ipels, 29 june-3 july, 2003 whitefish, montana, usa

23
A. Vaivads, M. Andr A. Vaivads, M. Andr é é , S. Buchert, N. , S. Buchert, N. Cornilleau-Wehrlin, Cornilleau-Wehrlin, A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. Lavraud, Lavraud, C. Mouikis, T. Phan, B. N. Rogers, J.-E. C. Mouikis, T. Phan, B. N. Rogers, J.-E. Wahlund Wahlund IPELS, 29 June-3 July, 2003 Whitefish, Montana, USA The small scale structure The small scale structure of the magnetopause of the magnetopause Current layers and waves

Upload: teryl

Post on 06-Jan-2016

25 views

Category:

Documents


3 download

DESCRIPTION

A. Vaivads, M. Andr é , S. Buchert, N. Cornilleau-Wehrlin, A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. Lavraud, C. Mouikis, T. Phan, B. N. Rogers, J.-E. Wahlund. IPELS, 29 June-3 July, 2003 Whitefish, Montana, USA. The small scale structure of the magnetopause Current layers and waves. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

A. Vaivads, M. AndrA. Vaivads, M. Andréé, S. Buchert, N. Cornilleau-Wehrlin, , S. Buchert, N. Cornilleau-Wehrlin, A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. Lavraud, A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. Lavraud,

C. Mouikis, T. Phan, B. N. Rogers, J.-E. WahlundC. Mouikis, T. Phan, B. N. Rogers, J.-E. Wahlund

IPELS, 29 June-3 July, 2003Whitefish, Montana, USA

The small scale structure of the The small scale structure of the magnetopausemagnetopause

Current layers and waves

Page 2: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 2

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

Why small scales and waves?

Importance for large scale phenomena

Decoupling of particles

Energy transport

Energy conversion, particle energization

Remote or local sensing tool

Intro Cluster MP crossing E~jxB Separatrix Waves Summary

Page 3: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 3

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

What we want to know?

Structure? sheet vs tubelocal vs globaldispersion relation

Transport plasma, energy (particles, Poynting flux)

Momentum equationGeneralized Ohm’s lawfree energy

Energy conversion j·E

Intro Cluster MP crossing E~jxB Separatrix Waves Summary

Page 4: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 4

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

Cluster and magnetopause scales

Intro Cluster MP crossing E~jxB Separatrix Waves Summary

Page 5: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 5

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

Cluster orbit, magnetopause crossings

Orbit in March

after Parks(1991)

Intro Cluster MP crossing E~jxB Separatrix Waves Summary

Page 6: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 6

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

2002-Feb-06 0810-0815UT

High latitude MP crossing

100km Cluster separation

s/c in burst mode

Magnetopause ~50 c/pi

Zoom into ~5 c/pi

Intro Cluster MP crossing E~jxB Separatrix Waves Summary

Page 7: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 7

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

s/c2a)p1040 29-Jun-2003 06:13:59

s/c4 s/c3s/c1

NV

ps [

cm-3

]

vnGSE

=105 [-0.76 -0.35 -0.54] km/s. dt= [0 0.19 0.72 -0.17] s.

1

2

3

4

5

b)

BN [

nT]

-10

0

10

c)B

M [

nT]

-20

0

20

d)

BL [

nT]

40

50

60

EyEx e) s/c 1

sc1

E [

mV

/m]

-40

-20

0

20

40

s/c 2f)

sc2

E [

mV

/m]

-40

-20

0

20

40

s/c 3g)

sc3

E [

mV

/m]

-40

-20

0

20

40

s/c 4h)

06-Feb-2002

sc4

E [

mV

/m]

08:11:56 08:11:57 08:11:58 08:11:59 08:12:00

-40

-20

0

20

40

Density dip ~1c/pi

Narrow current sheet (yellow) 5-10 e,e

Strongest E fields within the current sheet

Differences among s/c in E and B.

Intro Cluster MP crossing E~jxB Separatrix Waves Summary

Page 8: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 8

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

E [mV

/m] DS

Vps [V

]B [n

T] GSE

- 3 0- 2 0- 1 0

01 02 03 0

- 2 0

- 1 5

- 1 0

- 5

0

0 8 :11 : 4 0 0 8 :1 2 :0 0 0 8 :1 2 :2 0 - 5 0

0

5 0

0 6 -F e b -2 0 0 2

Intro Cluster MP crossing E~jxB Separatrix Waves Summary

Page 9: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 9

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

Generalized Ohms law and Cluster

jjpE

jjpBjBvE

t

t

d

d

2e

2e

ne

m

ne

1ne

m

ne

1)(

ne

1

II

Spin resolution, ion scales

● B, E, n, pe, v, j

High time resolution, electron scales

● B, E, n (fpe)

● n (satellite potential), pe, j (curlometer, 1 s/c methods)

• v

Intro Cluster MP crossing E~jxB Separatrix Waves Summary

Page 10: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 10

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

5-10 e,e current sheet,jperp and jII

B and n gradients coincides

E~j x B

pe not important

e- beam carrying jII can generate waves

Intro Cluster MP crossing E~jxB Separatrix Waves Summary

Page 11: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 11

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

E~j x B, all 4 s/c

Potential drop across the current sheet of a few 100 V

p1039 29-Jun-2003 11:56:32

s/c4a) s/c1 s/c2 s/c3

s/c4. vMP

=105 [-0.76 -0.35 -0.54] km/s GSE, Te=150eV. E low pass filtered at 30 HzN - normal to MP, towards MSh, L - closest to the mean direction of B, M=LxN. dt= [0 0.19 0.72 -0.17] s.

1

2

3

4

5

s/c 1b)

s/c1

, E

[m

V/m

]

-40

-20

0

20

EjxB/ne- T

e d

x n/n

s/c 2c)

s/c2

, E

[m

V/m

]

-40

-20

0

20

EjxB/ne- T

e d

x n/n

s/c 3d)

s/c3

, E

[m

V/m

]

-40

-20

0

20

EjxB/ne- T

e d

x n/n

s/c 4e)

06-Feb-2002

s/c4

, E

[m

V/m

]

08:11:56 08:11:57 08:11:58 08:11:59 08:12:00

-40

-20

0

20

EjxB/ne- T

e d

x n/n

Intro Cluster MP crossing E~jxB Separatrix Waves Summary

Page 12: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 12

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

Numerical simulations of reconnection

Two fluid, reconnection with a guide field Te=0, t=0

Width of separatrix is a few c/pe

E is strong along the separatrix

E ~j x B, in most of the system

[Rogers]

n

Bz

E

-2 -1 0 1 2 c/pi

-2

-1

0

1

2

Intro Cluster MP crossing E~jxB Separatrix Waves Summary

Page 13: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 13

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

MP reference frame

EM>0, EN strong inside density dip

Inflow velocity ~ magnetopause velocity

Inf

7.3

Vps

[cm

-3]

0

1

2

3

4

5

n SC [

cm-3

]

08:11:56 08:11:57 08:11:58 08:11:59 08:12:00

06-Feb-2002

-200

0

200

400

600

V [

km/s

]M

PE

[mV

/m]

MP

LMN

0

10

20

30

40 LMN

Intro Cluster MP crossing E~jxB Separatrix Waves Summary

Page 14: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 14

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

Waves strongest in the narrow current sheet (gradient in n and B)

Broad band

Spectral peaks f~fLH

Spectral peaks f~100 Hz, ’whistlers’

Poynting flux associated to both ’whistlers’ and ’LHD’

Waves generated by gradients or electron beams?

E

B

S-0.5

0

0.5

-2

0

2

-6

-4

-2

0

0.5

1

1.5

2

2.5

NV

ps [

cm-3

]

p1035spb 29-Jun-2003 12:43:35s/c 4

a)

-50

0

50

E [

mV

/m]

DS

I

Ex Eyb)

10

100

f [H

z]

E [

(mV

/m)2

/Hz]c)

10

100

f [H

z]

B [

nT2/H

z]

d)

10

100

f [H

z]

SII [

W/m

2H

z]1

/2

e)

08:11:57.0 .5 08:11:58.0 .5

-1

0

1

2

06-Feb-2002

SII [

W s

/m2]

whistler x100 LH x10 CS x1

f)

E

n

S

Intro Cluster MP crossing E~jxB Separatrix Waves Summary

Page 15: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 15

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

15-35 Hz band-pass filter (LH)

ke~1

low coherence

wave transports e- across the current sheet.

D10-9 m2/s, Diffusion?

Intro Cluster MP crossing E~jxB Separatrix Waves Summary

Page 16: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 16

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

Diffusion at magnetopause

Treumann [2001]

Intro Cluster MP crossing E~jxB Separatrix Waves Summary

Page 17: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 17

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

Laboratory observations [Carter et al. 2002]

LHD waves near the low- edge low coherence no clear correlation with

reconnection rate

Studies of B and narrow current sheets in progress

MRX – magnetic reconnection experiment

Intro Cluster MP crossing E~jxB Separatrix Waves Summary

Page 18: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 18

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

LHD waves in laboratory vs. space

Laboratory

Space

Broadband, fmax ~ fLH

ke ~ 1

Strongest at low- edge Low coherence Fast growth rate & damping ?

The propagation direction vDe ?along MP

emax/Te ~ 5% ~ 100%

Next step - to compare current sheets and whistlers

Intro Cluster MP crossing E~jxB Separatrix Waves Summary

Page 19: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 19

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

Strong E (10s mV/m)within narrow current sheets ~10 c/pe

on magnetospheric side of MP

E~jxB, pe is not important

Separatrix of reconnectionOther explanations?

Strong lower hybrid drift waves and whistlers Electron transport due to LHD waves can be important only within

the current sheet D 109 m2/s, diffusion?

Comparisons with 3D numerical simulations Many more events Separatrix studies in lab

Summary

Future

Intro Cluster MP crossing E~jxB Separatrix Waves Summary

Page 20: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 20

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

Particle diffusion, effective collision frequency

Diffusion approximation

j

jj

n

nD

v

Effective collision frequenacy

jyjyjj

jeff nE

Vmn

qv

,

Analytically - n,v (E+dispersion relation) Observations - n (satellite potential fluctuations)

- v=ExB (for electrons)

Page 21: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 21

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

Other event

EE

BB

SS||||

2001-03-02

Page 22: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 22

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

Aurora vs Magnetopause

Aurora - ion scales, can go down to electron scales Auroral field lines – narrow current sheets of Region I, II current systems

strong jII, particle acceleration, wavesoften boundary phenomena (PSBL)

Infering EII from measurements of Eperp

Page 23: IPELS,  29 June-3 July, 2003 Whitefish, Montana, USA

slide 23

Swedish Institute of Space Physics

Uppsala

IPELS, Whitefish27 June 2003

Scales

Parameter Magnetosheath Magnetosphere

B,n,Te,Ti 30nT, 10cm-3, 150eV, 1keV

30nT, 1cm-3, 1keV, 10keV

Gyroradius H+ 150km, e- 1.4 km H+ 480km, e- 3.5km

Inertial length H+ 72km, e- 1.7km H+ 230km, e- 5.3km

Gyrofequency H+ 0.46Hz, e- 840Hz H+ 0.46Hz, e- 840Hz

Lower hybrid 20Hz 20Hz

Small spatial scales between ion and electron scales and smaller

a few tens of km and below