathaveside-effects.Itisconceivablethatinthelong-term,syntheticbiology

    mightofferoneofthemostpowerfulapproachesforamelioratingnaturalbiologicaland

    ecologicalhazardssuchasthespreadofinfectiousdiseases[Mukundaetal.,2009].

    Moreover,sincethebasictechniquesnecessaryforconductingsomeformofsynthetic

    biologyalreadyexistandarepubliclyaccessible,curtailingscienticresearchinthis

    areaprovidesnoguaranteeagainstpotentialabuses.Itislikelythatmisuseforthe

    purposesof,say,bioterrorismandbiowarfaremightbemosteffectivelypreventedor

    remediatedbythetechniquesofsyntheticbiologyitself.(Itcouldalsooffernewways

    tocounteralreadyexistingmanifestationsofthesethreatstoo.)Inshort,thegenieis

    alreadyoutofthebottle:thetechnologymightbecomeitsownbestsafeguardagainst

    someofitsrisks.

    It is easy or anenumeration o thepotential risks osynthetic biologyto sound alarming.But these must beweighed against the

    benets

    The technologymight become itsown best saeguardagainst some o itsrisks

  • 8/2/2019 Irgc SB Final 07jan Web

    24/52international risk governance council Guidelines or the Appropriate Risk Governance o Synthetic Biology

    P 24

    4.1 Regulatory and governance contextsThe Organisation for Economic Co-operation and Development (OECD) views

    synthetic biology as a potentially revolutionary technology that could transform

    biology and biotechnology from a largely scientic toanengineeringdiscipline. In

    thenear-term(to2015),theOECDseestheuseofmetabolic-pathwayengineering

    toproducechemicalsthatpreviouslycouldnotbeproducedbiologicallyasthemost

    likelycommercialapplicationofsyntheticbiology.In thelonger-term,applicationsof

    syntheticbiologyinprimaryindustrialmanufacturingandinhealthcaremaybecome

    widespread.Commercialisationof theselatteruses wasconsideredunlikelybefore

    2015,becausesuchapplicationswillbesubjecttothesameregulatoryproceduresas

    otherbiotechnologyproducts,whichgenerallyrequirealeadtimeofbetween5and7

    years[OECD,2009a].

    Thereiscurrentlyacomplexarrayofnationalandinternationalregulatoryinstruments

    thatmayberelevantfor,oractasprecedentsfor,theregulationofsyntheticbiology,

    particularlyrst-generationproducts[e.g.ByersandCasagrande,2010].Thereisa

    historyofdecisionsbeingtakeninveryearlystagesofproductdevelopmentthatturn

    outtohaveunforeseenandoftencounter-productiveoutcomeswhicharethendifcult

    tochange.Thisisparticularlyevidentwhereregulationhasbeendesignedtoreassure

    thepublicratherthantoaddressgenuineexpectedrisks,aswasthecaseforGMcrops

    inEurope.Also,wherearegulatoryregimehasevolvedoveralongperiodoftimeinresponsetoseveralgenerationsofscienticdevelopment,itcanbecomeinexibleand

    difculttomodifyinwaysappropriatetothelatestadvancesandopportunities[Byers

    andCasagrande,2010].Thiscanunnecessarilylimitopportunitiesforinnovationand

    representagovernancedecitinitself[IRGC,2009a].Theappropriateriskgovernance

    ofinnovative technologies thusneedsto beinformedby anunderstandingof how

    governanceandengagementapproachesinteractwithinnovationprocesses.

    TheEuropeanviewon risk regulation insyntheticbiologyis thatit willbecovered

    byexistingregulations for genetic modicationand releaseofGM productsto the

    environment [Royal Academy of Engineering, 2009]. However, these regulations

    are themselves controversial (see Section 5.2) and are already inhibiting the

    commercialisationofpotentiallybenecialGMproducts,suchas pest- ordrought-

    resistantcrops[WagnerandMcHughen,2010].

    Internationallawhasanimportantbearingontradeinbiotechnologicalproducts,the

    mostfamiliarexamplebeingtherestrictionsontradeingeneticallymodiedorganisms

    (GMOs)orproductsderivedfromthem.Someregulationsmayberelevanttoproposed

    applicationsofsyntheticbiology,suchastheglobalmoratoriumonoceanfertilisation

    (foramelioratingclimatechangebypromotingoceaniccarbondioxideuptake)under

    theConventiononBiologicalDiversityandtheprovisionsof theBiologicalWeapons

    Convention (BWC). The next review conference of the BWC will beheld in2011,providingtheopportunityfortheinternationalcommunitytomakebindingdecisions

    on the oversight of synthetic biology. The Environmental Modication Convention

    There is currentlya complex arrayo national and

    internationalregulatory

    instruments thatmay be relevant or,

    or act as precedentsor, the regulation o

    synthetic biology

    The appropriaterisk governance

    o innovative

    technologies needsto be inormed byan understanding

    o how governanceand engagement

    approaches interactwith innovation

    processes

    4. Existing policy and regulatoryrameworks, and their decits

  • 8/2/2019 Irgc SB Final 07jan Web

    25/52international risk governance councilGuidelines or the Appropriate Risk Governance o Synthetic Biology

    P 25

    (ENMOD), an international treaty prohibiting the military or other hostile use ofenvironmental modication techniques such as alterations to weather patterns or

    oceancirculation,mayalsoapplytosomepossibleusesofsyntheticbiology.

    TheAgreementonTrade-RelatedAspectsofIntellectualPropertyRights(TRIPS)isthe

    mostcomprehensivemultilateralagreementonintellectualproperty,settingstandards

    to be met in domestic patent law. Most applications and techniques of synthetic

    biologywouldbepatentableunderArticle27.3(b)oftheagreement,whichdealswith

    intellectualproperty(IP)protectionofgeneticresources.

    LimitsontheexploitationofIPrightsstemfromothereldsoflaw,suchashuman

    rightslawandinternationalenvironmentallaw.Trade-offsmayberequiredwheresuch

    issuesaspublicaccesstoinnovativemedicinesareatstake.Inthisregard,compulsory

    licensingremainsanoptionundertheTRIPSagreementforpatentsinanyeld.In

    the2001DohaDeclarationonTRIPSandPublicHealth,WorldTradeOrganization

    (WTO)membergovernmentsstressedthatitisimportanttoimplementandinterpret

    theTRIPSAgreementinawaythatsupportspublichealth.

    TherearepotentialconictsbetweentheTRIPSpatentingregimeandtheConvention

    onBiologicalDiversity,aswellastheInternationalUndertakingonWorldFoodSecurity

    negotiatedat theUnited Nations FoodandAgriculture Organisation (FAO).These

    conictsaregenerallyseenas political rather than legal, and may lead todispute

    undertheWTOdispute-settlementsystem.

    TheCartagenaProtocolonBiosafetytotheConventiononBiologicalDiversityregulates

    internationaltradeingeneticallyengineeredproducts.TheProtocolestablishescore

    proceduresandasetofstandardsrelatingtotheimportandexportoflivingmodied

    organisms(LMOs).AlthoughtheCartagenaProtocolrecognisesinitspreamblethat

    tradeandenvironmentagreementsshouldbemutuallysupportive,itisgroundedina

    morerobustapplicationoftheprecautionaryapproachthantheWTOrules.Currently,

    157nationalpartiesparticipateintheProtocol,includingChina,Brazil,Indiaandmost

    Europeannations,but not the US(wheresignicant researchanddevelopmentin

    syntheticbiologyistakingplace)orotherpotentiallyimportantinternationalplayerssuchasAustralia,Russia,ArgentinaandCanada.

    ThereareclearareasofoverlapbetweentheProtocolandtheWTOrules.Inaddition

    toTRIPS,theAgreementonTechnicalBarrierstoTradeandtheAgreementonthe

    Applicationof SanitaryandPhytosanitaryStandardsare relevant.ArticleXX of the

    GeneralAgreementonTariffsandTrade(GATT)providesforexceptionsfromGATT

    rulesinordertoprotecthealthortheenvironment.Theseagreementsformedthebasis

    ofthedisputeraisedbytheUS,CanadaandArgentinaundertheWTOsystemover

    theEuropeanCommissionsregulationofGMOs.Thedifferentfundamentalobjectives

    of the international trade and environmental regimes may lead to conicts in the

    regulatorymeasurestakentoachievetheseobjectives.Strengtheningthecoherence

    ofthesetwosystemsrequiresmeasurestobetakenatnationalandsupranational

    levelstoensuretheyareimplementedinamutuallysupportivemanner.

  • 8/2/2019 Irgc SB Final 07jan Web

    26/52international risk governance council Guidelines or the Appropriate Risk Governance o Synthetic Biology

    P 26

    Developments in synthetic biology could lead to gaps in the risk assessmentframeworksetoutintheCartagenaProtocol,sinceestablishedpracticesmaynotbe

    capableofdealingwithcomplexhybridsofgeneticmaterial(includingsomethatare

    whollysyntheticindesignandorigin)andthepropertiesandeffectstheydisplay.The

    sameproblemis faced bynon-participatingstates.In theUS,the riskassessment

    framework in the National Institutes for Health Guidelines for Research involving

    RecombinantDNAMolecules[NIHGuidelines,2009;ByersandCasagrande,2010]is

    consideredbyregulatorstobesufcientatpresentforhandlingrisksthatmightarise

    insyntheticbiologyattheresearchstage.Theframeworkusestheriskgroupofthe

    parentorganismasastartingpointfordeterminingthenecessarycontainmentlevel;

    butsynthetictechniquesmayenable thedevelopmentof morecomplexorganisms

    forwhichtherisksoftheparentorganismarenotanappropriateprecedent[Byers

    andCasagrande,2010].Notenoughisknownatpresentforrobustriskassessments

    relatedtocontainmentofpartiallyorwhollysyntheticorganisms.Thereisalsosome

    concern that intellectual property rights claims couldbeused to restrictaccess to

    risk-relatedinformationandtherebycompromisethecredibilityofriskassessments

    infuture.

    4.2 Risk Governance Decits

    Severalaspectsofriskgovernancerelevanttoinnovativetechnologiesareconsidered

    hereinrelationtosyntheticbiology:Theuncertaintyaboutfutureresearchandindustrialdevelopments,andthusabout

    theactualopportunitiesandrisks.

    Theinhibitingeffectoninnovationofuncertaintyaboutfutureregulatorysystems,

    particularly for products with long lead times for delivery from conception to

    market.

    The need for a better understanding of how different regulatory approaches

    interactwithinnovationprocessestodeterminethefateofinnovations,including

    therelativecompetitiveadvantagegainedbycompaniesandcountriesoperating

    indifferentregulatoryregimes.

    Thepotentialtoadaptexistingregulatorysystemsandtoapplythesetoinnovative

    technology, and inparticular the importance ofadopting the most appropriate

    regulatoryprecedent.

    The potential for lack of harmonisation between different national regulatory

    systemstoleadtotrade-relatedandotherconicts.

    Problemsofstakeholderandpublicengagementaboutinnovationswhere,forall

    partiesinvolvedindiscussionanddecision-making,thereisignoranceoratbest

    uncertaintyabouttheeventualnatureofnewproductsandprocesses.

    Thevolatilenatureofpublicopinionaboutinnovativetechnology,sothatdecisions

    basedonthebalanceofstakeholderattitudestodaymayfaceaverydifferentset

    offuturepublicopinions.

    The need to take decisions on a balanced basis, particularly where there is

    irreconcilableor ideologically basedconictoverinnovativetechnology and its

    application.

    Not enough isknown at present

    or robust riskassessments related

    to containment opartially or wholly

    synthetic organisms

    There is concern

    that intellectualproperty rights

    claims could be usedto restrict access

    to risk-relatedinormation and

    thereby compromisethe credibility o

    risk assessments inuture

  • 8/2/2019 Irgc SB Final 07jan Web

    27/52international risk governance councilGuidelines or the Appropriate Risk Governance o Synthetic Biology

    P 27

    These considerations suggest that any effective approach to risk governance ofsyntheticbiologymustbecapableofevolvingasscienticandtechnicalknowledge

    expands,requiringexibilityinthefaceofuncertaintyabouttheeventualnatureof

    products,processes,benetsandrisks.Wehavefocussedhereontheconceptof

    risk governance decits1 deciencies or failures in risk governance processes

    orstructures and have aimedto identifyweak spots inhow risksare assessed

    andmanagedin thekey areasof policyandregulation, innovationand technology

    development,andpublicandstakeholderengagement[IRGC,2009a].

    ParticipantsattheIRGCworkshoponsyntheticbiologysoughttondanappropriate

    balance between current scientic knowledge and uncertainty about future

    developments,andtheneedtorealisticallyassessthepotentialoftheeld.Abalance

    isalsoneededforpolicyandregulatoryoptions,includingthepotentialtotransform

    existing policies and regulatory frameworks that may be difcult to adapt to the

    challenges raised by innovative technologies. The participants were concerned to

    ensurethattheopportunitiesofferedbysyntheticbiologyasthetechnologydevelops

    bekeptopen,butalsorecognisedthatthereispotentialheretoopenupnewmodels

    ofpublicandstakeholderengagement.

    One general themeto emerge from the workshopwas the concern that synthetic

    biologywasalreadybecomingtoobroadasetofdevelopmentstobedealtwithunder

    one heading.As is already the case with nanotechnology, this diversication will

    makeitincreasinglynecessarytogoverntheareausingadiverseandexiblesetof

    regulatoryprecedentstailoredtoarangeofspecichazardsandtheneedsofdifferent

    industrysectors.

    Theworkshopdiscussionsalsoexploredpotentialinteractionsamongriskregulatory

    processes,innovationsystems,andstakeholderandpublicperspectivesinrelationto

    syntheticbiologydevelopments.Theyidentiedthe followingdecits[IRGC,2009a,

    pp.64-65]asbeingmostrelevanttopotentialdevelopmentsinsyntheticbiology(in

    orderofperceivedimportance).TheguidelinesproposedinSection6aredesignedto

    helppolicy-makersandregulatorstoavoidorreducethesedecits.

    Potential defcits in risk assessment:

    Lackofknowledge,includingtheprobabilitiesof variousdiscoveries,inventions

    and events and the associated economic, human health, environmental and

    societalconsequences.

    Lackofknowledgeaboutvalues,beliefsandinterestsandthereforeabouthow

    risksareperceivedbystakeholders.

    Failuretoidentifyandinvolverelevantstakeholdersinriskassessmentinorderto

    improveinformationinputandconferlegitimacyontheprocess.

    Theprovisionofbiased,selectiveorincompleteinformation.

    Lackofappreciationofthemultipledimensionsofariskandhowinter-connected

    risksystemscanentailcomplexandsometimesunforeseeableinteractions.

    Failuretoovercomecognitivebarrierstoimaginingeventsoutsideofaccepted

    paradigms.

    (1)TheconceptandalistofthemostcommonlyobserveddecitsinriskgovernancehavebeendescribedinanIRGCreport

    availableathttp://www.irgc.org/IMG/pdf/IRGC_rgd_web_nal.pdf.

    Any eectiveapproach to risk

    governance osynthetic biologymust be capable oevolving as scientic

    and technicalknowledge expands

  • 8/2/2019 Irgc SB Final 07jan Web

    28/52international risk governance council Guidelines or the Appropriate Risk Governance o Synthetic Biology

    P 28

    Potential defcits in risk management:

    Insufcientexibilityinthefaceofunexpectedrisksituations.

    Failure to balance transparency (which can foster stakeholder trust) and

    condentiality(whichcanprotectsecurityandmaintainincentivesforinnovation).

    Failure of the many organisations responsible for risk management to act

    cohesively.

    Failuretomusterthewillandresourcesto implementriskmanagementpolicies

    anddecisions.

    Failure to design risk management strategies that adequately balance

    alternatives.

    Failure of managers to respond and take action when risk assessors have

    determinedfromearlysignalsthatariskisemerging.

    Diversication will

    make it increasinglynecessary to govern

    the area using adiverse and fexible

    set o regulatoryprecedents

  • 8/2/2019 Irgc SB Final 07jan Web

    29/52international risk governance councilGuidelines or the Appropriate Risk Governance o Synthetic Biology

    P 29

    5.1 The concept o appropriate risk governanceIRGCdenesappropriateriskgovernanceasthatwhich,intheeldofinnovative

    technologies,enables innovation,minimisesrisktopeopleandtheenvironment,and

    balancestheinterestsandvaluesofallrelevantstakeholders[Tait,2007],whileavoiding

    simplisticcomparisonsacrosssectorsandtechnologies.TheIRGCriskgovernance

    framework[IRGC,2005]hasbeenappliedverysuccessfullytoarangeofriskissues,

    includingforexampleNanotechnologyApplicationsin FoodandCosmetics [IRGC,

    2009c].However,syntheticbiologypresentschallengesfortheusualapproachesto

    riskgovernance.Initscurrent,earlydevelopmentalstage,bothbenetsandrisksof

    syntheticbiologyarelargelyconjecturalandmostpreviousreportsonthisissuehave

    thereforefocussedonaspectsthatarecoveredonlyin theinitial(pre-assessment)

    phaseoftheIRGCframeworkspecically,

    howrisksareframedbystakeholders;

    whetherthereareanyapplicablelegalorotherexistingrulesorprocessesthat

    covertechnologydevelopments;

    thescienticcharacteristicsofthetechnologyanditspotentialapplications;

    thehopesandconcernsofmajorstakeholdergroups.

    Regulationof basicresearchon syntheticbiologyshould beconsideredseparately

    fromproductregulation.Giventhelikelyrangeofapplicationsofsyntheticbiologyin

    differentindustrysectors,however,itwouldbeunwisetoattempttodeviseanoverall

    frameworkforriskgovernanceofsyntheticbiology.Instead,riskgovernancehasto

    beapproachedonaproduct-by-productbasis,payingparticularattentiontocurrent

    regulatoryapproaches,theextenttowhichtheyaretransferabletothenewproducts,

    and the implications of such choices for the options for future development. For

    example,productsthathaveapplicationstohumanoranimalmedicine,agricultural

    crop development and the production of biofuels will come under the scrutiny of

    differentexistingregulatorysystems.

    However,someareasofsyntheticbiologywillnotbecoveredbythisapproach.For

    example,tradinginbio-bricks(genesequencesthatcanbeusedbybothresearchers

    andcommercial companiesto developnewgene circuitry)canbedealtwithusing

    regulatoryinitiativessimilartothosebeingdevelopedtoregulatetheresearchstage.

    Ontheotherhand,whensyntheticbiologyisusedtodevelopnewprocessesforthe

    manufactureofcomplexbiologicalmolecules,theresultingmoleculesthemselvescan

    beregulatedbyexistingsystemsfordrugsorotherchemicals,butnewregulationmay

    alsobeneededforthenovelorganismsusedintheproductionprocess.

    5.2 Regulation and governance o rst-generationsynthetic biology

    Forsomelikelynear-termapplicationsofsyntheticbiologyforexample,inbiofuels

    and industrial applications, pharmaceuticals and health diagnostics, and genetic

    Risk governance hasto be approached

    on a product-by-product basis,tailored to a rangeo specic hazardsand the needs odierent industrysectors

    5. Risk governance in synthetic biology

  • 8/2/2019 Irgc SB Final 07jan Web

    30/52

  • 8/2/2019 Irgc SB Final 07jan Web

    31/52international risk governance councilGuidelines for the Appropriate Risk Governance of Synthetic Biology

    P 31

    research laboratories or other commercial companies. This approach is supportedby some scientists, who point out that the likely control of DNA synthesis and other

    key technologies by a small number of very efcient companies [Bhattacharjee, 2007]

    could make such monitoring relatively easy and reduce biosafety concerns.

    As the gene-synthesis market has become more competitive, two groups of companies

    have proposed different standards for screening orders for gene sequences to enable

    identication of any that could present a potential biological hazard [Hayden, 2009].

    The International Association for Synthetic Biology (IASB) code of conduct [IASB, 2009]

    includes a review step by an expert in the eld, while DNA 2.0/Geneart has suggested

    an automated process. The Federation of American Scientists has considered this

    problem of multiple standards, and is working towards a consensus, at least among

    American scientists and companies [FAS, 2010], on how screening might be done.

    Guidelines for screening of DNA synthesis have been formulated by the US Department

    of Health and Human Services [DHHS, 2010], but these are voluntary, apply only to

    double-stranded DNA, and have been criticised by some researchers as representing

    no improvement to the security risk [Ledford, 2010].

    Furthermore, if these technologies become ever more accessible [Carlson, 2010],

    so that gene sequences can be procured by means other than through companies

    with sophisticated screening procedures, this will create stiffer challenges for risk

    management. Some feel that the threat may be much greater from state-sponsored

    terrorism (for which DNA synthesis would be hard to control or monitor) than from

    amateur activities. However, it is important not to underestimate the difculty of moving

    from research in a laboratory, let alone a bio-hackers garage, to a functioning product

    that can be disseminated widely. Incorporating engineering techniques into research

    on biology does not mean that the resulting products can be developed as if they were

    just another piece of hardware or software.

    The dissemination of the technology, knowledge and capabilities involved in synthetic

    biology beyond the professional biotechnology community will have two (potentially

    overlapping) strands:

    Professional groups such as engineers and computer scientists, educated in1.

    disciplines that do not routinely entail formal training in biosafety, may acquire

    these capabilities. In consequence, there needs to be a dialogue among all relevant

    researchers on what responsible conduct might entail in this eld, and education

    about the risks of, and guidance on best practice for, biosafety principles and

    practices applicable to synthetic biology. A review of biosafety standards should

    also be conducted to identify differences between standards and actual laboratory

    practices.

    Dissemination may extend beyond academic and professional circles as biological2.

    engineering becomes more accessible [Mukunda et al., 2009]. This may include

    less responsible individuals and organisations. Moreover, the most appropriate

    The synthetic biology

    community has

    generally supported

    approaches to

    oversight that rely on

    voluntary measures

    developed and

    implemented by the

    community itself

  • 8/2/2019 Irgc SB Final 07jan Web

    32/52international risk governance council Guidelines or the Appropriate Risk Governance o Synthetic Biology

    P 32

    balancebetweenpromotinginnovationandcontainingriskwillnotbethesameinallpartsoftheworld.Legitimateresearcherscanhelpgovernmentsandregulators

    tondwaystopreventotheractorsfromusingthetechnologyforillicitpurposes.

    Anappropriatebalancealsoneedstobefoundbetweentop-downcommandand

    controlandbottom-upeducationandawarenessinitiatives,includingthefostering

    ofa culture ofresponsibilityand the de-glamorisation ofthe kind ofantisocial

    activitiesalreadyevidentinthecreationofcomputerviruses.

    A summary of US Federal Regulations that relate to synthetic biology [Byers and

    Casagrande,2010]haspointed toseveral inadequacies, includingNIHGuidelines,

    EPA,USDAandFDARegulations,DepartmentofCommerceRegulationsandSelect

    AgentRules,as currentlyapplied todevelopments in syntheticbiology that involve

    micro-organisms.Thecurrentapproachtothedenitionandclassicationoforganisms

    accordingtoperceivedhazardlevelswillnotcovertherangeofpossiblemodications

    arisingfromsyntheticbiology,whetherlegitimateormalicious.Theruleswillneedto

    beadaptedtonewcircumstances.

    Policy-makers need to take a lead in developing and implementing standardised

    procedures and preferred practices for screening sequences and for mitigating

    biosecurityrisksasawhole.TherecentlypublishedUSNationalStrategyforCountering

    BiologicalThreats[USNationalSecurityCouncil,2009]isanimportantstepinthis

    direction.Inthecontextofbiologicalthreatsofallkinds,includinganyarisingfrom

    synthetic biology, the strategy advocates an international, systemically organised

    approachthatseekstopromoteacultureofresponsibilityinthelifesciences,backed

    up by legal mechanisms, coupled with surveillance and improving intelligence on

    deliberatethreats.

    Oneofthekeyissues,whichlacksanycurrentconsensus,istowhatextentavoidance

    ofbiosafetyriskscanbeensuredbyvoluntarymeasures(forscreeningofcommercial

    DNAsynthesis,say)asopposedtotop-downregulation.Forexample,Mukundaet

    al.recommendtheadoptionofasafetyholdnormofthesortcurrentlyusedbyAir

    TrafcControl(ATC)systems,wherebyanyproposedchangetoATCsystemscanbe

    blockedbyanymemberofthecommunitywhobelievesthattheyarelikelytocausesafetyconcerns[Mukundaetal.,2009].

    Amajorplankofthestrategyproposedhereistherecognitionthatusingthelifesciences

    tocombatbothnaturalandmaliciousthreatsmaybethebestwaytominimiseharm,

    giventhatthereisnofoolproofwaytoforestallmalicioususeofthetechnology.This

    couldincludetheuseofmethodsinsyntheticbiologytodevelopimproveddisease

    diagnosticsandvaccines.Inthiscontext,itisimportanttorecognisethattherisksto

    humanityfromnaturallyoccurringzoonoses(infectiousdiseasesthatcanbetransmitted

    fromanimalstohumans)andotheremergingpathogensarelikelytobegreaterthan

    thosearisingfrommalicioususeofsyntheticbiology.

    The mostappropriate balancebetween promoting

    innovation andcontaining risk willnot be the same in

    all parts o the world

    One o the keyissues, which

    lacks any currentconsensus, isto what extent

    avoidance obiosaety risks

    can be ensured by

    voluntary measuresas opposed to top-

    down regulation

  • 8/2/2019 Irgc SB Final 07jan Web

    33/52international risk governance councilGuidelines or the Appropriate Risk Governance o Synthetic Biology

    P 33

    5.4 Intellectual property (IP) issues and maintainingincentives or innovation

    In any innovative technology, thegrantingof limited exclusive rights in intellectual

    propertycansupportinnovationbutcarriesthedangerofcreatingadisproportionate

    concentrationofmarketpower.Inareasoftechnologicalconvergence,IPrightsmay

    befragmentedacrossmanyowners,andaresometimesgivenanexcessivelybroad

    interpretation, whichcan pose obstacles tothe developmentofthe basicscience.

    Moreover,wherescienceisdevelopingrapidly,theneedsoftheresearchcommunity

    forIPprotectionarenotnecessarilyalignedwiththoseofproductdevelopers.

    Manyscientistsworkinginsyntheticbiologyhaveexpressedaprincipledcommitment

    toanopensourceethos,modelledontheopen-softwaremovementinICT[Heller

    andEisenberg,1998].Suchstronglyheldviewscanmakeitmoredifculttobalance

    thesocietaltrade-offsthatneedtobemadebetweenopenaccesstoinformationand

    commercialrealities,particularlyinthecontextofthelengthyandonerousregulatory

    processes that apply in many areas of life sciences (which tend to impose high

    developmentcosts).Theclaimoftenmadeforopen-sourcebiotechnologythatitcan

    realisethebenetsofcommercialtechnologytransferwhilecreatingarobustscience

    andtechnologycommonsthatcansustaininnovationhasyettobetestedincases

    likesyntheticbiology.

    Aswellasawhollyopen-accessapproach,variousotheroptionshavebeenproposed

    forhandlingintellectualpropertyinsyntheticbiologythatgobeyondthetraditionaloption

    ofpatenting,typicalofbiotechnologyandthepharmaceuticalindustrytoday[Raiand

    Boyle,2007].Therecould,forexample,beprovisionforcopyrightingofinnovations,

    forcontractsto govern their use,or forhighlyspecicsui generisstrategies.Each

    hasadvantagesanddisadvantages,andnoneisobviouslypreferableto theothers.

    OyeandWellhausenarguethatcurrentapproachescanbedistinguishedbothbythe

    degreeofpublicversusprivateownershipofIPandbytheextenttowhichproperty

    rightsareeitherclearlyorambiguouslydened[OyeandWellhausen,2009].They

    pointoutthatthereisnoconsensusontheseissuesamongresearchersintheeldofsyntheticbiology,partlybecausethereisnoagreementontheextenttowhichprivate

    ownershipisneededasanincentivetoinnovation.Intheshort-term,privatisationofIP

    maybeimposedbytheinstitutionaldemandsoftheresearchers,butasapplications

    of synthetic biology inareas such as energy and climate gain pace, international

    pressuresmayencourageashifttoamorecommons-basedapproach.

    Fornear-termapplications that resemble thosein current genetic engineering and

    whichrequirelargeinvestmentstobringaproducttomarket,patentingseemslikely

    topredominate.Andaspatentapplicationsintheeldofsyntheticbiologyarelikelyto

    containclaimsforbiologicalmoleculesormicro-organisms,andformethodsofproducing

    andapplyingthem,theywillbemostlyindistinguishablefromsimilarapplicationsin

    otherareasofbiotechnology.Patentauthoritiesholdprimaryresponsibilityforensuring

    The needs o theresearch communityor IP protectionar