introduction*to*seismic*body*waves*...

19
Introduction to seismic body waves Tomography Presented by Han Zhang Prepared by group work of Justin Wilgus and Han Zhang

Upload: lamlien

Post on 21-May-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Introduction  to  seismic  body  waves  Tomography

Presented  by  Han  Zhang

Prepared  by  group  work  of  Justin  Wilgus and  Han  Zhang

Outlines

1. Velocity  derived  from  wave  equation

2. Two  commonly  used  reference  1-­‐D  models  

3. Naming  seismic  body  waves  at  global  scale

4. Basic  ideas  of  body  wave  tomography

5. Possible  improvement  on  inversion

𝜌�̈� = 𝜆 + 2𝜇 𝛻 𝛻 ⋅ 𝒖 − 𝜇𝛻  ×  𝛻  ×  𝒖

Seismic  wave  equation  we  got  in  last  class,

where  dot  above  vector  u denotes  partial  differential  on  time  ( ../

),  and  two  dots  

means  do  it  twice  ( .0

./0).  And  𝛻 = .

.1, ..3, ..4

as  we  discussed.  𝜆,  𝜇 and  𝜌 are  two  lame  parameters  and  density  of  media  respectively.

By  dot  timing  operator  𝛻 from  left  side,  we  can  get  (using  𝛻 ⋅ 𝛻  ×  𝒗 = 0 ),

𝜌𝛻 ⋅ 𝒖̈ = 𝜆 + 2𝜇 𝛻7 𝛻 ⋅ 𝒖which  is  compression  wave  equation  since  𝛻 ⋅ 𝒖 denotes  volume  change  of  media.

Similarly,  by  taking  the  curl  of  two  side,  we  can  get,

𝜌𝛻×𝒖̈ = 𝜇𝛻7 𝛻×𝒖for  S  wave  since  𝛻×𝒖 is  shear  component  of  displacement.

𝑉9 =𝜆 + 2𝜇𝜌

𝑉; =𝜇𝜌

𝜌�̈� = 𝜆 + 2𝜇 𝛻 𝛻 ⋅ 𝒖 − 𝜇𝛻  ×  𝛻  ×  𝒖

Seismic  wave  equation  we  got  in  last  class,

where  dot  above  vector  u denotes  partial  differential  on  time  ( ../

),  and  two  dots  

means  do  it  twice  ( .0

./0).  And  𝛻 = .

.1, ..3, ..4

as  we  discussed.  𝜆,  𝜇 and  𝜌 are  two  lame  parameters  and  density  of  media  respectively.

By  dot  timing  operator  𝛻 from  left  side,  we  can  get  (using  𝛻 ⋅ 𝛻  ×  𝒗 = 0 ),

𝜌𝛻 ⋅ 𝒖̈ = 𝜆 + 2𝜇 𝛻7 𝛻 ⋅ 𝒖which  is  compression  wave  equation  since  𝛻 ⋅ 𝒖 denotes  volume  change  of  media.

Similarly,  by  taking  the  curl  of  two  side,  we  can  get,

𝜌𝛻×𝒖̈ = 𝜇𝛻7 𝛻×𝒖for  S  wave  since  𝛻×𝒖 is  shear  component  of  displacement.

𝑉9 =𝜆 + 2𝜇𝜌

𝑉; =𝜇𝜌

Despite  the  fact  that  density  of  materials  inside  Earth  is  increasing  with  depth,  lame  parameters  𝜆, 𝜇 are  also  increasing  with  depth  and  their  enlargement  factor  is  greater  than  that  of  density,  which  finally  leads  to  an  

increase  function  of  wave  velocity  with  depth  inside  mantle.

Reference  Models0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

4800

5200

5600

6000

0 2 4 6 8 10 12 14

220 km

400 km

670 km

CMB

ICB

ρ Vs Vp

Velocity (km/s) or Density (g/cm3)

Dep

th (

km

)

PREM reference model

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

4800

5200

5600

6000

0 2 4 6 8 10 12 14

410 km

660 km

CMB

ICB

ρ Vs Vp

Velocity (km/s) or Density (g/cm3)

Dep

th (

km

)

AK135 reference model0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

4800

5200

5600

6000

0 2 4 6 8 10 12 14

220 km

400 km

670 km

CMB

ICB

ρ Vs Vp

Velocity (km/s) or Density (g/cm3)

Dep

th (

km

)

PREM reference model

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

4800

5200

5600

6000

0 2 4 6 8 10 12 14

410 km

660 km

CMB

ICB

ρ Vs Vp

Velocity (km/s) or Density (g/cm3)

Dep

th (

km

)

AK135 reference model0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

4800

5200

5600

6000

0 2 4 6 8 10 12 14

220 km

400 km

670 km

CMB

ICB

ρ Vs Vp

Velocity (km/s) or Density (g/cm3)

Dep

th (

km

)

PREM reference model0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

4800

5200

5600

6000

0 2 4 6 8 10 12 14

220 km

400 km

670 km

CMB

ICB

ρ Vs Vp

Velocity (km/s) or Density (g/cm3)

Dep

th (

km

)

PREM reference model

Datasets  of  PREM  and  AK135

PREM

1.  Geodetic  data2.  Free  oscillation  and  long-­‐period  surface  wave3.  Body  wave  (primarily,  direct  P  and  S)

Starting  model  of  density  derived  from  state  equation.

AK135

1.  Body  wave  traveltime  data  (absolute  traveltime  of  18  seismic  body  waves  and  traveltime  differences  between  them)

Starting  model  can  be  regarded  as  IASP91

Phases  Naming  (global)

Generally,  upgoing waves  start  with  lower  case  letter  while  downgoing  phases  using  upper  case.  Same  rule  for  reflection/conversion  points.

Considering  difference  of  sP and  SP  to  see  how  to  name  different  phases.

source

(Shearer,  Intro.  to  Seismology)

30˚

60˚

90˚

120˚

150˚

180˚

−150˚

−120˚

−90˚

−60˚

−30˚

Phases  Naming  (exercise)Blue  for  P  waveRed  for  S  wave

CMB ICB660410

Animation  available  herehttp://ds.iris.edu/seismon/swaves/index.php

Ray  1 Ray  2

pPcP410s

ScS660ScS

Body  Wave  TomographyCommon  assumptions  of  body  wave  traveltime  tomography,

1. One  good  reference  model  available  to  make  sure  velocity  perturbation  of  model  region  is  small  enough  for  linear  inversion;

2. All  blocks  in  our  model  region  are  well  sampled  by  observations  to  reduce  uncertainty  of  inversion  result.

Idea  of  body  wave  traveltime  tomography  based  on  ray  theory,

1. Traveltime  misfit  between  observed  data  and  prediction  of  one  certain  ray  is  contributed  by  the  blocks  lie  on  this  ray  path  only;

2. Total  traveltime  perturbation  along  the  ray  path  can  be  summed  from  the  product  of  traveltime  in  each  block  (calculated  using  reference  model)  with  the  fractional  velocity  perturbation  within  the  block.

Body  Wave  Tomography

1 2 3

4

9

6

7

8

5

For  each  ray  path,  we  can  get  one  equation  looks  like  this,

𝑟= = ∑ 𝑡=@𝑃@�BCDEFG

where  𝑟= is  traveltime  misfit  between  observation  and  prediction  of  ray  path  i,    𝑡=@is  absolute  traveltime  in  block  j of  ray  path  i,  and  𝑃@ is  velocity  perturbation  of  block  j.

a b c

d fe

g h iFor  ray  path  1  in  the  setting  showed  left,  the  equation  should  be,

𝑟H = 𝑃I + 𝑃J + 𝑃Kby  assuming  𝑡HI = 𝑡HJ = 𝑡HK = 1  𝑠𝑒𝑐.

𝑟H = 𝑟7 = 𝑟P = 𝑟Q = −0.01  𝑠𝑒𝑐;𝑟S = 𝑟T = 𝑟U = 𝑟V = 𝑟W = 0  𝑠𝑒𝑐;

Rays  are  numbered  aside  their  arrows  and  blocks  are  marked  by  low-­‐case  characters  inside  them.  Simple  traveltime  (1  sec or   2�  𝑠𝑒𝑐 for  one  block)  is  assumed  for  practice.

Body  Wave  Tomography1 2 3

4

9

6

7

8

5

a b c

d fe

g h i

White  blocks  have  zero  perturbation  relative  to  reference  model  while  black  ones  have  perturbation  of  -­‐1%.  

𝑟H = 𝑟7 = 𝑟P = 𝑟Q = −0.01  𝑠𝑒𝑐;𝑟S = 𝑟T = 𝑟U = 𝑟V = 𝑟W = 0  𝑠𝑒𝑐;

𝑃I = 𝑃Y = −1%;𝑃B = 𝑃E = 𝑃J = 𝑃[ = 𝑃K = 𝑃\ =𝑃= = 0.

Body  Wave  TomographyRewrite  residual  equation  using  matrix  to  get  general  form,

𝒅 = 𝑮𝒎Residuals  =  Rays  × Model

where  𝒅 (1  x  i)  represents  residuals  of  all  the  ray  path,  𝑮 (j  x  i)  is  related  to  ray  path  configuration  and  sensitive  kernels  adopted  and  𝒎 (1  x  j)  denotes  perturbation  model.

In  the  case  of  i <  j,    which  means  the  number  of  independent  equations  is  less  than  parameters  need  to  be  recovered,  we  can  get  general  solution  only  (infinitely  many  solutions).

In  the  case  of  i =  j,  which  means  we  have  same  amount  of  independent  equations  and  model  parameters,  we  will  get  exactly  one  solution.

In  the  case  of  i >  j,  which  means  we  have  more  independent  equations  than  model  parameters,  theoretically  we  cannot  get  solution  from  above  form.  However,  we  are  able  to  get  least-­‐square  solution  (L2  norm)  of  this  kind  of  problem  by  solving

𝑮𝑻𝒅 = 𝑮𝑻𝑮𝒎which  theoretically  have  exactly  one  solution.

GAP_P4  Model

(Fukao and  Obayashi,  2013)

Slab  atop  at  660  km  discontinuity

GAP_P4  Model

(Fukao and  Obayashi,  2013)

Slab  cross  660  km  discontinuity

Possible  Improvements

Body  wave  tomography  works  pretty  well  in  helping  us  understand  deep  Earth  structures,  however,  there  are  some  defects  of  it,  which  may  be  overcame  by  joint  inversion  with  other  dataset.  Some  are  listed  here  for  checking,

1. L2  norm  tend  to  results  in  a  smooth  model,  which  will  average  small-­‐scale  heterogeneity  to  its  surroundings.  Combining  with  converted  wave  modelling  (such  as  receiver  function).

2. Limited  by  the  fact  that  most  seismometers  are  deployed  on  continents  and  islands,  which  leads  to  poor  ray  path  cover  at  crust  and  uppermost  mantle  beneath  ocean.  Combing  with  data  from  OBSs  (ocean  bottom  seismometers)  and/or  electrical  resistivity  tomography  (which  is  also  expensive  in  ocean  but  is  able  to  get  very  good  shallow  structures).

Finite  Frequency  Kernels

Banana-­‐doughnut  kernels  showing  the  sensitivity  of  P-­‐wave  travel  times  at  60◦epicentral  distance  to  velocity  perturbations  in  the  mantle.

(Hung  et  al,  2000)