chem%356:%introductory%quantum%mechanicsscienide2.uwaterloo.ca/~nooijen/chem356/chem+356+pdf/ch_8.pdf ·...

13
Winter 2013 Chem 356: Introductory Quantum Mechanics Chapter 8 – Approximation Methods, Hueckel Theory 108 Chapter 8 – Approximation Methods, Hueckel Theory ........................................................................... 108 Approximation Methods...................................................................................................................... 108 The Linear Variational Principle ........................................................................................................... 111 Chapter 8 – Approximation Methods, Hueckel Theory Approximation Methods A) The variational principle For any normalized wave function ψ , the expectation value of 0 ˆ ˆ , H H E , the exact groundstate energy. Proof: ψ = c n φ n n with ˆ Hφ n = E n φ n If we would measure the energy we would find n E with probability 2 n n P c = ˆ H = ψ *(τ ) ˆ Hψ (τ ) dτ P n E n n 0 0 n n n n n PE E P E = ( 0 n E E ) This argument is a bit shaky when ˆ H has degenerate eigenvalues. You will do a correct proof in the assignments. If ψ would not be normalized we can calculate 2 *( ) () N d ψ τψτ τ = and then 0 2 1 ˆ H E N ψ ψ or in the final form: The variational principle ! E 0 = ψ *(τ ) ˆ Hψ (τ ) dτ Domain ψ *(τ ) ψ (τ ) dτ Domain E 0 where 0 E is the exact ground state energy The variational energy ! E 0 is exact when 0 () () ψτ φτ = , the exact ground state wavefunction.

Upload: phungthu

Post on 05-May-2018

235 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_8.pdf · Winter’2013’Chem%356:%Introductory%Quantum%Mechanics ... This’happens’to’be’pretty’good’solution,’especially’if

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  8  –  Approximation  Methods,  Hueckel  Theory   108    

 Chapter  8  –  Approximation  Methods,  Hueckel  Theory  ...........................................................................  108  

Approximation  Methods  ......................................................................................................................  108  

The  Linear  Variational  Principle  ...........................................................................................................  111  

 

Chapter  8  –  Approximation  Methods,  Hueckel  Theory    

Approximation  Methods    

A) The  variational  principle  

For  any  normalized  wave  function  ψ ,  the  expectation  value  of   0ˆ ˆ,H H E≥ ,  the  exact  

groundstate  energy.  

  Proof:     ψ = cnφn

n∑  with   Hφn = Enφn  

If  we  would  measure  the  energy  we  would  find   nE  with  probability   2n nP c=  

       

H = ψ *(τ )Hψ (τ )dτ ≡ PnEnn∑∫  

      0 0n n nn nP E E P E≥ =∑ ∑   ( 0nE E≥ )  

This  argument  is  a  bit  shaky  when   H  has  degenerate  eigenvalues.  You  will  do  a  correct  proof  in  the  assignments.    If  ψ  would  not  be  normalized  we  can  calculate    

2 * ( ) ( )N dψ τ ψ τ τ= ∫    

and  then     02

1 H EN

ψ ψ ≥  

 or  in  the  final  form:  The  variational  principle  

!E0 =ψ *(τ )Hψ (τ )dτ

Domain∫ψ *(τ )ψ (τ )dτ

Domain∫≥ E0  

      where   0E  is  the  exact  ground  state  energy  

 

The  variational  energy   !E0  is  exact  when   0( ) ( )ψ τ φ τ= ,  the  exact  ground  state  wavefunction.  

Page 2: Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_8.pdf · Winter’2013’Chem%356:%Introductory%Quantum%Mechanics ... This’happens’to’be’pretty’good’solution,’especially’if

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  8  –  Approximation  Methods,  Hueckel  Theory   109    

 Examples:  use  a  trial  wavefunction  that  depends  on  one  or  more  parameters   ,α β …  Then  minimize  the  

trial  energy   E α ,β( )  Some  simple  (trivial)  examples:  

      Hh.o. = !ω − 1

2d 2

dx2 +12

x2⎛⎝⎜

⎞⎠⎟  

  Take  trial  wavefunction  of  the  type    

       2 /2( ) xx e αψ −=  

      Or    2 /2xNe α−  

 Q:     what  is  α ?  What  is   0E ?  

A:     The  exact  wavefunction  has  the  form  2 /2xNe α− ,  

E0 =

12!ω  

→by  minimizing  the  energy  we  should  get   1α = ,   !E0 =

12"ω  

  Q:   Take  the  Hamiltonian  for  the  Hydrogen  atom,  and  an   0l =  state  

        H = !2

2µr 2

ddr

r 2 ddr

⎛⎝⎜

⎞⎠⎟− e2

4πε0r  

      Take  the  trial  wavefunction   re α−    

-­‐ What  are  the  integrals  to  evaluate?  -­‐ What  is  the  optimal  value  for  α ?  

-­‐ What  is  the  value  for   !E0 ?  

A:    

!E0(α ) =4π r 2e−αr He−αr dr

0

∫4π r 2e−αre−αr dr

0

∫  

    Minimizing  α :            

∂ !E0(α )∂α

= 0      

   0

1opt a

α→ =         !E0 = E0 = − 1

2e2

4πε0a0

  again:  exact     a0 =

4πε0!2

µe2  

 You  can  do  those  problems  yourself  and  see  if  you  get  the  correct  answer      

Nontrivial  example:  

Take  the  Hamiltonian  for  H-­‐atom,  s-­‐orbital,  and  use  the  trial  wavefunction  2re α−  

Page 3: Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_8.pdf · Winter’2013’Chem%356:%Introductory%Quantum%Mechanics ... This’happens’to’be’pretty’good’solution,’especially’if

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  8  –  Approximation  Methods,  Hueckel  Theory   110    

→  

!E0(α ) =4π r 2e−αr2

He−αr2

dr0

∫4π r 2e−αr2

e−αr2

dr0

∫     ...=      

        = 3!2α

2me

− 2e2α12

ε0(2π )3/2  

→  

∂E0

∂α= 3!2

2me

− e2

(2π )3/2ε0α1/2 = 0  

    α

12 =

2mee2

3(2π )3/2ε0!2  

    α opt =

me2e4

18π 3ε02!4  

 

!E0(α opt ) = − 43π

mee4

16π 2ε0"2

⎝⎜⎞

⎠⎟  

      !E0(α opt ) ≈ −0.424 e2

4πε0a0

 

2

00 0

12 4

eEaπε

= −  

    !E0 > E0  now,  since  the  trial  wavefunction  cannot  be  exact  for  any  α  

 

                                                                                                             Note:  Gaussian  trial  orbitals  (basis  sets)  are  widely  used  in  electronic  structure  programs.  This  is  because  integrals  are  easily  evaluated  over  Gaussians.    This  is  the  origin  of  the  name  for  the  Gaussian  Program:  It  uses  Gaussian  basis  functions!      

Page 4: Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_8.pdf · Winter’2013’Chem%356:%Introductory%Quantum%Mechanics ... This’happens’to’be’pretty’good’solution,’especially’if

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  8  –  Approximation  Methods,  Hueckel  Theory   111    

The  Linear  Variational  Principle      Consider  a  trial  wave  function     ( ) ( )n n

nc fψ τ τ=∑  

Let  us  assume  for  simplicity  -­‐ Real  coefficients,  functions,   (nf τ )  -­‐ Orthonormal  expansion  functions:    

*( ) ( )n m nmDomainf f dτ τ τ δ=∫  

 Then  we  can  try  to  optimize  the  coefficients    

     

!E0("c) =ψ *(τ )Hψ (τ )dτ∫ψ *(τ )ψ (τ )dτ∫

≡ ND

 

      N = cn fn(τ )Hcm fm(τ )dτ∫  

                = cncm fn(τ )Hfm(τ )dτ∫

n,m∑  

               ,

n nm mn mc H c≡∑  

     ,

( ) ( )n n m mn m

D c f c f dτ τ τ=∑∫  

             ,

( ) ( )n m n mn mc c f f dτ τ τ=∑ ∫  

              2,

,n m n m n

n m nc c cδ= =∑ ∑  

  Then     0k

Ec∂ =∂

    k∀  

     →  2 0k k

k

N DD Nc cN

c D D

∂ ∂−∂ ∂∂ ⎛ ⎞ = =⎜ ⎟∂ ⎝ ⎠

 

      Or    k k

N N Dc D c∂ ∂⎛ ⎞= ⋅⎜ ⎟∂ ∂⎝ ⎠

 

       k k

N DEc c∂ ∂=∂ ∂

 

        km m n nkm nk

N H c c Hc∂ = +∂ ∑ ∑  

        2 2n knk k

D c cc c∂ ∂= =∂ ∂ ∑  

Page 5: Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_8.pdf · Winter’2013’Chem%356:%Introductory%Quantum%Mechanics ... This’happens’to’be’pretty’good’solution,’especially’if

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  8  –  Approximation  Methods,  Hueckel  Theory   112    

    →   0km m k n nk km nH c Ec c H Ec⎛ ⎞ ⎛ ⎞− + − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑  

    Since   nk knH H= ,  this  is  twice  the  same  equation.  

      →   0km m kH c Ec− =∑  

This  has  the  form  of  a  matrix  eigenvalue  equation!    

H = k Hkm

⎢⎢⎢

⎥⎥⎥

m

         and    

H

⎢⎢⎢

⎥⎥⎥

!c⎛

⎜⎜

⎟⎟ =

!c⎛

⎜⎜

⎟⎟ E  

   

Hkmcm = ck Em∑  

  We  can  also  write     [ ]( ) 0kmE cδ− =H  

    This  has  the  form  of  a  linear  equation.        

A!c = 0 ,  with   A = H − E1  

This  type  of  equation  only  has  a  solution  if   ( )det 0A = .    

Hence   ( )det 0E− =H 1 →  equation  for  E  “secular  determinant”  

 Let  us  discuss  examples  later.  For  now  I  want  to  draw  the  analogy:        

Schrödinger  equation   H Eψ ψ=  

   If  we  make  a  basis  expansion    

n nnc fψ =∑           |n m nmf f δ=  

Then  we  get  a  matrix  type  Schrodinger  equation               H

!c = E!c  

        With       H → Hnm = φn *∫ (τ )Hφm(τ )dτ  

Such  an  eigenvalue  equation  has  M  solutions  for  an  M M×  matrix.  They  represent  approximations  to  the  ground  and  excited  states.    

If  the  basis  is  not  orthonormal  the  define   Snm = φn *(τ )Hφm(τ )dτ∫  and   H

!c = S!cE  (see  MQ)  

      Or     det H − SE = 0  →  eigenvalues  E .  

   

Page 6: Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_8.pdf · Winter’2013’Chem%356:%Introductory%Quantum%Mechanics ... This’happens’to’be’pretty’good’solution,’especially’if

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  8  –  Approximation  Methods,  Hueckel  Theory   113    

Example  Linear  Variations:         Consider  particle  in  the  box      

          H = −!2

2md 2

dx2  

        φn(x) = 2

nsin nπ x

a⎛⎝⎜

⎞⎠⎟  

    Now  add  to  H  a  linear  potential  

V0

ax  

 

                                                               

  Use  as  a  trial  wave  function   1 22 2 2sin sinx xc ca a a a

π π+  

 

, 1,2i j =   Hij =

2a

sin iπ xa∫ − !

2

2md 2

dx2 +V0

ax

⎛⎝⎜

⎞⎠⎟

sin jπ xa

 

     

0 01 2

0 022

162 9

1629

V VE

V VE

π

π

⎛ ⎞+ −⎜ ⎟⎜ ⎟=⎜ ⎟− +⎜ ⎟⎝ ⎠

 

      En =

n2π 2!2

2ma2     υ0 =

2ma2

!2π 2 V0  

     

H = !2π 2

2ma2 ⋅1+

υ0

2−

16υ0

9π 2

−16υ0

9π 2 4+υ0

2

⎢⎢⎢⎢

⎥⎥⎥⎥

 

 

The  eigenvalues  of  this  Hamiltonian  are   !2π 2

2ma2 εn  

Page 7: Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_8.pdf · Winter’2013’Chem%356:%Introductory%Quantum%Mechanics ... This’happens’to’be’pretty’good’solution,’especially’if

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  8  –  Approximation  Methods,  Hueckel  Theory   114    

   

εn =5+υ0

2± 1

29+

32υ0

9π 2

⎛⎝⎜

⎞⎠⎟

2⎡

⎣⎢⎢

⎦⎥⎥

1/2

   

≈5+υ0

2± 3

2≈

1+υ0

2

4+υ0

2

 

This  happens  to  be  pretty  good  solution,  especially  if   0V  is  small  

 Other  instructive  example:  consider  particle  on  the  ring  

    − !2

2mR2

∂2

∂ϕ 2 ,  with  the  degenerate   1m =  solutions    

     

1 cos

1 sin

ϕπ

ϕπ

   2

1 22E

mR= h

 

Now  apply  a  magnetic  field,  which  adds   − e

2me

BeLz = γ Lz  to  the  Hamiltonian   Lz = −i! ∂

∂ϕ  

Under  the  influence  of  the  perturbation  the  levels  split.  Calculate  the  energy  splitting.      

      γ = −e

2me

  H = H0 + γ Lz  

      1 21 1cos sinc cψ ϕ ϕπ π

= +  

      γ z Lz

1

πcosϕ

⎛⎝⎜

⎞⎠⎟= γ !i 1

πsinϕ  

      γ Lz

1

πsinϕ

⎛⎝⎜

⎞⎠⎟= −γ !i 1

πcosϕ  

    →   H − E1 =  

!2

2mR2 − E −iγ !

+iγ ! !2

2mR2 − E⎛⎝⎜

⎞⎠⎟

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

 

      det H − E1( ) = !2

2mR2 − E⎛⎝⎜

⎞⎠⎟

2

+ γ 2!2 = 0  

       

!2

2mR2 − E⎛⎝⎜

⎞⎠⎟= ±γ !  

Page 8: Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_8.pdf · Winter’2013’Chem%356:%Introductory%Quantum%Mechanics ... This’happens’to’be’pretty’good’solution,’especially’if

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  8  –  Approximation  Methods,  Hueckel  Theory   115    

        E± =

!2

2mR2 ± γ !  

  Can  I  find  eigenfunctions?  

     

!2

2mR2 −iγ !

+iγ ! !2

2mR2

⎜⎜⎜⎜

⎟⎟⎟⎟

1i

⎝⎜⎞

⎠⎟= !2

2mR2 + γ !⎛⎝⎜

⎞⎠⎟

1i

⎝⎜⎞

⎠⎟  

     

!2

2mR2 −iγ !

+iγ ! !2

2mR2

⎜⎜⎜⎜

⎟⎟⎟⎟

1−i

⎝⎜⎞

⎠⎟= !2

2mR2 −γ !⎛⎝⎜

⎞⎠⎟

1−i

⎝⎜⎞

⎠⎟  

 What  are  the  eigenfunctions  then?  

     1

cos sin ~ ii ei

ϕϕ ϕ⎛ ⎞→ +⎜ ⎟

⎝ ⎠  

     1

cos sin ~ ii ei

ϕϕ ϕ −⎛ ⎞→ −⎜ ⎟−⎝ ⎠

 

    (we  normalize,  12π

 factor)  

− !2

2mR2

∂2

∂ϕ 2 − iγ ! ∂∂ϕ

⎣⎢

⎦⎥eiκ → !2

2mR2 + γ !⎛⎝⎜

⎞⎠⎟

eiϕ  

− !2

2mR2

∂2

∂ϕ 2 − iγ ! ∂∂ϕ

⎣⎢

⎦⎥e− iκ → !2

2mR2 −γ !⎛⎝⎜

⎞⎠⎟

e− iϕ  

    Bottom  line:     We  can  indicate  perturbation   0H H V= +  

    Diagonalize  H  over  degenerate  states.    

Examples:     H-­‐atom:     H = H0

(ne) + g(v)!L ⋅!S( )  

Diagonalize   H  over  2p  orbitals      →    …     32

2 p ,   2 p1

2

eigenfunctions  from  diagonalizing  6 6×  Hamiltonian.  

Everything  comes  out  by  brute  force.    Example  2:     add  in  additional  magnetic  interaction  

      H = H0

(ne) + g(v)!L ⋅!S + e

2me

Bz Lz +2e

2me

BzSz  

  →  diagonalize  H  over  2p  and  2s  orbitals    

Page 9: Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_8.pdf · Winter’2013’Chem%356:%Introductory%Quantum%Mechanics ... This’happens’to’be’pretty’good’solution,’especially’if

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  8  –  Approximation  Methods,  Hueckel  Theory   116    

    →  all  the  splitting  from  diagonalization    The  linear  variational  principle  is  a  very  powerful  tool  to  calculate  approximate  eigenfunctions    It  is  widely  used  to  calculate  the  splitting  of  energies  in  a  degenerate  manifold,  when  adding  a  perturbation.    When  the  energies  of  a  Hamiltonian 0H  are  not  degenerate,  one  can  get  a  good  estimate  of  the  energy  

correction  due  to  a  perturbation  V ,  by  calculating   V .    

 

  Hence  if   (0)0 n n nH Eφ φ= ,  then  eigenvalues  of   ˆ ˆ ˆ

eH H V= +  are  given  to  first  approximation  by    

      φn H φn = φn *(τ ) H0 +V⎡⎣ ⎤⎦∫ φn(τ )dτ  

                    = En

(0) + φn *(τ )∫ Vφn(τ )dτ  

These  are  just  the  diagonal  elements  of  the  Hamiltonian  matrix.  =  First  order  Perturbation  Theory:       →  If  we  go  back  to  box  +  linear  field  

          H = − !

2

2md 2

dx2 + V0

ax  

            0H                     v  

        φn =

2a

sin nπ xa

  En

(0) = !2π 2

2ma2  

        φn V φn =

V0

a2a

sin nπ xa

⎛⎝⎜

⎞⎠⎟

2

x dx0

a

∫  

                    =

V0

a⋅ 2a⋅ a2

4⎛⎝⎜

⎞⎠⎟=

V0

2  

      →   En ≈ En

(0) +V0

2    all  energies  are  shifted  by  

V0

2  

 If  zero-­‐order  states  are  degenerate,  first-­‐order  perturbation  theory  is  useless.  Instead  use  linear  variational  principle    

Example   ˆzL  in   cos(mx) ,   sin( )mx  basis  

  →       choose  other  basis:  →  results   ime ϕ,   e

− imϕ  

  →   always  diagonalize  over  zeroth-­‐order  states:  degenerate  first-­‐order  perturbation  theory      

Page 10: Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_8.pdf · Winter’2013’Chem%356:%Introductory%Quantum%Mechanics ... This’happens’to’be’pretty’good’solution,’especially’if

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  8  –  Approximation  Methods,  Hueckel  Theory   117    

Another  example  of   H!c = !cE :      Huckel  π -­‐electron  theory  

 

In  organic  chemistry,  many  molecules  are  essentially  planar.  The  plane  contains  “ 2sp ”  carbon,  oxygen,  

nitrogen  atoms.  The  out  of  plane   pz -­‐orbitals  constitute  the  π -­‐orbitals.  The  molecule’s  π -­‐  orbitals  are  

linear  combinations  of  the  atomic   pz -­‐orbitals.  One  can  parameterize  a  one-­‐electron  effective  

Hamiltonian  matrix  as  follows.  Let  us  restrict  ourselves  to   2sp  carbons.  

       

                         Hα ββ α

⎛ ⎞= ⎜ ⎟⎝ ⎠

 

   

0 00

00 0

H

α ββ α β

β α ββ α

⎛ ⎞⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎝ ⎠

           

 

0 00 00 0

H

α β β ββ αβ αβ α

⎛ ⎞⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎝ ⎠

 

 

00

00

H

α β ββ α β

β α ββ β α

⎛ ⎞⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎝ ⎠

 

D    Rule:    α  on  diagonal   β  for  any  two  adjacent  atoms  connected  by  a  π -­‐bond  

        β < 0 ~ pz

(1)V Ne pz(2) dτ∫  

Following  the  variational  principle  we  

a) Diagonalize  the  Hamiltonian  →  orbital  energies   kE ,  eigenvectors   !ck  

b) Fill  up  orbital  levels  from  the  bottom  up  putting  an  α and  a   β  electron  in  each  level.  

Occupy  as  many  levels  as  you  have  π -­‐electrons  c) If  levels  are  degenerate,  fill  them  up  with  α -­‐electrons  first,  then  add  additional   β -­‐

electrons  

Page 11: Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_8.pdf · Winter’2013’Chem%356:%Introductory%Quantum%Mechanics ... This’happens’to’be’pretty’good’solution,’especially’if

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  8  –  Approximation  Methods,  Hueckel  Theory   118    

d) Total  energy:    occupiedorbitals

E λε= ∑  

e) Density  Matrix     kl k loccupied

D c cλ λ= ∑   kl klkl

E H D=∑  (see  McQuarrie)  

 This  procedure  would  work  fine  in  MathCad  

How  do  we  do  it  on  paper?  Take   ( )det E−H 1  

  →  ethylene       0E

Eα ββ α−

=−

 

      ( )2 2 0Eα β− − =  

      ( )Eα β− = ±  

      E α β= ±  

         

                          2π -­‐  electrons        Using  α  and  β  is  a  bit  tedious  for  larger  problems  

→  divide  each  column  by  β  and  define  Ex α

β−=  

    →     E xα β= −  

211 0

1x

xx= − =   1x = ±     E α β= ±  

 Or      

1 11 1 01 1

xxx=                                              

1 11 1xx

                       

 

      3 31 1 3 2 0x x x x x x+ + − − − = − + =           1x =     1 3 2 0− + =           2x = −     8 6 2 0− + + =  

Page 12: Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_8.pdf · Winter’2013’Chem%356:%Introductory%Quantum%Mechanics ... This’happens’to’be’pretty’good’solution,’especially’if

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  8  –  Approximation  Methods,  Hueckel  Theory   119    

        Always:     0i

ix =∑      

          1x =  is  double  solution.  

        ( ) ( ) ( )( )2 21 2 2 1 2x x x x x− + = − + +  

            3 3 2x x= − +     ok             k kE xα β= −  

                3π -­‐electrons  (4-­‐fold  degenerate)           Triplet  (3-­‐fold  degenerate)             Singlet    

   What  if  we  would  look  at  the  singlet  state  of  the  anion?                     This  is  not  a  stable  structure,  the  molecule  would  distort    

Page 13: Chem%356:%Introductory%Quantum%Mechanicsscienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_8.pdf · Winter’2013’Chem%356:%Introductory%Quantum%Mechanics ... This’happens’to’be’pretty’good’solution,’especially’if

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  8  –  Approximation  Methods,  Hueckel  Theory   120    

                                                                                                       Jahn-­‐Teller  Distortion  (the  picture  is  not  clear,  my  apologies.  Follow  notes  in  my  lecture)    

 I  might  ask  questions  of  4*4 determinant  →  too  hard  to  solve  

→  I  would  give  you  the  solution   1 2 3 4, , ,x x x x  

  You  would  show  that   1 2 3 4( )( )( )( )x x x x x x x x− − − −  is  your  secular  determinant  

    You  can  guess  the  orbitals  (phases)  from  symmetry  arguments:  The  orbitals  are  always  symmetric  or  antisymmetric  with  respect  to  plane  or  axis  of  symmetry    If  you  know  value  of   x  you  can  solve  

         

1 11 1 01 1

x ax bx c

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

    1x =  :     0a b c+ + =  

            ( )(1 -1 0)1 1 -2

  orthogonal  combination  

    2x = −  :            

2 1 1 1 01 2 1 1 01 1 2 1 0

−⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟− =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠