introduction to robotics · minfaculty departmentofinformatics introductiontorobotics lecture13...

35
MIN Faculty Department of Informatics Introduction to Robotics Lecture 13 Jianwei Zhang, Lasse Einig [zhang, einig]@informatik.uni-hamburg.de University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics Technical Aspects of Multimodal Systems July 14, 2017 J. Zhang, L. Einig 446 / 479

Upload: others

Post on 05-Aug-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

MIN FacultyDepartment of Informatics

Introduction to RoboticsLecture 13

Jianwei Zhang, Lasse Einig[zhang, einig]@informatik.uni-hamburg.de

University of HamburgFaculty of Mathematics, Informatics and Natural SciencesDepartment of InformaticsTechnical Aspects of Multimodal Systems

July 14, 2017

J. Zhang, L. Einig 446 / 479

Page 2: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

OutlineArchitectures of Sensor-based Intelligent Systems Introduction to Robotics

IntroductionCoordinate systemsKinematic EquationsRobot DescriptionInverse Kinematics for ManipulatorsDifferential motion with homogeneous transformationsJacobianTrajectory planningTrajectory generationDynamicsRobot ControlTask-Level Programming and Trajectory GenerationTask-level Programming and Path Planning

J. Zhang, L. Einig 447 / 479

Page 3: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Outline (cont.)Architectures of Sensor-based Intelligent Systems Introduction to Robotics

Task-level Programming and Path PlanningArchitectures of Sensor-based Intelligent Systems

The CMAC-ModelThe Subsumption-ArchitectureControl Architecture of a FishProcedural Reasoning SystemBehavior FusionHierarchyArchitectures for Learning Robots

J. Zhang, L. Einig 448 / 479

Page 4: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Architectures of Sensor-based Intelligent SystemsArchitectures of Sensor-based Intelligent Systems Introduction to Robotics

OverviewI Basic behaviorI Behavior fusionI SubsumptionI Hierarchical architecturesI Interactive architectures

J. Zhang, L. Einig 449 / 479

Page 5: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

The Perception-Action-Model with MemoryArchitectures of Sensor-based Intelligent Systems Introduction to Robotics

perception behaviors

memory

actionsensors

J. Zhang, L. Einig 450 / 479

Page 6: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

CMAC-ModelArchitectures of Sensor-based Intelligent Systems - The CMAC-Model Introduction to Robotics

CMAC: Cerebellar Model Articulation Controller

S sensory input vectors (firing cell patterns)A association vector (cell pattern combination)P response output vector (A ·W )W weight matrix

The CMAC model can be viewed as two mappings:

f : S −→ A

g : A W−→ P

J. Zhang, L. Einig 451 / 479

Page 7: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

CMAC-Model (cont.)Architectures of Sensor-based Intelligent Systems - The CMAC-Model Introduction to Robotics

S1

S2

S3

S4

S5

A1

A2

A3

A4

A5

A6

R1

R2

R3

W1,1

W1,2

W1,3

W1,4

W1,5

W1,6

W2,1

W2,2

W2,3

W2,4

W2,5

W2,6

W3,1

W3,2

W3,3

W3,4

W3,5

W3,6

R1

R2

R3

sensory cells association cells adjustable weight response cells

J. Zhang, L. Einig 452 / 479

Page 8: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

B-Spline-ModelArchitectures of Sensor-based Intelligent Systems - The CMAC-Model Introduction to Robotics

The B-Spline model is an ideal implementation of theCMAC-Model. The CMAC model provides an neurophysiologicalinterpretation of the B-Spline model.

J. Zhang, L. Einig 453 / 479

Page 9: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Alvinn – Visual NavigationArchitectures of Sensor-based Intelligent Systems - The CMAC-Model Introduction to Robotics

CMU – Carnegie Mellon University

J. Zhang, L. Einig 454 / 479

Page 10: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Action-oriented PerceptionArchitectures of Sensor-based Intelligent Systems - The CMAC-Model Introduction to Robotics

Percept-1 Behavior-1 Response-1Percept-2 Behavior-2 Response-2Percept-3 Behavior-3 Response-3

Fusion

Percept-1

Percept-2

Percept-3

Percept Behavior Response

Percept-1

Percept-2

Percept-3

Behavior Responseone of

J. Zhang, L. Einig 455 / 479

Page 11: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

The Subsumption ArchitectureArchitectures of Sensor-based Intelligent Systems - The Subsumption-Architecture Introduction to Robotics

I hierarchical structure of behaviorI higher level behaviors subsumpe lower level behaviors

Modeling/planning paradigm

I program composed of sequence of stepsI functional units transform sensory data snapshots to actionsI series of actions achieve a specified goal

Subsumption architecture

I e.g. the mobile robot Rug WarriorI begins with cruise behaviorI moves forward

I a follow behavior subsumes the cruise behaviorI triggered by photo cellsI moves towards the light

I avoid behavior suppresses follow and cruiseI infrared sensors detect imminent collisionI attempts to avoid the obstacles

I escape behavior uses bumper sensor to sense collisionsI reverses and bypasses the obstacleI top-level behavior, detect sound pattern, makes the robot play a

tuneI detect sound pattern subsumes all lower level behaviors by

stopping or following the sound pattern

cruise

follow

avoid

escape

detect sound pattern

S

S

S S

photo cells

IR detector

bumper

microphone piezo buzzer

motors

[17]

J. Zhang, L. Einig 456 / 479

Page 12: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Foraging and FlockingArchitectures of Sensor-based Intelligent Systems - The Subsumption-Architecture Introduction to Robotics

I multi-robot architectureI basic behaviors are sequentially executed

I composite behaviors built from basicsI by vector summationI hierachical composite behaviorsI include composite behaviors

homing

dispersion

aggregation

safe wandering

following

basic behaviors composite behaviors

sensory inputs/sensory conditions

actuator output

flocking

foraging=wandering+dispersion+following+homing+flocking

herding=wandering+surrounding+flockingsurrounding=wandering+following+aggregationflocking=wandering+aggregation+dispersion

[18]

J. Zhang, L. Einig 457 / 479

Page 13: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Cockroach Neuron / BehaviorsArchitectures of Sensor-based Intelligent Systems - The Subsumption-Architecture Introduction to Robotics

ringfrequency

synapscurrents currents

R Ccell membrane

thresholdvoltage

SENSORS BEHAVIORS

ingestion

findingfood

edgefollowing

wandering

mouthtactile

mouthchemical

antennachemical

antenna

J. Zhang, L. Einig 458 / 479

Page 14: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Control Architecture of a FishArchitectures of Sensor-based Intelligent Systems - Control Architecture of a Fish Introduction to Robotics

Control and information flow in artificial fishPerception sensors, focuser, filterBehaviors behavior routinesBrain/mind habits, intention generatorLearning optimizationMotor motor controllers, actuators/muscles

J. Zhang, L. Einig 459 / 479

Page 15: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Control Architecture of a Fish (cont.)Architectures of Sensor-based Intelligent Systems - Control Architecture of a Fish Introduction to Robotics

J. Zhang, L. Einig 460 / 479

Page 16: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Procedural Reasoning SystemArchitectures of Sensor-based Intelligent Systems - Procedural Reasoning System Introduction to Robotics

INTERPRETERMONITOR COMMANDGENERATOR

OPERATORINTERFACE

plansdesires intentionsbeliefs

actuatorssensors [19]

J. Zhang, L. Einig 461 / 479

Page 17: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Hierarchical Fuzzy-Control of a RobotArchitectures of Sensor-based Intelligent Systems - Behavior Fusion Introduction to Robotics

subgoalapproaching

local collisionavoidance

commandfrom others

situationevaluation

knowledge base

worldmodel

fuzzy controller

subgoal planning

robot perception

replanningsubgoal sequence

commandingof other robots,human users

[20]

J. Zhang, L. Einig 462 / 479

Page 18: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Behavior FusionArchitectures of Sensor-based Intelligent Systems - Behavior Fusion Introduction to Robotics

Fuzzy rules evaluate current situation.Situation evaluation determines 3 fuzzy-parameters

I the priority K of the LCA rule baseI the replanning selectorI NextSubgoal (whether a subgoal has been reached)

Typical rule IF (SL85 IS HIGH) AND (SL45 IS VL) AND (SLR0 IS VL) AND(SR45 IS VL) AND (SR85 IS VL) THEN (Speed IS LOW) AND (Steer ISPM) K IS HIGH AND Replan IS LOW

Translation If the leftmost proximity sensor detects an obstaclewhich is near and the other sensors detect no obstacle atall, then steer halfway to the right at low speed. Mainlyperform obstacle avoidance. No re-planning required.

Coordination of multiple rule basesSpeed = SpeedLCA · K + SpeedSA · (1− K )Steer = SteerLCA · K + SteerSA · (1− K )

LCA: Local Collision Avoidance SA: Subgoal ApproachJ. Zhang, L. Einig 463 / 479

Page 19: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

HierarchyArchitectures of Sensor-based Intelligent Systems - Hierarchy Introduction to Robotics

Real-Time Control System (RCS)I RCS reference model is an architecture for intelligent systems.I Processing modes are organized such that the BG (Behavior

Generation) modules form a command tree.I Information in the knowledge database is shared between WM

(World Model) modules in nodes within the same subtree.

[21]

Examples of functional characteristics of the BG and WM modules:

J. Zhang, L. Einig 464 / 479

Page 20: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Hierarchy (cont.)Architectures of Sensor-based Intelligent Systems - Hierarchy Introduction to Robotics

J. Zhang, L. Einig 465 / 479

Page 21: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Hierarchy (cont.)Architectures of Sensor-based Intelligent Systems - Hierarchy Introduction to Robotics

J. Zhang, L. Einig 466 / 479

Page 22: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Hierarchy (cont.)Architectures of Sensor-based Intelligent Systems - Hierarchy Introduction to Robotics

G1 M1 H1

G2 M2 H2

G3 M3 H3

G4 M4 H4

from sensors to servos

to higher levelsof interpretation

from a prioriknowledge base

from higher levelsof control

parameters ofsensed world

parameters ofexpected world

specification ofworld model error

parameters ofworld model

parameters of higherlevel world model

specification ofsub-task

[21]

J. Zhang, L. Einig 467 / 479

Page 23: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Sensor-HierarchyArchitectures of Sensor-based Intelligent Systems - Hierarchy Introduction to Robotics

Level 0

Level I

Level II

Level III

Level IV

raw data

Properties of points in space

Descriptions of aggregatesof points and their features(object elements)

Recognition of aggregates offeatures (objects)

Descriptions of relations ofobjects or unrecognized aggre-gates

Recognition of relations ofobjects

[21]

J. Zhang, L. Einig 468 / 479

Page 24: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Other examplesArchitectures of Sensor-based Intelligent Systems - Hierarchy Introduction to Robotics

CONTROLLERcommand

tasking

low-levelcontrol

SENSORS

ACTUATORS

PATH MONITORtarget location

path correction

PILOTtarget generation

dynamic path planning

NAVIGATORsub-goal formulation

local path planning

PLANNERglobal recognition

global path planning

[22]

J. Zhang, L. Einig 469 / 479

Page 25: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Other examplesArchitectures of Sensor-based Intelligent Systems - Hierarchy Introduction to Robotics

execution level

coordination level

organization level

robot actuators vision hardware other coordinators

motion controller vision controller other controllers

motion coordinator vision coordinator planning coordinator other coordinators

DISPATCHER

ORGANIZER

[23]

J. Zhang, L. Einig 469 / 479

Page 26: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

An Architecture for Learning RobotsArchitectures of Sensor-based Intelligent Systems - Architectures for Learning Robots Introduction to Robotics

[24]

J. Zhang, L. Einig 470 / 479

Page 27: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

AuRA ArchitectureArchitectures of Sensor-based Intelligent Systems - Architectures for Learning Robots Introduction to Robotics

schema controllermotor perceptual

REPRESENTATION

learning

plan recognitionuser profile

spatial learning

opportunism

on-lineadpation

user input

user intentions

spatial goals

missionalterations

teleautonomy

mission planner

spatial reasoner

plan sequencer

Actuation Sensing

HiearchicalComponent

ReactiveComponent

[25]

J. Zhang, L. Einig 471 / 479

Page 28: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Atlantis ArchitectureArchitectures of Sensor-based Intelligent Systems - Architectures for Learning Robots Introduction to Robotics

CONTROL

SEQUENCING

DELIBERATIVE

SENSORS ACTUATORS

statusactivation

invocationresults

[26]

J. Zhang, L. Einig 472 / 479

Page 29: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

RACERobustness by Autonomous Competence EnhancementArchitectures of Sensor-based Intelligent Systems - Architectures for Learning Robots Introduction to Robotics

Blackboard

HTN PlannerOWLOntology

ExecutionMonitor

Robot

Capabil-ities

Conceptualizer

Reasoningand

Interpretation

ExperienceExtractor/Annotator

UserInterface

Perception

PerceptualMemory

OWLconcepts

OWLconcepts

new concepts

experiences

fluents

fluentsfluents

expe-riences instructions

instructions

fluents

inital state,goal plan

plan,goal

fluents,schedule

planROSactions

actionresults

continuousdata

sensor data

[27]

J. Zhang, L. Einig 473 / 479

Page 30: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

BibliographyArchitectures of Sensor-based Intelligent Systems - Architectures for Learning Robots Introduction to Robotics

[1] K. Fu, R. González, and C. Lee, Robotics: Control, Sensing, Vision,and Intelligence.McGraw-Hill series in CAD/CAM robotics and computer vision,McGraw-Hill, 1987.

[2] R. Paul, Robot Manipulators: Mathematics, Programming, andControl: the Computer Control of Robot Manipulators.Artificial Intelligence Series, MIT Press, 1981.

[3] J. Craig, Introduction to Robotics: Pearson New InternationalEdition: Mechanics and Control.Always learning, Pearson Education, Limited, 2013.

[4] J. F. Engelberger, Robotics in service.MIT Press, 1989.

[5] W. Böhm, G. Farin, and J. Kahmann, “A Survey of Curve andSurface Methods in CAGD,” Comput. Aided Geom. Des., vol. 1,pp. 1–60, July 1984.

J. Zhang, L. Einig 474 / 479

Page 31: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Bibliography (cont.)Architectures of Sensor-based Intelligent Systems - Architectures for Learning Robots Introduction to Robotics

[6] J. Zhang and A. Knoll, “Constructing Fuzzy Controllers withB-spline Models - Principles and Applications,” International Journalof Intelligent Systems, vol. 13, no. 2-3, pp. 257–285, 1998.

[7] M. Eck and H. Hoppe, “Automatic Reconstruction of B-splineSurfaces of Arbitrary Topological Type,” in Proceedings of the 23rdAnnual Conference on Computer Graphics and InteractiveTechniques, SIGGRAPH ’96, (New York, NY, USA), pp. 325–334,ACM, 1996.

[8] M. C. Ferch, Lernen von Montagestrategien in einer verteiltenMultiroboterumgebung.PhD thesis, Bielefeld University, 2001.

[9] J. H. Reif, “Complexity of the Mover’s Problem and Generalizations- Extended Abstract,” Proceedings of the 20th Annual IEEEConference on Foundations of Computer Science, pp. 421–427,1979.

J. Zhang, L. Einig 475 / 479

Page 32: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Bibliography (cont.)Architectures of Sensor-based Intelligent Systems - Architectures for Learning Robots Introduction to Robotics

[10] J. T. Schwartz and M. Sharir, “A Survey of Motion Planning andRelated Geometric Algorithms,” Artificial Intelligence, vol. 37, no. 1,pp. 157–169, 1988.

[11] J. Canny, The Complexity of Robot Motion Planning.MIT press, 1988.

[12] T. Lozano-Pérez, J. L. Jones, P. A. O’Donnell, and E. Mazer,Handey: A Robot Task Planner.Cambridge, MA, USA: MIT Press, 1992.

[13] O. Khatib, “The Potential Field Approach and Operational SpaceFormulation in Robot Control,” in Adaptive and Learning Systems,pp. 367–377, Springer, 1986.

[14] J. Barraquand, L. Kavraki, R. Motwani, J.-C. Latombe, T.-Y. Li,and P. Raghavan, “A Random Sampling Scheme for PathPlanning,” in Robotics Research (G. Giralt and G. Hirzinger, eds.),pp. 249–264, Springer London, 1996.

J. Zhang, L. Einig 476 / 479

Page 33: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Bibliography (cont.)Architectures of Sensor-based Intelligent Systems - Architectures for Learning Robots Introduction to Robotics

[15] R. Geraerts and M. H. Overmars, “A Comparative Study ofProbabilistic Roadmap Planners,” in Algorithmic Foundations ofRobotics V, pp. 43–57, Springer, 2004.

[16] K. Nishiwaki, J. Kuffner, S. Kagami, M. Inaba, and H. Inoue, “TheExperimental Humanoid Robot H7: A Research Platform forAutonomous Behaviour,” Philosophical Transactions of the RoyalSociety of London A: Mathematical, Physical and EngineeringSciences, vol. 365, no. 1850, pp. 79–107, 2007.

[17] R. Brooks, “A robust layered control system for a mobile robot,”Robotics and Automation, IEEE Journal of, vol. 2, pp. 14–23, Mar1986.

[18] M. J. Mataric, “Interaction and intelligent behavior.,” tech. rep.,DTIC Document, 1994.

[19] M. P. Georgeff and A. L. Lansky, “Reactive reasoning andplanning.,” in AAAI, vol. 87, pp. 677–682, 1987.

J. Zhang, L. Einig 477 / 479

Page 34: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Bibliography (cont.)Architectures of Sensor-based Intelligent Systems - Architectures for Learning Robots Introduction to Robotics

[20] J. Zhang and A. Knoll, Integrating Deliberative and ReactiveStrategies via Fuzzy Modular Control, pp. 367–385.Heidelberg: Physica-Verlag HD, 2001.

[21] J. S. Albus, “The nist real-time control system (rcs): an approachto intelligent systems research,” Journal of Experimental &Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 157–174, 1997.

[22] A. Meystel, “Nested hierarchical control,” 1993.

[23] G. Saridis, “Machine-intelligent robots: A hierarchical controlapproach,” in Machine Intelligence and Knowledge Engineering forRobotic Applications (A. Wong and A. Pugh, eds.), vol. 33 ofNATO ASI Series, pp. 221–234, Springer Berlin Heidelberg, 1987.

[24] T. Fukuda and T. Shibata, “Hierarchical intelligent control forrobotic motion by using fuzzy, artificial intelligence, and neuralnetwork,” in Neural Networks, 1992. IJCNN., International JointConference on, vol. 1, pp. 269–274 vol.1, Jun 1992.

J. Zhang, L. Einig 478 / 479

Page 35: Introduction to Robotics · MINFaculty DepartmentofInformatics IntroductiontoRobotics Lecture13 Jianwei Zhang, Lasse Einig [zhang,einig]@informatik.uni-hamburg.de UniversityofHamburg

Bibliography (cont.)Architectures of Sensor-based Intelligent Systems - Architectures for Learning Robots Introduction to Robotics

[25] R. C. Arkin and T. Balch, “Aura: principles and practice in review,”Journal of Experimental & Theoretical Artificial Intelligence, vol. 9,no. 2-3, pp. 175–189, 1997.

[26] E. Gat, “Integrating reaction and planning in a heterogeneousasynchronous architecture for mobile robot navigation,” ACMSIGART Bulletin, vol. 2, no. 4, pp. 70–74, 1991.

[27] L. Einig, Hierarchical Plan Generation and Selection for ShortestPlans based on Experienced Execution Duration.Master thesis, Universität Hamburg, 2015.

J. Zhang, L. Einig 479 / 479