introduction to nuclear data

91
Nuclear Data Center @KAERI Nuclear Data Center @KAERI - - 1 - - Introduction to Nuclear Data 원원원원원원원원원원원원 (Nuclear Data Center) 원원 원원원원원원 [email protected] 원 원 원 May 01, 2013 @KHU

Upload: gwen

Post on 12-Jan-2016

50 views

Category:

Documents


2 download

DESCRIPTION

Introduction to Nuclear Data. May 01, 2013 @KHU. 이 영 욱. 원자력데이터개발검증센터 (Nuclear Data Center) 한국 원자력연구원 [email protected]. Nuclear Data Nuclear Reaction Reaction Model Evaluation Examples Measurements Uncertainties Nuclear Data Center @ KAERI. How long is this piece of metal?. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 11 - -

Introduction to Nuclear Data

원자력데이터개발검증센터 (Nuclear Data Center)

한국 원자력연구원[email protected]

이 영 욱

May 01, 2013 @KHU

Page 2: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 22 - -

• Nuclear Data

• Nuclear Reaction

• Reaction Model

• Evaluation Examples

• Measurements

• Uncertainties

• Nuclear Data Center @KAERI

Page 3: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 33 - -

How long is this piece of metal?

K. Manjunatha Prasad, manipal Univ.

Page 4: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 44 - -

Nuclear DataNuclear Data

Structure Data• 핵의 질량 , 여기준위 , 붕괴모드

• 측정가능 : 약 4000 여종

• 세계각국이 분담연구

Reaction Data• 방사선이 물질과 반응확률 ( 단면적 )

• 방출입자의 에너지와 각분포 (DDX) (ENDF/B 중성자파일 : 400 여개 핵종 )

Page 5: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 55 - -

Nuclear Physics

An Example – nuclear reactor analysis

),,,(),,,(),,;(

),,,(),(1

tEQEddtEEE

tEEtv

rrr

rr

Boltzman equation for neutron transport

Deterministic(Transport, Diffusion)

Stochastic(Monte Carlo)

Reactor Analysis

Nuclear Engineering

Nuclear Data

Page 6: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 66 - -

Cross Section for Reactor Analysis

total

elastic

fission

inelastic

capture

(n,2n)

ENDF/B-VII.1

Comprehensive theory of nuclear interaction is not known yet.

Reaction models are available

with limited applicability

- Parameters are tuned to match

some measured points Only formal theory of resonance

- Resonance parameters are derived

from measurement and systematics

Page 7: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 77 - -

Nuclear Data Activities

Evaluation

Data selectionReaction codeFormat (ENDF-6)

Processing

Data V&VLibraries - Multigroup lib (Deterministic) - Continuous-energy lib (MC)Benchmark

Applications

Reactor AnalysisMedical, shieldingBasic science

Basic nuclear data

Experiment -articles, EXFOR, etc

Theory -book, articles, etc

Page 8: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 88 - -

JAPAN ATOMIC ENERGY AGENCY

ENDF (Evaluated Nuclear Data File)

9.223500+4 2.330250+2 0 0 0 09228 3 17 1-1.214200+7-1.214200+7 0 0 1 349228 3 17 2 34 2 0 0 0 09228 3 17 3 1.219410+7 0.000000+0 1.225000+7 1.583250-4 1.250000+7 2.066140-39228 3 17 4 1.275000+7 5.824100-3 1.300000+7 1.128070-2 1.325000+7 1.828450-29228 3 17 5 1.350000+7 2.668400-2 1.375000+7 3.632780-2 1.400000+7 4.706430-29228 3 17 6 1.425000+7 5.874200-2 1.450000+7 7.120960-2 1.475000+7 8.431550-29228 3 17 7 1.480000+7 8.700000-2 1.500000+7 9.790830-2 1.525000+7 1.118360-19228 3 17 8 1.550000+7 1.259480-1 1.575000+7 1.400930-1 1.600000+7 1.541180-19228 3 17 9 1.625000+7 1.678730-1 1.650000+7 1.812060-1 1.675000+7 1.939660-19228 3 17 10 1.700000+7 2.060000-1 1.725000+7 2.179280-1 1.750000+7 2.278910-19228 3 17 11 1.775000+7 2.360960-1 1.800000+7 2.427500-1 1.825000+7 2.480610-19228 3 17 12 1.850000+7 2.522340-1 1.875000+7 2.554790-1 1.900000+7 2.580000-19228 3 17 13 1.925000+7 2.600060-1 1.950000+7 2.617030-1 1.975000+7 2.632990-19228 3 17 14 2.000000+7 2.650000-1 9228 3 17 15 9228 3 099999

Incident Energy [eV] Cross Section [barn] Number of Data

ZA=Z*1000+A AWR=mass/neutron U-235 Cross Section(n,3n)

Q-value

Page 9: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 99 - -

Applications

10-2

10-1

100

105

106

107

108

109

[eV]

Accelerator

Medical

Space

Fusion

Fission

Page 10: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 1010 - -

Accelerator Driven Systems Concept of accelerator driven

systems (ADS)

A possible facility which allows to

eliminate minor Actinides; use of Th-U cycle possible.

Proton-accelerator delivering

400-800 MeV protons provides by spallation the neutrons required

for criticality.

H. Leeb, Atominstitut, Vienna University of Technology , Vienna, Austria

Page 11: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 1111 - -

Concept of ADS

Verluste

1 Neutron2-3 Neutrons

per fissionfissi

on

fissi

on

0.95 Neutrons2-3 Neutrons

per fissionfissi

on

fissi

on

Verluste

Addition of spallation neutrons

In stationary operation is the number of neutrons given by Ntot = (1+k+k2+k3+...) Ne = Ne/(1-k) ==> multiplication by 1/(1-k)

Ne number of neutrons from spallation

k effective multiplication factor, criticality of the subcritical core

H. Leeb, Atominstitut, Vienna University of Technology , Vienna, Austria

Page 12: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 1212 - -

Thorium-Uranium cycle

12

The thorium-uranium cycle232 Th (n,) 233 Pa 233 U + regeneration process

233 U (n,f) fissile element

parasitic reactions233 U(n,2n)232 U , 231Pa (n, )232 Pa 232 U + 232 Th(n,2n)231 Th + 231 Pa

Advantage: almost no actinides are produced

long term hazard and proliferation hazard reduced. Abundance of thorium is high.

Difficulty: fast spectrum required, harder gamma-radiation

Page 13: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 1313 - -

Fusion research

Strong irradiation on first wallSearch for best materials

Material studies will be

performed at future IFMIF

facility with spectrum up

to 60 MeV neutrons

Medical Accelerators, Space Applications

Page 14: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 1414 - -

Need for Data beyond 20 MeV

Current statusA wealth of neutron induced reaction data up to 20-25 MeVScarcity of experimental neutron data beyond 25 MeV

Challenges:As Einc increases number of open channels increases,

but the data become very scarce

Evaluations with extended energy range strongly rely on modelling

Page 15: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 1515 - -

Nuclear Data Evaluation

2

Example: uncertainty of quantity is requiredReliable

eff

effA

A AA

cross section covariances

Present status of evaluated Nuclear Data Files essentially a consistent set of cross sections (up to 20 MeV) covariance information is limited – reliability ?

Required developments extension of energy range requires increased use of models uncertainty information – request from the user community

Page 16: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 1616 - -

CIAE/CNDC

JAEA/JNDC

KAERI/NDC

NEA Data Bank

OECD/NEA members

Nuclear Data Center

Russia and CISBNL/NNDC

USA and Canada

IAEA NDS

Other than NEA

•Paris•Vienna

• Brookhaven•Beijing

•Daejeon•Tokai

•Obninsk

전세계 핵데이터 네트웍 현황전세계 핵데이터 네트웍 현황

ENDF/B

JENDL

BROND

JEFF

CENDL

Four Major Networks

Other Nuclear Data Center

Page 17: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 1717 - -

• Nuclear Data

• Nuclear Reaction

• Reaction Model

• Evaluation Examples

• Measurements

• Uncertainties

• Nuclear Data Center @KAERI

Page 18: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 1818 - -

Nuclear Reaction

The process in which two nuclear particles interact to produce products different from the initial particles

a + b c + [d + e + … ]

some or many reactions can occur in a nuclear collision

Two very different mechanisms – direct (fast) one and composite nucleus one.

Page 19: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 1919 - -

Neutron Induced Reaction

Elastic

Fission

Spallation

neutron

proton

γ-ray

Inelastic

(n,p)

Capture

Page 20: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 2020 - -

Basic Characteristics Conservation Law

Charge and nucleon number Total number of nucleons and the sum of the charges before

and after

Energy Energy, including rest mass energy, is conserved in nuclear

reactions.

Linear momentum( ), angular momentum ( ) and parity ( ) thresholds, recoil Parity is not conserved in weak interactions, e.g. in β decay

and electron conversion.

p

J

ConpFe 5627

5626 ),(

)8467.0(E *),( 1Level5626

5626 MeVFennFe

Page 21: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 2121 - -

The Quantum View of Scattering

In the quantum theory of scattering, the scattering wave function can be the sum of a incident plane wave and a scattered outgoing spherical wave

,)()(

r

efeAr

ikrikz

where ).2( Ekr

The probability that the incident particle, traveling at speed v, passes through the infinitesimal area dσ, in time dt, is

.)(22 dvdtAdVdP in

This is equal to the probability that the particle emerges into the corresponding solid angle

.)( 22

222 drvdt

r

fAdVdP sc .)(

2f

d

d

Scattering amplitude

Page 22: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 2222 - -

Partial Wave Expansion

,)(2

22

EΨΨrV

Schrödinger equation

Separation of variables in spherical coordinate

),()(),,( where mlYrRrΨ

Then, the radial Equation is

,2)1(

222

2

2

Vuur

llk

dr

ud

number. waveis 2

where

E

k

),()( rrRru Putting

.,,2

22

2 dr

urd

dr

dRr

dr

d

r

udr

dur

dr

dR

r

uR

then

Page 23: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 2323 - -

Partial Wave Expansion• The wave function can be expanded in partial waves of the orbital angular

momentum,

.)(cos)(),(0

l

ll Prur

The plane wave could be expanded as

,)(cos)()12(0

l

lllikz Pkrjile

with .)()( where,)()(2

)( )()(

kr

eikrhkrhkrh

ikrj

ikrl

rllll

In analogy with the plane wave, we write

.)(cos)()12(),(0

l

lll Prilr

Page 24: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 2424 - -

Partial Wave Expansion

.)(cos)1()12(2

1

)(cos)(2

1)()12(

)(cos)(2

)(2

)(2

)(2

)12(

)(cos)()(2

)12( )(cos)()12(),(

0

0

)(

0

)()()()(

0

)()(

0

r

ePSil

ike

Pkrhi

Skrjil

Pkrhi

krhSi

krhi

krhi

il

PkrhSkrhi

ilPrilr

ikr

lll

likz

lll

ll

l

lllllll

l

lllll

l

lll

l

The wave function can be a linear combination of the same incoming/outgoing wave

)(rl

.)()(2

)( )()( krhSkrhi

r llll

Substituting in the partial wave expansion,

0

).(cos)1)(12(2

1)(

lll PSl

ikf

),()( krhl

)()( krhl

)()( krhS ll

Scattering region

r

Page 25: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 2525 - -

Integrated Cross Section

• We obtain the elastic cross section by integrating over the differential one

0

2

20

2.1)12(sin)(2

llel Sl

kdf

Taking into account all of the flux entering and leaving the scattering region, the absorption cross section is

0

2

2.1)12(

1

llSabs Sl

kSdJ

v

0

2.Re1)12(

2

llabseltot Sl

k

Then, the total cross section is

Transmission Coefficient

.12

LL ST

Page 26: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 2626 - -

An Example - low-energy neutron scattering

• Only neutrons can approach close to nucleus

• At extremely low energy, s-waves (l=0) are dominant (En < 50 keV)

• Scattering from the hard sphere requires that the wave-function vanish at the radius of the sphere.

• Then s-wave function is

.2

)( 20

ikrikRikr eeekr

ir

The S-matrix element is .20

ikReS

The elastic cross section is .1122

2

2

02 ikR

el ek

Sk

When k→0, the elastic cross section tends to a constant,

.4 2

0R

kel

This is 4 times the classical cross section.

Page 27: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 2727 - -

• Nuclear Data

• Nuclear Reaction

• Reaction Model

• Evaluation Examples

• Measurements

• Uncertainties

• Nuclear Data Center @KAERI

Page 28: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 2828 - -

General Description of Nuclear Reaction

incident

particle

TARGET

NUCLEUS

HIGHLY

EXCITED

NUCLEUS

COMPOUND

NUCLEUS

FISSION

PRODUCTS

RESIDUAL

NUCLEUS

FISSION

PRODUCTS

Light particles

+ photons

Light particles

+ photons

Nucleons +

other hadrons

Fission

neutrons

Fission

neutrons

Intranuclearcascade

fission

Pre-equilibriumemission

Fission Evaporation

Secondary particles

Optical model

INC model

Emission model

Fission model

Particle transport

Nuclear reaction

Page 29: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 2929 - -

Reaction Models vs. Einc and target mass

Page 30: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 3030 - -

Resonance Region

.

4

1)(

)(22

2,

EEkE xn

xn and (n,x) reaction

,

4

1)(

)(

4

1)(

)2cos1(2sin)(2sin4)(

22

2

22

22,

EEEE

kRkREEkR

kE n

nnn

Elastic scattering is obtained as

ENDF-6 formatReich-Moore Formula (RM)Multi-level Breit-Wigner Formula (MLBW)Single-level Breit-Wigner Formula (SLBW)Adler-Adler Formalism (AA)

Single-level Breit-Wigner Formula (SLBW)

Resolved Resonance

Page 31: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 3131 - -

Resonance Region

Averaging Breit-Wigner Formula

H

L

E

E nxnxLH

nx dEED

dEEEE

)(1

)(1 )()(

Jl J

xn

J

Jnx D

g

k ,2

22

nn lJ

J

n n

Jn J l

Jl kl

k

g

D

42 1

22

22

2

22( ) sin sin

0 kR

nuclear radius R,

average neutron resonance spacing is DJ

neutron width is factor),n penetratio ( )()0( :VEVE llJlnn

.1

)0(

J

Jln

nJ

lJ D

S

radiative and fission width are

Unresolved Resonance

where

, and f

and neutron strength function is

Page 32: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 3232 - -

From Resonances To Fluctuations• As the energy increases, both the resonance

widths and the density of compound nucleus increase.

the resonances eventually overlap and can no longer be distinguished.

Ref) C.M. Perey et al. ORNL-TM10841

Ericson fluctuation•Optical Model model is to describe just the prompt, direct reactions in a collision.

•Optical potential is defined as to furnish the energy-averaged scattering amplitudes.

Page 33: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 3333 - -

Energy-averaged CS• As Energy increase, the more fluctuations will appear.

• The optical model potential furnishes the energy-averaged scattering amplitudes.

• Scattering in low incident energy ( considering l=0)

. that so ,0th wi 0000000 SSSSSSS flfl

.11

,11

,Re12

Re12

2

02

2

02

2

02

2

02

2

02

2

02

0202

flabs

flel

tot

Sk

Sk

Sk

Sk

Sk

Sk

Sk

Sk

In case of higher the same manner is applied.,l

Page 34: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 3434 - -

Reaction Model

tE

s 10 - 10 ~ 22-20-t s 10 - 10 ~ 20-12-t

Reaction process Complexity of calculation and theoretical limitation

Neutron-nucleus reaction occurs either directly or through the compound nucleus states.

Direct reaction Compound reaction

Page 35: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 3535 - -

Reaction Processes

Classification depending on time of emission of particles

Compound Pre-equilibrium Direct

Energy of emitting particle

Time scale

Page 36: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 3636 - -

Reaction Mechanism

Page 37: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 3737 - -

Energy-averaged CS

elastic Compound :

elastic Shape : 1

2

02

2

02

flce

se

Sk

Sk

The Optical Model calculation gives the amount of total and shape elastic cross section (including ddx).

Compound formation is obtained

ceseel

ceseel

totabstotabs

sece totabsc

CS derived from OM calculation . and , , ctot se

Then, the energy averaged elastic and absorption cross section are

Putting

Page 38: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 3838 - -

Reconstruction

Total XSShape elastic Compound

formation

Non-elastic

(n,n’)

(n,g)

(n,f)

(n,p)

(n,α)

(n,2n)

DDX

ElasticCS,DDX

Page 39: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 3939 - -

Optical Model Potential (OMP)

• Provide the energy-averaged CS• Also provide the transmission coefficients

(See P.25)

• Classification of Optical model–Phenomenological optical model potential

• normally used to fit and compare with experimental data.• well developed and widely used.

–Microscopic potential• describe the projectile-target interaction in terms of nucleon-nucleon

interactions

–Phenomenological + Microscopic

Page 40: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 4040 - -

Phenomenological OMP• Phenomenological OMP for nucleon-nucleus scattering

),()(2

)()(

)()(

)()(

,

,

,

rhiWVsl

rgiWV

rfiWV

rVrU

WVSOSO

WVDD

WVVV

Copt

Coulomb term

Complex volume

Complex surface

Complex spin-orbit

,]/)exp[(1

1)(

iii aRr

rf

).(1

)(),()( rfdr

d

rrhrf

dr

drg iiii

.potentials (SO)orbit -spin and

(D) central-surface (V), central- volume the

of componentsimaginary and real theare and , where ,,,, SODVSODV WV

. parameters sdiffusenes theand number, mass atomicbegin A with

, radius theare parametersgeometry thewhere 31

i

/ii

a

ArR

Page 41: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 4141 - -

OMP - spherical

“Local and global nucleon optical potentials for energies up to 200 MeV” A.J. Koning and J.P. Delaroche, Nucl. Phys. A713, 231 (2003).

MeVEkeV 2001 :Energy 20924 :Mass A

Solid lines for a local OMP and dashed lines a global one

Page 42: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 4242 - -

OMP - deformed

“A global Dispersive coupled-channel Optical Model Potential for Actinides” R. Capote, S. Chiba, E.Sh. Soukhovitskii, J.M. Quesada, and E. Bauge,

J. Nucl. Sci. Technol. 45, 330(2008)

MeVEkeV 2001 :Energy

Page 43: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 4343 - -

OMP Search by SA algorithm to minimize χ2

Initialize coefficients(αj), T, VMj

Estimate χ2

Random move of coefficients

within VM

χ2 ?increased

decreased

passed

Termination

Criteria ?

Move acceptedMetropolitan

Criteria ?

Annealing (T),

adjusting (VM)

Terminate

rejected

zT

kk

122 )()(exp

Page 44: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 4444 - -

n + Al-27 case

Page 45: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 4545 - -

Direct• Elastic scattering (Shape)• Inelastic scattering

– The projectile leaves the target in an excited state and its asymptotic kinetic energy is diminished.

– To describe it, we need the basic characteristics of the ground and excited states of the target.

– The states which are strongly excited in collisions are related to the collective movement of the target.

Vibrations Rotations

Page 46: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 4646 - -

Direct

Strong coupling Coupled Channel OMP (CCOMP)

Weak coupling Distorted Wave Born Approximation (DWBA)

The cross sections can be well approximated by the overlap of the interaction with the initial and final wave functions.

drrkrFrkT DWBA ),()(),( )()(

initial distorted wave functionfinal distorted wave function

,)2(

2

22T

k

k

d

d

is approx.Born first reaction, ),( In the BA

waveoutgoing and incoming ofnumber wave:,

, and of mass reduced :,

kk

scr(ikχ(k,r) )exp DWBA,In

Form factor for interaction

Page 47: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 4747 - -

Compound• The Average CS (Statistical model)

c

cbc

aabab w

CS for compound nucleus formation from channel a

partial width for decaying into channel b

total widthwidth fluctuation factor

Hauser-Feshbach model The Bohr Hypothesis + reciprocity (time reversal invariance) angular momentum and parity conservation

A

B

C

B or C A

Transmission coefficient ( nucleon, fission, gamma)

nuclear level densities

PJjl

jlEdEIJ

jlT

jl

Jjl

TIi

Ilj EdEIJlj

TJjl

TJEd

)()12)(12(

)()12(2

discrete levels

Page 48: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 4848 - -

• Gamma-ray strength function– Describes the transmission coefficient in H-F formula when the

gamma-ray emits

,1,2,1

momentum,Angular

,properties neticElectromag

MEEXL

L

X

)(2)( 12 EfEET XL

LXL

where

Strength function

Compound

Page 49: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 4949 - -

CompoundNuclear Level Density•Classification

– Phenomenological• Fermi gas model• Back-shifted Fermi Gas Model• Gilbert-Cameron model• Generalized superfluid model

…– Microscopic

• Microscopic Generalized superfluid model

• Hartree-Fock-BCS model

…data from EMPIRE-3.1 manual

Page 50: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 5050 - -

Compound - decay

0

5

10

15

20

59Ni

14.8 MeV neutron + 58Ni

58Ni+n

dEd 3

50

n’

n’

58Co+p

p

dEd

20

0

p

58Fe+α

dEd (mb/

MeV)

22

α

α

Page 51: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 5151 - -

Pre-equilibrium

• Compound (equilibrium)– the nuclear reaches an equilibrium before emission occurs.– lost the properties of incident channel.

• Pre-equilibrium– retains a large fraction of the incident energy.– Forward peak shape

Towards Equilibrium

Page 52: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 5252 - -

Pre-equilibrium-EXCITON

• Classification– Semi-classical model (EXCITON)

• Employing a Master Equation which is a kinetic equation describing the time evolution of the probability distribution ),( tnP

),,()]()()([

),2()2(),2()2(),(

tnPnWnn

tnPntnPndt

tndP

.2 with state toratesn transitiointernal - )(),(

rate,emission Total - )(

, timeduring excitionsn with state in the be willsystemy that Probabilit - ),(

nnn

nW

ttnP

Page 53: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 5353 - -

Pre-equilibrium-MSD/MSC– Quantum Mechanical model (MSD/MSC)

• Multi-step Compound (MSC)– symmetric angular distribution for 90°

• Multi-step Direct (MSD)– forward peaked angular distribution

– Spherical or Deformed

,),,(),,(

4

),,(

11

011)1(2

11)1(2

,11122

00)(2

11

1

dEd

EEd

dEd

EEd

EdEdm

dEd

EEd

nnn

itnntj

tnnn

nij

nn

n

A weighted sum over squared DWBA matrix elements

1100 ,,, EE are energy and solid angle of initial and Intermediate,

1nt means that the number of possible scattering terms is larger compared to the component of previous step.

Page 54: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 5454 - -

• Nuclear Data

• Nuclear Reaction

• Reaction Model

• Evaluation Examples

• Measurements

• Uncertainties

• Nuclear Data Center @KAERI

Page 55: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 5555 - -

An Example

Compound

Angle

Pre-equilibrium

Angle

Direct

Elastic peak

Angle

Page 56: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 5656 - -

Reaction Calculation in Fast Region

Empire/Talys/Gnash

Direct Preequilibrium CompoundECIS06

OPTMAN

Hauser-FeshbachMSD/MSC

EXCITON

Kalbach SystematicsModules

OMP

Discrete Levels, Level Densities

Gamma strength functions

Page 57: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 5757 - -

No experimental data for total inelastic cross sections

Experimental data for isomeric state with 0.0398 MeV

Evaluation Examples - I

Page 58: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 5858 - -

Evaluation of a full isotopic family

• Many nuclei have insufficient experimental data for deducing reasonable model parameters

• Neodymium

– Elastic angular distribution and total cross section in few energy points

– The experimental status of remaining isotopes is similar with a certain isotope ( in this case, 142Nd )

– Total cross section of natural element

Evaluation Examples - II

Page 59: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 5959 - -

Abundance

%

142Nd 27.2

143Nd 12.2

144Nd 23.8

145Nd 8.3

146Nd 17.2

147Nd 0

148Nd 5.7

150Nd 5.6

Evaluation of a full isotopic family

Evaluation Examples - II

Page 60: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 6060 - -

Evaluation of a full isotopic family

Evaluation Examples - II

Page 61: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 6161 - -

up to integral experiment (benchmark)

Evaluation Examples - III

Page 62: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 6262 - -

up to integral experiment (benchmark)

Evaluation Examples - III

Page 63: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 6363 - -

• Nuclear Data

• Nuclear Reaction

• Reaction Model

• Evaluation Examples

• Measurements

• Uncertainties

• Nuclear Data Center @KAERI

Page 64: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 6464 - -

Neutron Sources for CS measurements-Reactors : White spectrum (thermal CS)

-Accelerators : Mono, Quasi-mono, with pulsing

energy dependant CS

Page 65: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 6565 - -

ORELA, taken from HP of ORNL

Photo-NeutronElectron Linear Accelerators:

GELINA, ORELA, KUR-LINAC, PNF, etc.

Electron Beam + Ta, W, or U Target Evaporation Neutrons

+ Moderator En = thermal – MeV

TOF/Flight Path Length: 10 – 300 m

+ Filter (Fe, Si, etc.) Mono Energetic

Page 66: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 6666 - -

Spallation Reaction

Proton Linear Accelerator (+ Synchrotron)

Operation: WNR, n_TOF, J-PARC, SNS, CERN, etc.

Proton Beam + Pb, W, or Hg Target

Intra-Nuclear Cascade: En > Several 10MeV

Pre-Equilibrium: Several MeV < En < Several 10MeV

Equilibrium: Evaporation Spectrum (kT = 1MeV)

+ Moderator En = thermal – GeV

TOF/Flight Path Length: 7 – a few 100 m

Page 67: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 6767 - -

D(d,n)3He, 7Li(p,n)7Be, T(p,n)3He

Van de Graaff, Cyclotron, etc.

D(d,n)3He: Q = 3.3 MeV

En = 4 - 8MeV

7Li(p,n)7Be: Q = -1.646 MeV, Eth = 1.881 MeV

Mono-energetic (30 keV) neutrons emit only to 0 degree at Eth.

Several keV < En < 200MeV

T(p,n)3He: Q = -0.764 MeV, Eth = 1.019 MeV

Mono-energetic (64 keV) neutrons emit only to 0 degree at Eth.

Several keV < En < Several MeV

Page 68: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 6868 - -

1) Activation Methods

Applicable to Radioactive Residual Nuclei

Activity Measurement after Neutron Irradiation High Neutron Flux due to Short Distance between a Sample and a Neutron Source and Low Background in Activity Measurement High Sensitivity

Activity Measurement by Detecting g, b, or a Rays e.g. g- and/or b- Ray Detection of 198Au for 197Au(n,g)198Au (b:2.7 d) Reaction b-Ray Detection of 210gBi and/or a-Ray Detection of 210Po for 209Bi(n,g)210gBi(b:5.0 d)210Po(a:138 d) Reaction (The g-Ray Emission Probabilities of 210gBi and 210Po are very small.)

Important: Correction for the Activity due to Background Neutrons in Case of s(En) << s(Background Neutrons)

Techniques for neutron cross section measurement

Page 69: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 6969 - -

2) Accelerator Mass Spectroscopy

Applicable to All Residual Nuclei

Accelerator Mass Spectroscopy (AMS) after Neutron Irradiation High Neutron Flux due to Short Distance between a Sample and a Neutron Source a Considerable Number of Residual Nuclei in a Sample High-Resolution AMS is Applicable to the Detection of Residual Nuclei.

Residual-Nucleus Measurement by AMS e.g. AMS of 210gBi, 210mBi(a:3.04 My), and 210Po in 209Bi for 209Bi(n,g)210gBi(b:5.0 d)210Po(a:138 d) Reaction (The g-Ray Emission Probabilities of 210gBi and 210Po are very Small.)

Important: Correction for the Activity due to Background Neutrons in Case of s(En) << s(Background Neutrons)

Techniques for neutron cross section measurement

Page 70: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 7070 - -

3) Neutron TOF Method

L

t0 t1tn

Neutron Detector

][sec][

][3.72

2

12

2 eVt

mLvmE

nnn

vi

Techniques for neutron cross section measurement

Page 71: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 7171 - -

Energy vs time: E ~ t -2

Very high intensity ~1000 x TOF (Energy resolution 30 ~ 40 %

4) Lead Slowing Down Spectrometer (LSDS)

Kyoto University LSDS

LANL LSD

Experiment with ng sample !

Techniques for neutron cross section measurement

Page 72: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 7272 - -

• Nuclear Data

• Nuclear Reaction

• Reaction Model

• Evaluation Examples

• Measurements

• Uncertainties

• Nuclear Data Center @KAERI

Page 73: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 7373 - -

Poor Data Poor Method Many Intergral Exp.

Bias

Old days Current and future

No bias

Method error ~ 10%Data uncertainties ~ 20%

Method error ~ 0.05 %Data uncertainties ??

Nuclear Physics

Deterministic(Transport, Diffusion)

Stochastic(Monte Carlo)

Design, Operation,

Development

Nuclear Engineering

Nuclear Data

Nuclear Data Uncertainties

Good Data Good Method Min. Intergral Exp.

Page 74: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 7474 - -

Parameter Estimation for variance and covariance

εGpf(p)y

Non linear equation can be linearized in vicinity of solution as

where is random error with normal distribution of variance Vy

Generalized Least Squares method

by multiplying G in both side

yVGG)V(Gp 1y

T11y

T 11

yT

p G)V(GV

Bayesian method (same as Kalman filter)

f(p))(y)VG(GVGVpp yT

aT

aa 1

a1

yT

aT

aap GV)VG(GVGVVV

Need a priori information pa, Va as well as VySimultaneous Estimation

Large matrix for large setsSerial Estimation a-priori information should be independent of current

Value (e.g. cross section) can be obtained over all region of interest with suitable covariance matrix

Page 75: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 7575 - -

Law of Error Propagation

jj j

ii

RR

TσSSVV p

k

ijk

kj j

iii

RV

RRV

,

Once we know covariance of cross section, we can obtain uncertainties (error) of integral quantity (e.g. reactivity) using Sensitivity matrix and Law of Error Propagation.

sensitivity matrix

Normalized sensitivity matrix

i

j

j

iji R

RS

,

Covariance obtained from ENDF or other source - energy dependent for each nuclide/reaction type

Sensitivity can be obtained by - Direct variation of cross section (TMC), or - Generalized Perturbation method (with c.s. + covariances at hand)

Page 76: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 7676 - -

Sensitivity Matrix

• Using Generalized Perturbation Theory

fA Equation of System (Neutron transport or diffusion equation)

When cross selection is slightly changed, flux and eigen value will be changed too.

)()())(( fAA

First order term is (ignoring second order perturbation)

ffAA We can elliminate flux variation by introducing adjoint flux

ffAA ,,,,

When is a solution of adjoint equation

Tf

TA

Sensitivity of eigenvalue to the cross section change is

fA ,/,

Flux

Importance

Energy

SFR case

Page 77: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 7777 - -

Uncertainties of W

Page 78: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 7878 - -

Correlations of 184W

Capture cross section

Total cross section Capture cross section

Total cross section

Page 79: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 7979 - -

• Nuclear Data

• Nuclear Reaction

• Reaction Model

• Evaluation Examples

• Measurements

• Uncertainties

• Nuclear Data Center @KAERI

Page 80: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 8080 - -

Nuclear Data Network in Korea

(KIGAM VDG)•MeV pulse neutron•Wide-range standard ntn

(RAON)Heavy Ion Accel.•Fast neutron data

(KAERIphoto-ntn)•keV pulse neutron•TREE

Nuclear Data Evaluation

Processing/ Validation

Nuclear Data Measurements

Supply to Applied R&D

(Pohang PNF )•eV pulse neutron•Neutron resonance•Photonuclear reaction

• SFR, AFC, ADS• Fusion• Accelerator• Space, Medical, etc

International Network

Domestic Nuclear Data Network

IAEA, OECD, BNL, JAEA, CIAE, JCPRG etc

Atomic &Molecular Data

Page 81: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 8181 - -

International Collaboration

Cooperation with IAEA•Fusion Evaluated Nuclear Data Library•EXFOR Database participation Cooperation with OECD•Covariance data among the WEPC members•Joining the formal JEFF member in improvement of the JEFF Library

Cooperation with ORNL•Evaluation of Np-237, Pu-240, Cm isotopes

Cooperation with BNL•Development of Nuclear Reaction methodology in the resonance region•Evaluation of structure material such as zirconium

Page 82: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 8282 - -

Facilities for Nuclear Data Measurements in Korea

Facility Characteristics Measurements

Electron linear accelerator(PAL)

• 100 MeV, 2.5 GeV linacs• Neutron production by 100 MeV linac• production by 100 MeV and 2.5 GeV linacs

• Total cross section• (n,) by neutron activation method• Isomeric yield ratio• Photo fission

Tandem(KIGAM)

• 1.7 MV• Neutron production (p+Li, p+T, d+D)

• Total cross section

Cyclotron(KIRAMS)

• p : 20- 50 MeV / 40 A• d : 10- 25 MeV / 20 A• : 20- 50 MeV / 1 A

• Activation cross section

Facility Characteristics Status

Electron linear accelerator(KAERI)

• 17 MeV SC linac• Neutron production

• Accelerator is available• Design of TOF facility

Proton linear accelerator(KAERI)

• 100 MeV linac• Accelerator will be available in 2013• Design of ns pulse beam

RAON(RISP @IBS)

• SC Linac (H – U, 200 MeV/u(U) )• Cyclotron (70 MeV proton)

• Accelerator will be available in 2017• Planning for data measurements

Existing facilities

Planned facilities

Page 83: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 8383 - -

기초과학연구원의 중이온가속기 관련 핵데이터 연구

Neutron C.S.

W, Ta, Pb, U

p, dLi, Be, ..

Short-livedRare Isotopes

Fast neutron data & fusion applications

Neutron data for

GEN-VI & future systemSpallationneutrons

HIIn-flight, ISOL

Fastneutrons

RIB

d, t, He, ..U, Pu, Np, Cm

W, Ta, Pb, Up, d

Improve nuclear reaction models

Neutron data for ultra short-lived isotopes

Surrogatereactions

Inversekinematics

Neutron data for

waste transmutation

p

Topic 1

Topic 2

Topic 3

Page 84: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 8484 - -

NSF@RAON

84

Page 85: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 8585 - -

Contributions to EXFOR (IAEA) 1969~1989 1990~1999 2000~2005 2006~2011

Yonsei Univ.(1)

Seoul Univ.(3)

KAERI (1)

KRISS (1)

Seoul Univ. (4)

RIKEN (1)

KIGAM (1)

Kyoto Univ. (1)

Kyungpook Univ. (8)

Pohang Univ. (1)

Dong-A Univ. (2)

Seoul Univ. (1)

Pusan Univ. (1)

Chung-Ang Univ. (2)

KRISS (1)

TRIUMF (1)

Kyoto Univ. (4)

Kyungpook Univ. (30)

Dong-A Univ. (5)

Seoul Univ. (1)

Chung-Ang Univ. (1)

Sejong Univ. (1)

KIGAM (2)

KIRAMS (1)

Cockcroft-Walton Accel.

SNU/VDG

SNU/VDG

RIKEN

KIGAM/VDGT

Kyoto/LINAC

KIRAMS

PNF

KAERI/PGAA

Kyoto/LINAC

Tokyo/VDGT

KEK RIKEN

USA/VDGT

KIRAMS

PNF

KIGAM/VDGT

KAERI/HANARO

Kyoto/LINAC

Tokyo/VDGT

RIKEN

KNDC has compiled and submitted the experimental data to EXFOR since 2009

KNDC recently teamed up the measurement group to promote experimental activities.

Page 86: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 8686 - -

Atomic & Molecular Data 목적

– 정밀 원자 분자 구조 및 충돌 단면적 , 분광자료 생산

연구 내용– MCDF(multi-configuration Dirac-Fock) 로

원자의 에너지 구조 , 전이 확률 및 스펙트럼 계산

– 원자 구조 및 반응 단면적 계산 코드인 FAC(Flexible Atomic Code) 원자의 충돌 단면적 , 전이 확률 및 스펙트럼 계산

활용분야– 핵융합 및 천체 플라즈마 스펙트럼 모델링 – 동위원소 분석용 초미세 에너지 구조 자료

원자 구조 및 분광 전이선

Fe11+ 이온의전자충돌 이온화 단면적

Page 87: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 8787 - -

Participate in Nuclear Structure Data Network

(since 2013)

Other Business:

Pandemonium Problem

측정값 : 500측정값 없음 : 400

측정값 불충분 :100Pandemonium Problem

1000 개의 핵분열생성물 0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100 101 102 103 104

235 U Burst Fission (Beta Component)

YAYOIORNLENDF/B-V

f(t)

x t

(Me

V/fi

ssio

n)

Time after fission burst (s)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100 101 102 103 104 105

235 U Burst Fission(Gamma Component)

YAYOIORNLENDF/B-V

f(t)

x t

(Me

V/fi

ssio

n)

Time after fission burst (s)

과대평가

과소평가

Page 88: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 8888 - -

Other Business:

FirstWall

BreedingZone

TopPlate

BackManifold

ITER TBM (Tritium Breeding Module) Neutronics Analysis

Page 89: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 8989 - -

Radiological Safety Assessment of

Accelarators

Other Business:

Page 90: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 9090 - -

CAD-based MC/Deterministic

n/gamma transport code

development

Other Business:

Neutrondose profile (<4Gy, log scale)

Secondary gammadose profile (<4Gy, log scale)

Primary gammadose profile (<4Gy, log scale)

Page 91: Introduction to Nuclear Data

Nuclear Data Center @KAERINuclear Data Center @KAERI

- - 9191 - -

핵반응 측정기술 확보

KAERI 전자가속기 기반 keV 급펄스형 고속중성자 TOF 구축

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2016 년까지 인프라구축 2016 년까지 인프라구축

상세설계

측정

평가

검증

응용

중이온가속기 중성자과학설비 구축

양성자가속기 중성자원 시설 구축

광대역 펄스중성자원 네트웍 구축 /운영 - 포항 전자가속기 기반 ~ eV ( 기존시설 )

-KAERI 전자가속기 기반 ~ 수십 keV -KAERI 양성자가속기 기반 ~ 수 MeV

-IBS/RISP ( 중이온가속기 ) ~100 MeV

광대역 펄스중성자원 네트웍 구축 /운영 - 포항 전자가속기 기반 ~ eV ( 기존시설 )

-KAERI 전자가속기 기반 ~ 수십 keV -KAERI 양성자가속기 기반 ~ 수 MeV

-IBS/RISP ( 중이온가속기 ) ~100 MeV

측정시설 구축

국내 /외 시설 사용 핵반응 측정인프라 확보

상세설계

최신 측정치 기반선도적인 평가 , 검증 및 응용 기술 개발

14MeV 중성자 조사시설 활용14MeV 중성자 조사시설 활용

펄스빔장치 개발 표적시스템 구축

측정 - 평가 - 검증 - 응용 일관기술 확보

측정 - 평가 - 검증 - 응용 일관기술 확보

측정시설 구축

핵데이터 인프라 구축 로드맵