introduction to computational chemistry -...

23
Introduction to Computational Chemistry Lehrstuhl für Theoretische Chemie - Winter term 2007/2008 - Organisation: Frank Neese, Thomas Bredow, Frank Wennmohs

Upload: lenga

Post on 10-May-2018

244 views

Category:

Documents


2 download

TRANSCRIPT

Introduction to Computational

Chemistry Lehrstuhl für Theoretische Chemie

 

- Winter term 2007/2008 -  

 

Organisation:  

Frank  Neese,  Thomas  Bredow,  Frank  Wennmohs  

                                               

                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©  Lehrstuhl  für  Theoretische  Chemie,  Universität  Bonn,  2007  

Table  of  Contents  Foreword                                            

1  

Study  Plan                                          

2  

1   INTRODUCTION  –  FUNDAMENTALS  AND  GOALS  OF  COMPUTATIONAL  CHEMISTRY   5  

1.1   WHY  COMPUTATIONAL  CHEMISTRY?   5  

1.2   MODELS  VERSUS  CALCULATIONS  (OPTIONAL  READING)   7  

1.3   FUNDAMENTALS  OF  THEORETICAL  CHEMISTRY   8  

1.3.1   STATES  AND  TOTAL  ENERGIES   8  

1.3.2   THE  BORN-­‐OPPENHEIMER  HAMILTONIAN  AND  POTENTIAL  ENERGY  SURFACES   9  

1.3.3   THEORETICAL  METHODS   11  

1.4   SLATER  DETERMINANTS  AND  MOLECULAR  ORBITALS   13  

1.5   BASIS  SETS   16  

1.6   MODEL  CHEMISTRIES   19  

   

 

Foreword     1  

Foreword  2007    

The  present  course  is  a  resdesign  of  the  course  we  have  first  organized  in  2006.  Several  changes  were  necessary:  (a)  since  Barabara  Kirchner  left  to  create  her  own  chair  of  theoretical  chemistry  at  the  university  of  Leipzig  we  can  no  longer  support  the  first  principles  molecular  dynamics  part  of  the  course.  (b)  we  got  “banned  by  Gaussian”  and  consequently  we  had  to  delete  all  aspects  of  the  course  that  had  to  do  with  the  Gaussian  program.  (c)  we  have  revised  several  experiments  according  to  the  feedback  we  have  received  from  the  students.  (d)  we  have  created  two  new  computer  experiments:  relativistic  effects  in  quantum  chemistry  and  simulation  of  biomolecular  structures.(e)  we  have  fixed  the  errors  that  came  to  our  attention.  In  the  next  version  we  hope  to  add  experiments  concerned  with  mixed-­‐valency,  redox  potentials,  metal-­‐metal  bonding  and  Jahn-­‐Teller  systems  to  the  coordination  chemistry  section.  We  hope  that  these  changes  make  the  course  more  attractive  for  students  and  –  as  usual  –  we  appreciate  any  positive  or  negative  feedback  on  this  material.  

Frank  Neese    Thomas  Bredow  

Frank  Wennmohs  Taras  Petrenko  

Bonn,  December  2007  Foreword  2006    

The  present  course  has  been  designed  ‚from  scratch’  in  the  fall  of  2006.  Its  main  goal  is  to  provide  experimental  chemists,  who  have  not  been  exposed  in  depth  to  computational  chemistry,  with  a  working  knowledge  that  allows  them  to  tackle  their  own  research  problems  with  the  now  widely  available  techniques  of  computational  chemistry.  Over  the  pas  two  decades  computational  methods  have  evolved  into  routine  techniques  that  can  be  productively  applied  by  every  chemist  in  perfect  analogy  to,  e.g.  the  use  of  an  NMR  spectrometer  –  it  is  not  necessary  to  understand  all  of  the  complicated  physics  that  goes  into  the  design  of  the  instrument  (quantum  chemistry  program),  but  it  is  essential  to  understand  the  possibilities  and  limitations  of  the  measurements  (theoretical  methods).  It  is  also  necessary  to  be  critical  about  the  results  of  the  experiments  (calculations)  and  to  detect  when  they  are  useless.  Since  we  take  this  analogy  very  serious  we  have  deliberately  called  the  problems  to  be  solved  in  this  course  ‘Computer  Experiments’.  Large  parts  of  the  course  should  be  suitable  for  all  students  after  the  second  year  of  their  studies  and  may  also  be  attractive  for  Ph.D.  students  who  did  not  have  an  in-­‐depth  training  in  theoretical  and  computational  chemistry.  In  addition,  we  have  also  added  some  more  advanced  material  for  theoretically  oriented  students  who  have  already  completed  four  courses  in  theoretical  and  quantum  chemistry  as  they  are  taught  at  the  university  of  Bonn  (TC  I+II  and  QC  I+II).  In  preparing  the  material  we  have  tried  to  find  a  reasonable  balance  between  theoretical  concepts  and  practical  applications.  We  have  essentially  avoided  lengthy  mathematical  treatments  since  it  is  our  main  goal  to  make  this  material  accessible.  Although  these  lecture  notes  are  not  devoid  of  equations  they  do  not  play  an  essential  role  in  this  course.  Rather,  the  equations  serve  to  clarify  the  points  that  we  whish  to  bring  across  and  they  are,  with  very  few  exceptions,  of  an  elementary  nature.      In  preparing  the  lecture  notes,  we  felt  that  at  least  a  minimal  amount  of  background  information  is  necessary  in  order  to  appreciate  the  contents  of  the  calculations  and  this  background  is  provided  as  an  introduction  to  each  computer  experiment.  We  have  tried  

to  be  as  clear  and  as  concise  as  possible  and  hope  that  we  have  come  as  close  as  possible  to  this  goal.  However,  inevitably  each  newly  designed  course  will  involve  some  errors  or  misleading  descriptions.  We  appreciate  the  feedback  of  students,  teachers  and  teaching  assistants  in  this  respect  in  order  to  improve  on  the  contents  and  presentation  of  the  course  in  the  coming  years.    After  having  defined  the  desirable  contents  of  an  introductory  course  in  computational  chemistry,  we  have  quickly  realized  that  it  will  not  be  possible  for  the  students  to  do  all  of  the  computer  experiments  within  the  time  frame  that  we  envision  (basically  six  weeks  full  time).  We  have  therefore  divided  the  course  into  three  parts  as  explained  below.    We  have  enjoyed  working  on  this  course  and  putting  it  together  was  a  real  ‘joint  venture’  of  essentially  all  theoretical  chemists  that  presently  work  at  the  university  of  Bonn.  We  hope  that  we  have  succeeded  in  showing  the  students  that  computational  chemistry  is  a  powerful  branch  of  chemistry  with  many  exciting  applications  –  and  also  –  that  it’s  fun  to  do!    Bonn,  October  2006,  

Frank  Neese  Thomas  Bredow  Barbara  Kirchner  Frank  Wennmohs  Dmitry  Ganyushin  

Roman  Gupta  Simone  Kossmann  

Taras  Petrenko  Werner  Reckien  

Christian  Spickermann  Yang  Su  

Jens  Thar  Shengfa  Ye  

Study  Plan     3  

Study  Plan  This  course  contains  a  significant  amount  of  material.  In  order  to  carefully  work  through  all  of  the  material  will  probably  require  several  months  of  work.  In  order  to  keep  the  workload  manageable  we  have  structured  this  course  into  three  parts:  

1. Essential  Computer  Experiments  

2. Advanced  and  Special  Subjects  

3. Research  Related  Subjects  

In  part  I  we  have  collected  what  we  feel  is  the  “canonical”  contents  of  an  introductory  course  in  computational  chemistry.  This  material  is  elementary  and  does  not  require  special  skills  or  prior  knowledge.  It  should  be  suitable  for  students  after  their  second  year  in  the  chemistry  curriculum.    In  part  II  we  have  collected  a  number  of  subjects  that  we  found  interesting  and  that  relate  to  somewhat  more  specialized  techniques  that  belong  to  the  toolbox  of  theoretically  oriented  chemist.  We  feel  that  experiments  8  and  9  relate  to  students  with  some  background  knowledge  in  spectroscopy.  The  elementary  parts  of  these  experiments  should  be  appropriate  for  all  students  that  manage  to  work  through  part  I  while  some  subjects  in  these  experiments  are  slightly  more  demanding.  Experiments  12  -­‐  14  are  of  a  slightly  more  advanced  nature  that  are  perhaps  tackled  by  students  in  their  third  and  fourth  year  after  they  have  heard  the  lectures  on  advanced  quantum  chemistry.  Experiments  7,  10  and  11  are  of  an  elementary  nature  and  should  be  approachable  by  all  students.    In  part  III,  we  have  tried  to  hint  at  research  areas  in  applied  computational  chemistry  that  are  of  particular  interest  to  us.  They  deal  with  computational  coordination  chemistry  (AG  Neese),  computational  solid  state  chemistry  (AG  Bredow)  and  biomolecular  simulations  (AG  Wennmohs).  The  intention  of  these  experiments  is  to  provide  a  feeling  of  how  one  could  tackle  problems  of  actual  chemical  relevance  with  computational  chemistry.  In  order  to  successfully  complete  the  course  we  require  the  following:  

1. All   students   should   do   part   I   completely.   These   are   simple   and   fast  experiments   that   should   be   straightforward   to   perform  once   an   elementary  familiarity  with  the  computational  environment  has  been  achieved.  

2. Of  part   II,   two  experiments  should  be  chosen.  However,  experiments  8,  9  and   13   are   more   time-­‐consuming   than   the   other   experiments.   If   these  experiments  are  chosen,  it  is  sufficient  to  either  complete  it  together  with  one  of   the   smaller   experiments   (7,10,11,14)   or   to   complete   about  half   of   two  of  the  larger  experiments.      

3. Of   part   III   one   subject   must   be   chosen.   While   experiments   16   and   17  should  be  done  completely,  experiment  15   is  more  time  consuming  and   it   is  sufficient   to   complete   a   part   of   it   as   will   be   explained   in   detail   in   chapter  Error!  Reference  source  not  found..  

 

 

1 Introduction   –   Fundamentals   and   Goals   of   Computational  Chemistry  

1.1 Why  Computational  Chemistry?  Chemistry  is  an  experimental  science.  Insights  concerning  the  behaviour  of  matter,  

the  properties  of  molecules  and  their  interaction  with  the  environment  are  studied  

using  a  broad  variety  of  experimental  techniques.  New  molecules  are  being  

synthesized  using  a  mixture  of  rational  strategies  and  trial  and  error  procedures.  At  

all  stages  of  a  chemical  investigation  the  same  basic  questions  arise:  

1. How do I analyze the results of a chemical experiment or a physical measurement?

2. Could I possibly exclude several possibilities from consideration by predicting the

outcome of the experiment beforehand?

3. What are the underlying principles that govern the behaviour of classes of

substances?

These  basic  questions  pose  the  framework  for  the  discipline  of  theoretical  

chemistry.  Question  number  (1)  is  concerned  with  the  correct  interpretation  of  

physical  measurements  with  respect  to  the  behaviour  of  the  molecular  system  

under  investigation.  This  could  possibly  be  an  NMR  or  IR  spectrum,  the  

measurement  of  a  pKa  value,  a  kinetic  measurement  or  a  thermochemical  

measurement.  In  very  many  cases,  the  analysis  of  the  experiment  immediately  rules  

out  several  possibilities  but  leaves  other  alternatives  open  –Theory  can  help  to  

discern  between  alternatives  if  it  is  able  to  reliably  predict  the  outcome  of  the  

experiment  for  all  possible  alternatives.  

Question  number  (2)  is  concerned  with  predictive  power  –  if  I  have  a  model  or  a  

theory  that  realibly  tells  me  what  is  possible  and  what  is  not  possible  I  may  save  a  

lot  of  time  in  the  laboratory  chasing  compounds  that  cannot  exist  or  running  

reactions  that  can  never  give  the  desired  result  -­‐  A  truly  predictive  theory  can  thus  

save  a  lot  of  trial  and  error  time  and  guide  the  experimental  work.  

Question  number  (3)  is  concerned  with  the  question  of  qualitative  insight  –  

chemists  very  often  want  to  understand  the  behaviour  of  classes  of  substances,  they  

want  to  categorize  a  large  body  of  experimental  evidence  in  terms  of  the  properties  

of  functional  groups  or  structural  motives.  Thus,  a  good  theory  should  not  only  

provide  results  that  pertain  to  individual  molecules  but  should  provide  a  framework  

and  language  in  which  the  results  obtained  for  related  substances  can  be  phrased.    

 

Fortunately,  we  are  in  possession  of  a  good  theory  that  –  at  least  to  some  extent  –  

satisfies  all  of  the  criteria  mentioned  above.  This  theory  is  quantum  mechanics.  

Quantum  mechanics  applied  to  chemistry  defines  the  field  of  quantum  chemistry  –  

its  technical  aspect  is  just  theoretical  physics  while  the  objects  studied  are  mostly  of  

a  chemical  nature.  Quantum  chemistry  itself  is  just  one  subdiscipline  of  theoretical  

chemistry  which  contains  many  other  branches  which  are  not  directly  related  to  

quantum  mechanics.  Examples  are:  simulation  of  the  dynamics  of  chemical  

networks,  molecular  dynamics  and  mechanics  based  on  classical  force-­‐fields  or  

pattern  recognition  techniques  to  name  only  a  few.  

 

1.2 Models  versus  Calculations  (optional  reading)  Closely  related  to  the  desire  for  qualitative  understanding  is  the  nature  of  

developing  models  of  reality.  A  model  aims  at  providing  a  conceptual  framework  in  

which  a  restricted  part  of  reality  can  be  understood  and  discussed  on  the  basis  of  a  

minimum  number  of  preferably  simple  rules.  Typical  examples  for  models  that  have  

deeply  invaded  chemical  thinking  are  the  Hückel  model  of  aromatic  molecules  and  

the  ligand  field  theory  of  inorganic  chemistry.  Both  models,  if  taken  literally,  are  

physically  absurd  and  produce  nonsensical  numbers.  Yet,  after  the  introduction  of  a  

minimum  number  of  parameters  (resonance  integrals,  ligand  field  strengths,  Racah  

parameters)  they  provide  a  tremendous  amount  of  insight  into  the  behaviour  of  

very  large  classes  of  compounds.    

Thus,  models  are  deliberately  wrong  if  one  defines  rigorous  first  principles  physics  

as  the  ultimate  target.  Yet,  in  a  good  model,  the  parameters  have  a  clean  connection  

to  those  first  principles.  In  this  sense,  the  Hückel  theory  and  ligand  field  theory  are  

relatively  mediocre  models  (neither  the  ligand-­‐field  strength  nor  the  resonance  

integrals  have  any  rigorous  theoretical  definition)  while  the  model  of  the  spin-­‐

Hamiltonian  used  to  interpret  NMR  and  ESR  spectra  is  a  very  good  model  since  the  

This  course  is  concerned  with  quantum  chemistry  in  its  practical  

realization  –  computational  chemistry.  It  is  intended  to  show  with  an  

absolute  minimum  of  theoretical  background  how  can  approach  chemical  

problems  with  the  aid  of  computers.  It  is  not  a  substitute  for  the  study  of  

considerable  body  of  theory  that  goes  into  the  development  of  the  

computer  program  that  are  used  throughout  the  course.  It  is  highly  

recommended  to  the  student  to  study  the  theory  more  closely  as  a  deeper  

understanding  of  the  underlying  theory  will  ultimately  also  enable  you  to  

do  better  calculations  and  will  enhance  your  ability  to  judge  the  strengths  

and  weaknesses  of  your  calculations.  A  warning  –  despite  the  usefulness  

and  sophistication  of  the  theoretical  approaches:  Don’t  blindly  believe  

everything  the  computer  tells  you!  Be  critical,  seek  feedback  from  

experiment.  

parameters  occurring  in  it  (chemical  shifts,  spin-­‐spin  couplings,  g-­‐factors,  hyperfine  

coupling  constants)  can  be  rigorously  related  to  first  physical  principles.  

On  the  opposite  extreme  are  high-­‐accuracy  calculations  that  can  presently  be  

performed  with  sophisticated  computer  programs  and  large-­‐scale  computational  

facilities.  The  outcome  of  such  calculations  are  highly  accurate  numbers  that  refer  to  

individual  molecules  in  particular  electronic  (vibrational,  rotational,  …)  states.  One  

could,  and  indeed  some  researches  do,  argue,  that  the  only  thing  that  is  of  interest  

are  physical  observables  such  as  the  energy  change  during  a  chemical  reaction  of  

spectroscopic  transition.  Thus,  each  individual  molecule  is  a  completely  separate  

physical  object  that  is  to  be  calculated  to  high-­‐precision  and  the  only  thing  of  

interest  is  its  energy.  The  usefulness  of  a  given  theoretical  method  is  then  judged  in  

a  statistical  means  by  recording  its  average  and  maximum  error  in  application  to  a  

large  collection  of  molecules.  Using  this  philosophy  one  basically  discards  the  great  

deal  of  chemical  regularity  that  is  close  to  the  heart  of  the  vast  majority  of  

experimentally  working  chemists.    

Both,  the  model  philosophy  and  the  rigorous  philosophy  have  much  to  recommend  

themselves.  It  is  undisputable  that  models  are  of  great  importance  for  the  past,  

present  and  future  of  chemistry.  Equally  important  is  the  development  of  theories  

that  make  ever  more  precise  predictions  in  ever  shorter  turnaround  times.  Yet,  in  

our  opinion,  it  is  important  to  at  least  try  on  a  qualitative  level  to  try  to  “find”  the  

chemical  concepts  inside  the  complicated  computations.  We  will  try  to  at  least  hint  

at  such  possibilities.          

1.3 Fundamentals  of  Theoretical  Chemistry  

1.3.1 States  and  Total  Energies  

Quantum  mechanics  is  centered  around  the  Schrödinger  equation  which  exists  in  

time.-­‐dependent  and  time-­‐independent  form.  For  a  given  molecular  system  with  N-­‐

electrons  and  M-­‐nuclei,  the  time-­‐independent  Schrödinger  equation  has  an  infinite  

number  of  solutions  that  define  the  states  of  definite  energy  that  the  system  can  

adopt.  Associated  with  each  state  is  a:  

- Total  energy   EI  ( I = 0,1,...)  and  a    

- N-­‐electron   wavefunction   !

Ix

1,x

2,...,x

N( )  where   xi  denotes   the   space   and  

spin-­‐coordinates   of   a   single   electron.   The   square   of   the   many   electron  

wavefunction   evaluated   at   the   point   x ! x1,x

2,...,x

N  is   the   probability  

density   associated   with   the   probability   to   find   the   N-­‐electrons   in   an  

infinitesimal  volume  element   dx  around  point   x .  

Transitions  between  such  states  are  observed  in  spectroscopic  experiments.  

Dynamics  of  evolving  systems  can  be  studied  by  solving  the  time-­‐dependent  

Schrödinger  equation.  In  this  course  we  are  mainly  concerned  with  molecules  in  

stationary  states  (however,  see  chapter  Error!  Reference  source  not  found.  which  

deals  with  molecular  dynamics  and  chapter  Error!  Reference  source  not  found.  

which  deals  with  chemical  kinetics)  and  in  particular  in  their  lowest  energy  state   E0  

which  is  called  the  electronic  ground  state  (however,  excited  electronic  states  will  

be  studied  in  chapters  Error!  Reference  source  not  found.,  Error!  Reference  

source  not  found.,  Error!  Reference  source  not  found.  and  Error!  Reference  

source  not  found.).  

1.3.2 The  Born-­‐Oppenheimer  Hamiltonian  and  Potential  Energy  Surfaces  

In  addition  to  the  total  energy  E  and  the  many-­‐electron  wavefunction  Ψ  ,  the  

Schrödinger  equation  contains  the  Hamilton-­‐operator  (HO)   H  which  corresponds  

to  the  total  energy  of  the  system.  Fortunately,  for  the  vast  majority  of  chemical  

applications,  the  HO  contains  only  a  few  terms,  namely  those  that  describe  the  

kinetic  energy  of  the  particles  (electrons,  nuclei)  and  their  electrostatic  (Coulombic)  

interactions  which  is  inversely  proportional  to  the  interparticle  distance.  All  other  

terms  that  contribute  to  the  total  energy  are  (usually)  much  smaller  and  can  be  well  

treated  using  the  methods  of  perturbation  theory.  Despite  this  deceptive  simplicity,  

the  Schrödinger  equation  for  a  molecule  is  still  far  too  complex  to  be  solved  either  

analytically  or  numerically  and  therefore  approximations  are  necessary.  The  

refinement  of  such  approximations  represents  a  major  research  goal  of  quantum  

chemistry.    

The  first  approximation  that  is  central  to  quantum  chemistry  is  the  so-­‐called  Born-­‐

Oppenheimer  (BO)  approximation.  The  BO  approximation  allows  one  to  treat  the  

motions  of  electrons  and  nuclei  independently.  It  rests  on  the  fact  that  nuclei  are  

much  heavier  than  electrons1  and  consequently  move  much  more  slowly  than  

electrons.  Thus,  the  “fast”  electrons  are  always  “in  equilibrium”  with  the  “slow”  

nuclei.  As  a  consequence,  the  nuclei  can  be  assumed  to  be  “at  rest”  from  the  point  of  

view  of  the  electronic  system  and  the  Schrödinger  equation  needs  to  “only”  be  

solved  for  the  electrons  at  fixed  nuclear  positions.  As  a  consequence,  the  total  

energies  and  many  electron  wavefunctions  become  parametric  functions  of  the  

nuclear  coordinates   R1,R

2,...,R

M:   E

IR

1,R

2,...,R

M( )! EI

R( )  and   !

Ix | R( ) .  The  

function   E

IR( )  is  called  a  „potential  energy  surface“2  and  it  can  be  studied  by  

calculating  the  energy   E

IR( )  at  different  points   R .3  Unfortunately,  the  variation  of  

the  energy  with  respect  to   R  can  only  be  visualized  graphically  for  at  most  two  

coordinates  which  represents  two-­‐dimensional  cuts  through,  in  general,  very  

complicated  energy  landscapes.    

Particular  points  on  a  given  potential  energy  surface  deserve  special  attention.  

These  are  so  called  stationary  points   R  and  they  are  characterized  by  a  vanishing  

first  derivative:  

 

!EI

R( )!R

A

= 0     (for  all  A)            

  (  1)  Such  points  can  be  of  different  nature.  They  can  either  be  minima,  maxima,  or  saddle  

points  of  varying  order.  The  nature  of  a  stationary  point  can  be  determined  by  

calculating  the  so-­‐called  Hessian  matrix:  

                                                                                                               1  The  ratio  of  the  proton  mass  to  the  electron  mass  is  ≈1822.  2  Note   that   this   energy   only   represents   a   “potential   energy”   from   the   point   of   view   of   the   nuclei   but   in   fact   also  contains  contributions  from  the  kinetic  energy  of  the  electrons.  3  Once  the  function  E(R)  is  known,  it  can  be  used  to  calculate  the  nuclear  wavefunctions.  

  H

AB=!2

EI

R( )!R

A!R

B

               

  (  2)  

6  eigenvalues  (or  5  eigenvalues  for  linear  molecules)  of  the  Hessian  matrix  are  

precisely  zero  and  correspond  to  nuclear  motions  that  describe  the  molecular  

translations  and  rotations.  For  minima,  all  remaining  eigenvalues  of  the  Hessian  

matrix  must  be  positive.  A  single  negative  eigenvalue  corresponds  to  a  “transition  

state”  in  a  chemical  reaction.  Higher  order  saddle  points  are  not  of  chemical  interest.    

Note,  that  for  a  given  electronic  state,  say  the  ground  state,  the  function   E

0R( )  may  

have  many  minima  which  correspond  to  different  isomers  of  a  molecular  system  in  

the  chemical  sense.  Each  stationary  point  is  associated  with  a  different  total  energy  

and  the  lowest  of  such  energies  represents  the  most  stable  of  the  possible  isomers.    

1.3.3 Theoretical  Methods  

Unfortunately,  we  cannot  even  solve  the  BO  problem  exactly  (except  for  1-­‐

dimensional  2  -­‐electron  systems)  –  the  task  is  still  far  too  complex.  Over  the  

decades,  the  community  of  theoretical  chemists  and  physicists  has  intensely  studied  

this  problem  and  has  developed  many  different  approximations  to  the  problem.  

Presently,  the  most  popular  of  these  methods  may  be  broadly  categorized  as  

follows:  

• Wavefunction  based  methods:  These  methods  try  to  compute  an-­‐accurate-­‐as-­‐

possible   many-­‐electron   wavefunction   which   then   automatically   leads   to   an  

accurate   total   energy.   These   treatments   almost   invariably   built   upon   the  

Hartree-­‐Fock  (HF)  method,  which  is  a  variant  of  a  mean-­‐field  theory.  Due  to  its  

mean-­‐field   nature,   the   HF   method   is   also   called   ‘independent   particle’   model.  

The   HF   approach   is   probably   the   simplest   possible   model   that   takes   proper  

account   of   the   required   antisymmetry   of   the   N-­‐electron   wavefunction   (e.g.   it  

satisfies  the  Pauli  principle).  The  errors  that  remain  in  the  HF  method  are  called  

“correlation  errors”  and  they  are  reduced  as  much  as  possible  by  using  various  

“correlated  ab  initio”  methods.   Impressive  progress  has  been  made  along  these  

lines  and  there  are  now  many  close-­‐to-­‐exact  solutions  available.  The  large-­‐scale  

use   of   such   methods   in   chemistry   is   presently   still   prevented   by   the   high-­‐

computational   cost   of   these   methods   which   scale   as   O(N5)   and   O(N7)   with  

molecular   size   where   N   is   a   measure   of   the   system   size   (e.g.   the   number   of  

electrons   or   nuclei)   and   ‘O’  means   that   the   leading   term   of   the   computational  

effort  requires  a  time  that  is  proportional  to  the  indicated  power  of  N.  

 

• Density  Functional  Theory.  Many  electron  wavefunctions  contain  much  more  

information   than   is   strictly   necessary   since   the   BO   operator   does   not   contain  

more  than  two-­‐body  interactions.  In  fact  the  only  “difficult”  term  is  the  electron-­‐

electron  interaction.  Thus,  in  principle,  the  problem  is  fully  solved  if  one  would  

know   the   electron-­‐pair   distribution   function   ! x

1,x

2( )  (this   function   is   closely  

related   to   the   probability   of   finding   a   pair   of   electrons   at   please   x1   and   x2  

respectively).   Unfortunately,   it   has   been   found   to   be   impossible   so   far   to  

calculate   this   function   without   the   detour   of   the   many-­‐electron   wavefunction  

itself.   However,   there   is   a   famous   theorem   that   was   awarded   with   the   Nobel  

price  for  chemistry  in  1998  which  essentially  states  that  one  does  not  even  need  

to  know  the  pair  distribution   function  –   the  knowledge  of   the  electron  density  

! x( )  is   „in  principle“  enough  to  deduce  the  exact   total  energy  of   the  electronic  

ground   state   (Hohenberg-­‐Kohn   theorem).   Unfortunately,   nobody   is   in  

possession   of   the   exact   recipe   that   describes   how   to   deduce   the   exact   energy  

from   the   electron   density   alone.   Nevertheless,   over   the   years,   many   highly  

intelligent   guesses   to   this   “universal   functional”   have   been   made   and   each   of  

these  constitute  a  different  “density  functional”.  The  practical  realization  of  DFT  

Due  to  a  very  good  price/performance  ratio  DFT  is  presently  the  methodology  of  

choice  for  most  chemical  applications.  It  can  be  applied  to  molecules  with  100-­‐

200  atoms  using  standard  computational  hardware  (PC’s).  

is   the   so-­‐called   Kohn-­‐Sham   method   which   is   essentially   at   the   same   level   of  

complexity  as  Hartree-­‐Fock  theory  but  almost  invariably  provides  better  results.    

• Semiempirical  methods.  Such  methods  are  designed  as  „cheap“  substitutes  for  

either  DFT  or  Hartree-­‐Fock  based  method.  In  contrast  to  the  latter  they  contain  

many  adjustable  parameters  that  are  used  to  compensate  for  the  drastic  neglect  

of   certain   integrals   that   are   time-­‐consuming   to   calculate   in   the   more   precise  

methods.  Semiempirical  methods  can  be  used  for  much  larger  molecular  systems  

than  either  DFT  or  ab  initio  methods.  However,  these  methods  are  also  much  less  

reliable  and  are  only  available  for  certain  ranges  of  elements.  

 

1.4 Slater  Determinants  and  Molecular  Orbitals  The  simplest  reasonable  Ansatz  that  one  can  make  for  the  many  electron  

wavefunction   ! x | R( )  and  that  satisfies  the  fundamental  physical  requirements  for  

a  valid  N-­‐electron  wavefunction  is  the  form  of  a  single  so-­‐called  Slater-­‐determinant.    

In  this  course  we  will  essentially  not  be  concerned  with  the  various  methods  of  

quantum  chemistry.  Instead  we  will  focus  on  very  few  successful  standard  

methods  (The  Hartree-­‐Fock  method,  the  simplest  correlated  ab  initio  method  

(MP2)  as  well  as  the  so-­‐called  B3LYP  DFT  method)  and  use  them  to  address  

various  chemical  problems.  However,  one  should  always  be  aware,  that  every  

quantum  chemical  method  only  provides  an  approximate  solution  which  can  fail  

in  some  instances.  Again:  nothing  substitutes  for  seeking  careful  feedback  

from  experiments  in  judging  the  quality  and  reliability  of  a  given  quantum  

chemical  calculation!  

 

! x | R( ) =1

N !

!1

x1( ) !

2x

1( ) ! !N

x1( )

!1

x2( ) !

2x

2( ) ! !N

x2( )

" " # "!

1x

N( ) !2x

N( ) ! !N

xN( )

     

  (  3)  

The  quantities  (lower-­‐case  ψ’s)  appearing  inside  the  determinant  only  depend  on  a  

single  set  of  electronic  coordinates.  Such  single-­‐electron  wavefunctions  are  called  

orbitals  and  the  integral  over  all  space  of  their  square  has  to  exist  in  order  for  them  

to  be  physically  acceptable.  Loosely  speaking,  orbitals  describe  the  “motion”  of  

individual  electrons.  The  Slater  determinant  is  nothing  but  an  antisymmetrized  (in  

the  electron  coordinates)  product  of  such  single-­‐particle  wavefunctions.  It  is  often  

abbreviated  as:   ! x | R( ) = !

1!

2...!

N.  As  explained  in  great  detail  in  the  lectures  on  

theoretical  chemistry  such  a  single  N-­‐electron  Slater  determinant  describes  the  

uncorrelated  motion  of  N-­‐electrons.  Since   !

ix( )

2  describes  the  probability  

distribution  for  a  single  electron,  it  is  not  surprising  that  the  total  electron  density  

described  by  a  single  Slater  determinant  is  simply:  

 

!(r) = "i

r,s( )2ds!

i=1

N

"

= "i# r( )

2

i=1

N#

" + "i$ r( )

2

i=1

N$

"= !# r( )+ !$ r( )

  (  4)  

The  integral  in  the  first  line  is  taken  over  the  spin  degree  of  freedom  only.  Since  

electrons  carry  either  a  “spin-­‐up”  or  a  “spin-­‐down”  intrinsic  angular  momentum,  the  

second  and  third  lines  follow  which  describe  the  decomposition  of  the  total  electron  

density  into  the  separate  densities  of  the  spin-­‐up  and  spin-­‐down  electrons.  In  this  

way  it  becomes  obvious  how  each  orbital  contributes  to  the  total  electron  density.  In  

chemistry,  “orbitals”  are  used  to  explain  many  observations.  However,  since  

electrons  interact  with  (actually  repel)  each  other,  such  a  single-­‐determinant  

wavefunction,  is  a  drastic,  however,  useful,  simplification  and  can  not  provide  an  

accurate  description  of  an  actual  N-­‐electron  state  via  one-­‐electron  functions.  

We  will  not  go  into  any  detail  about  how  the  orbitals  are  actually  determined  in  

quantum  chemical  program  packages.  It  suffices  to  say  that  orbitals  are  used  in  

essentially  three  different  contexts:  

• Minimization   of   the   energy   of   a   single   Slater-­‐determinant   with   respect   to   the  

shapes   of   the   orbitals   yields   a   set   of   “optimum”   occupied   orbitals   of   a   given  

system.  Such  orbitals  are  called  “Hartree-­‐Fock”  orbitals.  The  Slater  determinant  

composed   of   the   occupied   Hartree-­‐Fock   orbitals   form   the   total   “Hartree-­‐Fock  

wavefunction”.   It   is   a   simple   0th-­‐order   approximation   to   a   genuine  N-­‐electron  

eigenfunction  of  the  BO  operator.  

• In  so-­‐called  “post-­‐Hartree-­‐Fock”  methods  (such  as  MP2),  “excited”  determinants  

are   formed   by   replacing   1,   2,   3…   occupied   orbitals   of   the   Hartree-­‐Fock  

determinant   with   empty   orbitals.   The   “correlated   wavefunction”   is   then  

determined   as   a   linear   or   nonlinear   combination   of   the   Hartree-­‐Fock  

determinant   and   the   set   of   “excited”   determinants.   One   can   think   of   the  

admixture   of   excited   determinants   as   describing   the   effect   of   electrons  

“jumping”  briefly  out  of   their  occupied  orbitals   into  virtual  orbitals   in  order   to  

minimize  their  repulsion  with  the  other  electrons   in   the  system.    Note   that   the  

“excited”   determinants   do   not   describe   genuine   excited   states   of   the  molecule  

but   are   merely   used   as   “building   blocks”   for   the   improvement   of   the   HF  

wavefunction.  

• In   density   functional   theory   a   Slater   determinant   is   used   in   a   completely  

different   context   –   it   just   provides   the   decomposition   of   the   total   electron  

density   that   is   necessary   to   apply   the   so-­‐called   Kohn-­‐Sham   scheme.   Thus,   the  

exact  system  and  the  so-­‐called  ‘non-­‐interacting’  reference  system  just  share  the  

same   electron   density   which   is   (formally)   used   to   calculate   the   exact   ground  

state   energy.   In   practice   we   don’t   know   how   to   go   from   the   exact   electron  

density  to  the  exact  energy  and  therefore  all  practical  DFT  is  approximate.    

No  matter  to  what  end  we  use  orbitals,  they  are  just  helping  us  in  building  up  

molecular  wavefunctions  or  densities  but  they  are  not  fundamental  objects  of  theory  

–  in  fact,  the  entire  discipline  of  quantum  chemistry  can  be  carried  to  high-­‐precision  

without  any  recourse  to  orbitals  whatsoever.  This  necessarily  means  that  individual  

orbitals  do  not  have  a  fundamental  physical  or  chemical  reality  or  relevance.  

Nevertheless,  orbital  pictures  are  so  prevalent  in  chemistry  that  we  will  not  refrain  

from  using  them  in  this  course  too.  We,  however,  want  to  point  out  that  the  

theoretical  justification  of  the  orbital  based  pictures  is  –  at  the  very  least  –  not  

unambiguous  and  a  much  more  careful  study  of  this  subject  is  highly  recommended  

to  the  interested  student.  Having  said  that  –  we  enjoy  as  much  as  you  probably  do  to  

look  at  orbitals  of  some  kind  and  use  them  to  think  about  the  chemistry  that  

interests  us.    

1.5 Basis  Sets  In  practice,  we  can  –  again  unfortunately  –  not  determine  the  shapes  of  the  orbitals  

(whichever  we  are  talking  about)  directly.  Instead,  we  have  to  use  an  approximate  

decomposition  of  the  orbitals  in  terms  of  a  finite  set  of,  say  L,  known  functions  ({ϕ}).    

  !

ix( )! c

µi"

µx( )

µ=1

L

"                

  (  5)  

This  set  of  basis  functions  {ϕ}  constitutes  the  so-­‐called  “basis  set”  for  a  given  

calculation.  Only  in  the  (unreachable)  limit  that  the  set  is  complete  in  the  

mathematical  sense  can  the  orbital  be  exactly  expanded  in  the  basis  set.  For  any  

incomplete  set,  the  results  of  our  calculations  will  depend  on  the  nature  and  size  of  

the  basis  set  that  we  use.  In  general,  larger  basis  sets  (if  properly  designed)  are  

more  accurate  than  smaller  basis  sets  but  will  also  lead  to  longer  computation  times.  

Thus,  there  always  is  a  “cost-­‐versus-­‐accuracy”  trade-­‐off  to  be  made  in  choosing  a  

specific  basis  set  for  a  given  computational  task.    

The  basis  set  problem  has  been  thoroughly  studied  by  quantum  chemists.  As  a  

consequence,  there  are  many  different  “standard  basis  sets”  available.  Each  basis  set  

has  a  different  name  and  a  different  range  of  elements  that  is  supported.  Broadly  

speaking,  basis  sets  can  be  categorized  by  their  construction  rules.  Below  we  give  an  

elementary  introduction:  

From  the  qualitative  discussions  that  are  commonly  found  in  textbooks  one  must  

get  the  impression  that  there  is  a  carbon  2s  orbital  and  three  carbon  2p  orbitals  that  

entirely  determine  the  chemical,  spectroscopic,  ...  behaviour  of  any  carbon  atom  in  

any  molecule.  From  this  point  of  view  it  is  rather  confusing  to  be  exposed  to  the  

subject  of  basis  sets  in  quantum  chemical  calculations.    

The  suggestion  that  “in  principle”  not  more  than  a  single  2s  and  three  2p  orbitals  on  

a  carbon  center  are  necessary  to  describe  it  in  a  molecular  environment  remains  

valid  even  in  quantum  chemistry.  However,  the  important  point  is  that  the  atomic  

orbitals  get  distorted  from  the  shapes  they  have  in  the  neutral  atom  upon  entering  

the  molecule.  Furthermore,  the  shape  of  the  orbitals  also  changes  for  each  state  of  

the  neutral  carbon  atom  and  they  also  change  from  the  neutral  atom  to  the  cation  or  

the  anion.  In  molecules  a  combination  of  all  of  these  effects  need  to  be  taken  into  

account  -­‐  the  state  of  a  carbon  atom  in  a  molecule  maybe  a  mixture  of  several  atomic  

states  and  the  carbon  center  might  have  a  partial  charge.  The  symmetry  around  a  

given  carbon  center  in  a  molecule  is  less  then  spherical  and  therefore  there  will  be  

an  additional  distortion  of  the  shape  of  the  basic  orbitals  that  is  due  to  this  

symmetry  lowering.    

Basically  there  are  two  major  types  of  distortions  that  are  taken  into  account  in  the  

basis  set  design.  The  first  is  a  radial  distortion  characterized  by  the  expectation  

value  <r>  of  a  given  atomic  orbital.  Atomic  orbitals  will  tend  to  contract  the  more  

they  are  involved  in  bonding  and  the  more  positive  charge  the  center  that  they  are  

attached  to  carries.  Importantly,  the  contraction  or  expansion  can  be  different  for  

different  MOs.  Thus  for  a   σ-­‐bonding  p-­‐AO  the  distortion  is  generally  different  

compared  to  a  π-­‐bonding  MO  which  in  turn  is  different  from  a  nonbonding  π-­‐MO,  an  

antibonding   σ*-­‐  or  an  antibonding  π*-­‐MO.  The  second  type  of  distortion  is  an  

angular  distortion.  Depending  on  the  local  symmetry  and  bonding  interaction  the  

orbital  is  involved  in  for  example  the  two  lobes  of  a  ‘p-­‐orbital’  may  become  

inequivalent  or  an  s-­‐orbital  is  polarized  to  deviate  from  spherical  symmetry.    

In  general,  chemical  core  orbitals  (e.g.  the  carbon  1s  orbital)  distort  very  little  since  

they  are  held  very  tightly  by  the  nuclear  charge.  Generally  it  is  sufficient  to  

represent  such  orbitals  by  a  single  basis  function.  

The  radial  distortion  is  simulated  in  actual  calculations  by  supplying  several  types  of  

the  “principal”  atomic  orbitals  but  with  different  spatial  extent.  Thus,  if  there  is  a  

single  set  of  2s-­‐type  orbitals  and  2p  type  on  a  carbon  one  speaks  of  a  single-­‐zeta  

basis  set,  two  sets  of  2s,p  functions  constitute  a  double-­‐zeta  basis  set,  three  sets  a  

triple-­‐zeta  basis  set  etc.  In  most  cases,  triple-­‐zeta  basis  sets  allows  for  an  adequate  

modelling  of  the  radial  distortion  effects  that  arise  in  molecules.  Double-­‐zeta  is,  

however,  a  minimum  requirement.  Calculations  with  single-­‐zeta  basis  sets  are  

completely  unreliable  and  should  not  be  done.  Higher  accuracy  can  be  reached  with  

quadruple-­‐zeta  or  pentuple-­‐zeta  basis  sets  but  such  calculations  become  very  time  

consuming.  In  calculations  with  anions,  the  charge  density  will  tend  to  become  very  

diffuse.  In  such  a  case  it  is  advisable  to  add  a  set  of  particularly  diffuse  basis  

functions  to  the  basis  set  in  order  to  describe  such  additional  expansions  of  the  

electron  cloud.  

The  angular  distortion  effects  are  modelled  by  including  in  the  basis  sets  orbitals  

with  higher  angular  momentum  quantum  numbers  –  these  are  called  polarization  

functions  since  they  describe  an  angular  distortion  of  the  atomic  orbitals  which  is  

brought  about  by  the  anisotropic  molecular  environment.  Thus,  for  carbon  atoms,  

one  includes  d-­‐functions  and  perhaps  f-­‐functions  in  the  basis  sets.  These  basis  

functions  are  by  no  means  representations  of  the  atomic  3d  and  4f  orbitals.  On  the  

contrary,  they  have  a  similar  spatial  extent  as  the  2s  and  2p  functions  and  mainly  

help  these  orbitals  (through  small  admixtures)  to  depart  from  their  “pure”  s-­‐  or  p-­‐

shapes.  In  general,  a  single-­‐set  of  polarization  functions  on  non-­‐hydrogen  atoms  is  a  

minimum  requirement  for  a  reasonable  calculation  (single-­‐set  of  polarization  

functions)  but  at  least  a  single  set  of  polarizing  p-­‐functions  should  also  be  included  

on  the  hydrogens.  Two  sets  of  polarization  functions  provide  better  results  and  

three  sets  (2d  and  1f  on  non  hydrogens  and  2p  and  1d  on  hydrogens)  provide  good  

results.  However,  such  calculations  already  become  rather  time  consuming.    

 All  of  the  basis  sets  mentioned  here  were  developed  by  the  Karlsruhe  quantum  

chemistry  group  and  are  particularly  efficient.  Other  basis  sets  can  be  found  on  the  

internet  (try  for  example  http://www.emsl.pnl.gov/forms/basisform.html).    

We  have  only  scratched  the  very  surface  of  the  basis  set  problem  and  only  mention  

in  passing  that  (essentially  for  practical  reasons),  the  individual  basis  functions  are  

almost  universally  taken  as  a  linear  combination  of  so-­‐called  ‘Gaussian’  functions  

(that  decay  as  exp(-­‐αr2)).  Such  functions  show  behaviour  at  short  and  long  distances  

r  from  the  nucleus  that  is  incorrect  if  compared  to  the  known  limiting  behaviour  of  

exact  atomic  Hartree-­‐Fock  orbitals.  However,  Gaussians  have  important  advantages  

that  can  be  exploited  very  efficiently  in  sophisticated  quantum  chemical  program  

packages  such  as  the  ORCA  program  used  in  this  course.  

1.6 Model  Chemistries  The  task  of  computational  chemistry  can  now  be  defined  more  clearly:    

a) Choose   an   initial   set   of   atomic   coordinates   that   represent   your   system   of  

interest  

b) Choose  a  theoretical  method  

c) Choose  a  basis  set  

d) Carry   out   the   calculation   of   molecular   structure,   properties,   energies,  

dynamics,  etc.  

The  combination  of  a  given  theoretical  method  with  a  given  basis  set  defines  a  “model  chemistry”.  This  combination  will  determine  the  achievable  accuracy  in  a  given  study.  Accurate  model  chemistries  take  up  significant  (or  even  prohibitive)  

In  this  course  we  will  use  just  a  small  number  of  standard  basis  sets.  The  so-­‐called  

SVP  basis  set  is  a  double-­‐zeta  basis  set  with  one-­‐set  of  polarization  functions  on  all  

atoms.  The  more  accurate  TZVP  basis  set  is  a  triple-­‐zeta  basis  set  with  one-­‐set  of  

polarization  functions  and  the  TZVPP  basis  set  is  of  triple-­‐zeta  quality  with  three  

sets  of  polarization  functions  and  results  that  are  fairly  good  (meaning  close  enough  

to  the  basis  set  limit  in  order  to  properly  reflect  the  theoretical  method  used  and  not  

the  limitations  of  the  basis  set).    

computer  resources  while  less  accurate  model  chemistries  yield  necessarily  predictions  of  lower  reliability.  The  choice  of  model  chemistry  is  therefore  an  important  aspect  of  a  theoretical  study  and  is  dictated  by  experience  and  available  computational  resources.  Model  chemistries  of  unknown  accuracy  need  to  be  calibrated  before  they  should  be  applied  in  chemical  application  studies.  The  process  of  calibration  consists  of  testing  the  predictions  of  the  model  chemistry  for  a  range  of  molecular  systems  and  the  properties  of  interest.  A  proper  calibration  yields  a  solid  confidence  level  (or  error  interval)  for  the  predictions  of  the  model  chemistry  with  respect  to  the  chosen  property.