chapter 4 postulates of quantum...

17
Winter 2013 Chem 350: Introductory Quantum Mechanics 48 Chapter 4 Postulates of Quantum Mechanics ......................................................................................... 48 MathChapter C ........................................................................................................................................ 48 The Postulates of Quantum Mechanics .................................................................................................. 50 Properties of Hermitian Operators ......................................................................................................... 53 Discussion of Measurement ................................................................................................................... 55 Discussion of Uncertainty Relations ....................................................................................................... 57 The Time-Dependent Schrodinger Equation .......................................................................................... 60 Time-dependence of expectation values................................................................................................ 62 Chapter 4 Postulates of Quantum Mechanics MathChapter C A brief reminder on vectors: In 3 dimensions define orthonormal basic vectors , , i jk Or 1 2 3 , , ee e x u xi yj zk y z Or x y z u u u u x y x y z z v v v vi vj vk v Vector has both direction and a length Vector Addiction u v x x y y z z u v u v u v u v Multiplication by a scalar

Upload: others

Post on 15-Feb-2021

20 views

Category:

Documents


1 download

TRANSCRIPT

  • Winter 2013 Chem 350: Introductory Quantum Mechanics

    48

    Chapter 4 – Postulates of Quantum Mechanics ......................................................................................... 48

    MathChapter C ........................................................................................................................................ 48

    The Postulates of Quantum Mechanics .................................................................................................. 50

    Properties of Hermitian Operators ......................................................................................................... 53

    Discussion of Measurement ................................................................................................................... 55

    Discussion of Uncertainty Relations ....................................................................................................... 57

    The Time-Dependent Schrodinger Equation .......................................................................................... 60

    Time-dependence of expectation values ................................................................................................ 62

    Chapter 4 – Postulates of Quantum Mechanics

    MathChapter C

    A brief reminder on vectors:

    In 3 dimensions define orthonormal basic vectors

    , ,i j k Or 1 2 3, ,e e e

    x

    u xi yj zk y

    z

    Or

    x

    y

    z

    u

    u u

    u

    x

    y x y z

    z

    v

    v v v i v j v k

    v

    Vector has both direction and a length

    Vector Addiction u v

    x x

    y y

    z z

    u v

    u v u v

    u v

    Multiplication by a scalar

  • Winter 2013 Chem 350: Introductory Quantum Mechanics

    Chapter 4 – Postulates of Quantum Mechanics 49

    x

    y

    z

    u

    u u

    u

    Multiply length by

    Inner Product

    u v x x y y z zu v u v u v

    i j ije e ie i , 2e j , 3e k

    , ,

    ( )i i j j i j i j i j ij i ii j i j i j i

    u e v e u v e e u v u v

    Length u u v

    Angle cosu v u v

    2

    1

    3

    u

    1

    1

    2

    v

    2 2 22 1 3 14u

    2 2 21 1 2 6v

    ( ) 2 1 ( 1) 1 3 ( 2) 5u v

    5

    cos14 6

    ....

    Examples of use of inner product in physics

    Work cosF l F l

    cosF l mgh

    cosh l

    Or: Dipole moment

    i ii

    u q r Charges iq at position r

    2 2

    x

    r rq q

    qr points in the positive direction from – to +

    If we apply an electric field E

  • Winter 2013 Chem 350: Introductory Quantum Mechanics

    Chapter 4 – Postulates of Quantum Mechanics 50

    V E (more later)

    Another important product is the vector or cross product

    u v : perpendicular to the plane spanned by u and v

    Length: sinu v : sign from right hand rule

    Mathematical formula

    1 2 3

    x y z

    x y z

    e e e

    u u u

    v v v

    (determinant)

    1 2 3( ) ( ) ( )y z z y x z z x x y y xu v e u v u v e u v u v e u v u v

    Check: Orthogonal to u , v

    Famous Physics example:

    Lorentz Magnetic Force: ( )F q V B

    Apply magnetic field B force acceleration to V , B

    charged particle precesses around B

    Change direction of velocity, not speed

    Also: Angular Momentum

    L r p p r

    1 3( ) ( ) ( )x y x z z y xyP xP e zP xP e xP yP e

    z y xL xP yP Remember

    y x zL zP xP Cyclic Permutation

    x z yL yP zP

    The Postulates of Quantum Mechanics

    A) Observables

    To any observable, or measurable quantity A , in Quantum Mechanics corresponds a

    linear Hermitian operator Â

    If one performs a measurement of A , only eigenvalues ia of the operator  can be obtained

    Operators in quantum mechanics are obtained by replacing

    xP ix

    ,

    yP iy

    , zP i

    z

  • Winter 2013 Chem 350: Introductory Quantum Mechanics

    Chapter 4 – Postulates of Quantum Mechanics 51

    A function of position, eg. ( )V x is interpreted as multiplication by ˆ( ) ( )V x V x

    To know possible outcome from experiment:

    Solve ˆ ( ) ( )a aA x a x

    Eigenvalue

    With operator  we often need to impose boundary conditions

    Observable Operator

    Position , ,x y z ˆ ˆ ˆ, ,x y z multiply

    Momentum , ,x y zP P P ix

    , i

    y

    , i

    z

    Kinetic energy

    2

    2

    x

    x

    PT

    m

    2

    2

    PT

    m

    2 2

    22m x

    2 2 2 2

    2 2 22T

    m x y z

    22

    2m

    Potential Energy ( )V x ˆ( )V x

    : multiply by ˆ( )V r

    Total Energy E

    ˆ ˆ ˆH T V 2

    2 ˆ( )2

    V rm

    Angular momentum

    x z yl yP zP

    y x zl zP xP

    z y xl xP yP

    ˆ

    ˆ

    ˆ

    x

    y

    z

    L i y zz y

    L i z xx z

    L i x yy x

    Spin

    ˆ ˆ ˆ, ,x y zS S S

    2 2 2 2ˆ ˆ ˆ ˆx y zS S S S

    We have discussed linear operators and eigenvalue equations. What does Hermitian mean?

    An operator  is Hermitian if for any pair of functions ( )f x and ( )g x in the domain of the

    operator (ie. Satisfying the boundary conditions)

  • Winter 2013 Chem 350: Introductory Quantum Mechanics

    Chapter 4 – Postulates of Quantum Mechanics 52

    it is true that

    *

    * ˆ ˆ( ) ( ) ( ) ( )b b

    a af x Ag x dx g x Af x dx

    In higher dimensions

    *

    * ˆ ˆ( ) ( ) ( ) ( )domain domain

    f Ag d g Af d

    The domain of integration is part of the definition of Hermitian operator (Boundary conditions)

    In words: act with  on g and integrate with *f should be equal to act with  of f , take

    complex conjugate, and integrate against ( )g .

    We can write the latter expression also as

    ˆ ˆ( ) * ( )* *g Af d g Af d

    Example of Hermitian operators

    ( )V x : ( )V x is a real function

    *( ) ( ) ( ) ( ) ( ) *( )f x V x g x dx g x V x f x dx

    ( ) ( ) ( ) *g x V x f x dx (V real!)

    xP ix

    :

    *( ) *( ) ( )g

    f x i dx i f x g xx

    *( )

    P

    P

    fi g x dx

    x

    (partial integration)

    *

    ( )f

    i g x dxx

    ( ) *f

    g x i dxx

    ˆ( )( ( ))*xg x P f x dx

    Likewise 2 2

    22m x

    and other listed operators are Hermitian

    Operators in Quantum Mechanics are required to be Hermitian because these operators have very nice

    mathematical properties:

  • Winter 2013 Chem 350: Introductory Quantum Mechanics

    Chapter 4 – Postulates of Quantum Mechanics 53

    Properties of Hermitian Operators

    a) The eigenvalues are all real

    b) The eigenfunctions can be chosen to be orthonormal

    c) Any function ( )x can be expressed as linear combination ( ) ( )n nn

    x C x

    with *( ) ( )n ndomain

    C x x dx

    Let us denote eigenvalues of  to be na with eigenfunctinos ( )n x

    Then: Eigenvalues are real

    ˆ ˆ*( ) ( )*n n n nA dx A dx

    *( ) ( ) * *( ) ( )n n n n n na x x dx a x x dx

    *n na a , na is real

    2) Eigenfunctions corresponding to different eigenvalues are orthonormal

    ˆ ˆ*( ) ( ) ( ( ))*k l l kx A x dx A x dx

    ( *) *( ) ( ) 0l k k la a x x dx

    *k ka a l ka a

    *( ) ( ) 0k ldomain

    x x dx

    k , l are orthogonal if k la a

    3) If ( )k x and ( )l x have the same eigenvalue (degenerate) then any linear combination

    is also eigenfunction with the same eigenvalue

    ˆ ˆ( ) ( ( ) ( ))k k l lA x A C x C x

    ˆ ˆ( ) ( )k k l lC A x C A x [Linear]

    ( ) ( )k k l lC a x C a x [Same Eigenvalue]

    ( ( ) ( ))k k l la C x C x

    ( )a x

    4) If ( )k x and ( )l x are degenerate (same a ), but are not orthogonal, we can make

    them orthonormal

    Eg. *( ) ( )k lx x dx c

    ( ) ( )newl l kx c x k normalized

  • Winter 2013 Chem 350: Introductory Quantum Mechanics

    Chapter 4 – Postulates of Quantum Mechanics 54

    * ( )( ( ) ( ))k l kx x c x dx

    1 0c c normalize newl

    This is true in general.

    With any Hermitian operator we can associate a set of orthonormal functions ( )k x

    ˆ ( ) ( )k k kA x a x

    Earlier *( ) ( )k l kldomain

    x x dx

    1 k l

    0 k l

    5) Any (suitable) wave function can expressed as a linear combination of the ( )k x

    ( ) ( )k kk

    x C x

    Completeness Property

    This statement is hard to prove and we assume it to be true

    Further consequences

    5a) Normalization

    *( ) ( )x x dx

    * *( ) ( )l l k kl k

    c x c x dx

    * *( ) ( )l k l kl k

    c c x x dx

    *l k lkl k

    c c

    *(0 0 ... 0 ...)l ll

    c c

    2

    *l l ll l

    c c c

    Normalized Wavefunction: 2

    1ll

    c

    5b) Expectation Values

    ˆ*( ) ( )x A x dx

    ˆ* *( ) ( )k k l lk l

    c x A c x dx

    * *( ) ( )k l l k lk l

    c c a x x dx

  • Winter 2013 Chem 350: Introductory Quantum Mechanics

    Chapter 4 – Postulates of Quantum Mechanics 55

    *k l l klk l

    c c a

    0 0 .... ...k kc a

    ( * )k k k k kk k

    c c a A P a

    5c)

    22 2 2 2.... l l k l

    l l

    A c a A P a

    From this we deduce that kP the probability to find ka is given by *k kc c if

    ( ) ( )k kk

    x c x

    This assumes we know the coefficient. We can calculate it!

    *( ) ( ) *( ) ( )k k k l ll

    c x x dx x c x dx

    *( ) ( )l k l l kll l

    c x x dx c

    0 0 ... 0 0....kc

    kc Indeed!

    We can now discuss the predictions of Quantum Mechanics regarding measurements

    Discussion of Measurement

    If we decide to measure a quantity A , we associate with it a Quantum Mechanical operator Â

    Solve for eigenfunctions and eigenvalues

    ˆ ( ) ( )k k kA x a x

    Type of Measurement  , { ka ( )k x }

    If we measure A for individual quantum system, we get always an eigenvalue (rolling the dice)

    Possible Outcomes 1 2 3, , .....a a a

  • Winter 2013 Chem 350: Introductory Quantum Mechanics

    Chapter 4 – Postulates of Quantum Mechanics 56

    Probability: 1 1 1( )tot

    NP a

    N , 2 2 2( )

    tot

    NP a

    N

    What determines the probabilities? The wavefunction (normalized) ( )x !!

    If we do a large number of measurements on identical microscopic systems, collectively described by

    the wavefunction we find the value ka with probability kP

    2

    *k k k kP c c c

    *( ) ( )k kc x x dx

    How do we prepare an ensemble described by wavefunction ( )x ?

    Could be the ground state of a molecule (low T )

    0( )x 0 0 0ˆ ( ) ( )H x E x

    This is like ‘measuring’ the energy first, then measure Â

    We could alternatively measure B̂ and collect all Microsystems with eigenvalue kb

    Take those systems that yield eigenvalue kb . They are described by ( )kb x

    ˆ ( ) ( )k kb k b

    B x b x

    Why? If I measure B again I would measure kb with certainty (if it does not change over time)

    *( ) ( ) 1k kb b

    C x x dx

    ( ) ( ) ( )k

    i

    bx x e

    A measurement is the standard procedure to prepare an ensemble of microscopic systems in a well-

    define wavefunction (takes some effort!)

  • Winter 2013 Chem 350: Introductory Quantum Mechanics

    Chapter 4 – Postulates of Quantum Mechanics 57

    Discussion of Uncertainty Relations

    If I measure  for an ensemble, can I get a sharp value for  ?

    Yes: use ( ) ( )ax x

    Â a , 2 2Â a , 0A

    Next question, if I would measure  and B̂ for an ensemble, can I create a sharp value for both  and

    B̂ ?

    If ( )x is eigenstate of  and eigenstate of B̂

    ˆ ( ) ( )A x a x

    ˆ ( ) ( )B x b x

    ,( ) ( )a bx x

    When can I create a sharp value for measuring  and B̂ , for each compatible value of a and b ?

    If  and B̂ have a complete set of common eigenstates

    , ,

    ˆ ( ) ( )a b a bA x a x

    , ,ˆ ( ) ( )a b a bB x b x

    Completeness Property:

    Any ( ) :x ( )

    ( ) ( )ab abab

    x c x

    ( ) ( )

    ˆ ˆˆ ( ) ( ) ( )ab ab ab abab ab

    AB x A c b x c ab x

    ( ) ( )

    ˆˆ ˆ( ) ( ) ( )ab ab ab abab ab

    BA x B c a x c ba x

    ˆ ˆˆ ˆ( ) ( ) 0AB BA x

    Hence, If and only if : ˆ ˆ ˆˆ ˆ ˆ[ , ] 0A B AB BA then

    Â and B̂ have complete set of common eigenfunctions

    And: We can create samples to measure sharp values of both  and B̂

  • Winter 2013 Chem 350: Introductory Quantum Mechanics

    Chapter 4 – Postulates of Quantum Mechanics 58

    If  and B̂ commute measuring B̂ does not destroy the value measured for  (compare to my

    example of measuring lunchboxes for schoolkids)

    After sample preparation: we can obtain completely sharp values 0A B

    What if  and B̂ do not commute?

    Mathematical uncertainty Principle

    1 ˆ ˆ,2

    A B A B

    Depends on the state ( ) in general

    If  and B̂ have no common eigenstate then:

    One cannot generate an ensemble in which one obtains sharp values for both  and B̂

    Most famous example: Measure position and momentum

    ˆˆ[ , ] ( ) ( )xx P x i x i x xx x

    ( )i x i x i xx x

    ( )i x

    ˆˆ[ , ]xx P i

    1 1

    2 2x p i

  • Winter 2013 Chem 350: Introductory Quantum Mechanics

    Chapter 4 – Postulates of Quantum Mechanics 59

    Heisenberg Uncertainty Relation

    Measure x and p for ensemble

    1

    2x p

    Not simultaneously measure x , p !! This was discussed originally by Heisenberg, for his famous

    microscope, but we can only verify for ensembles as discussed above.

    Special Topic: Continuous eigenvalues

    Consider ˆxP i

    x

    (1d)

    Eigenfunctions ikxe ˆikx ikx

    xP e ke k can have any value

    but ( ) ikxx e cannot be normalized : ( )*ikx ikxe e dx

    1ikx ikxe e dx dx

    !

    And orthonormality is ill-defined

    1 2 1 2( )ik x ik x i k k x

    e e dx e dx

    1 2

    ( )

    1 2

    1

    ( )

    i k k xe

    i k k

    Function keeps oscillating, does not vanish at infinity…

    Continuous ‘spectra’ require special care

    1

    ( )2

    ikx

    kc e x dx

    Converges if ( )x is normalized

    Other example position x̂

    ˆ ( ) ( ) ( )a a ax x x x a x

    ( ) ( ) 0ax a x ( ) 0a x if x a Funny function!!

    ( ) ?a x if

    x a

    ( ) ( )a x a x a

    ( ) 1x a

  • Winter 2013 Chem 350: Introductory Quantum Mechanics

    Chapter 4 – Postulates of Quantum Mechanics 60

    ( )x a Dirac delta function

    a.k.a. normalization ( ) ( ) ( )x a x dx a

    ( )P a : the probability to find particle at a

    2

    ( ) ( )P a x dx

    2

    ( ) ( )P x dx x dx

    This definition is consistent with the postulates (follows from the postulates).

    Continuous eigenvalues require more sophisticated mathematics (distributions).

    The Time-Dependent Schrodinger Equation

    Time dependence of ( , )x t :

    ˆ( , ) ( , )i x t H x tt

    0( , )x t to be specified: initial conditions

    Assume Ĥ is time-independent

    As in chapter 2 we consider separation of variables

    Try ( , ) ( ) ( )x t x t

    ,x t ˆ( ) ( ) ( )x i t H xt

    ˆ ( )

    / ( )( )

    H xi t E

    t x

    : both are constant

    ˆ ( ) ( )n n nH x E x

    ( )ni E tt

    ( )

    niE t

    t e

    Special solutions: Stationary states

    0( )

    ( , ) ( )niE t t

    nx t x e

    These states are called stationary states because

  • Winter 2013 Chem 350: Introductory Quantum Mechanics

    Chapter 4 – Postulates of Quantum Mechanics 61

    2

    ( , ) ( )* ( )n niE t iE t

    n nx t x e x e

    2

    ( )n x independent of t

    Also 0

    ˆt t

    A A and even probability to find eigenvalue a are independent of time:

    ˆ ( ) ( )a aAX x aX x

    ( ) ( )* ( ) niE t

    a a nC t X x x dx e

    2

    ( ) * *(0) (0) (0)a a a a a a aP t c c c c c P independent of time!!

    But : stationary states are very special

    The general solution is linear combination:

    0( )

    ( , ) ( )niE t t

    n n

    n

    x t c x e

    0( )

    ( )niE t t

    n n n

    n

    i c x E et

    0( )

    ˆ( ( ))niE t t

    n n

    n

    c H x e

    0( )

    ˆ ( )niE t t

    n n

    n

    H c x e

    (reminder Ĥ independent of t , no electromagnetic fields!)

    0( ) ( )n nn

    t t c x

    specify 0( )t t

    0*( ) ( , )n nc x x t t dx

    ( , )x t is determined for all time, very simple!!

    Probability to find nE ?

    0( )

    ( ) *( ) * ( )miE t t

    n n m m

    m

    c t x c x e

    0( )niE t t

    nc e

    2 22 (0)n n nc c c

  • Winter 2013 Chem 350: Introductory Quantum Mechanics

    Chapter 4 – Postulates of Quantum Mechanics 62

    independent of time E is conserved = n nn

    P E

    Other properties, eg. ˆ ˆ*( )* ( )x t x t dx

    oscillation in time

    Further remarks:

    All depends on initial wave function, which is arbitrary in principle [compare to classical

    mechanics specify (0)X , (0)P for all particles ( )X t , ( )P t follows from equation of motion]

    Stationary States: ( 0) ( )nt x energy eigenstates

    S.E. Predicts: excited states live forever

    Q.M: does not predict thermal equilibrium over time

    need to combine quantum mechanics with

    a) Statistical mechanics

    b) Electromagnetic field (even in a vacuum)

    Excited states decay: From quantum electrodynamics (Dirac 1927, Feynman, Schrodinger,

    Tomonaga 1949…)

    Time-dependence of expectation values

    ˆ( ) *( , ) ( , )A t x t A x t dx

    * ( , )ˆ ˆ( ) ( , ) *( ) ( ) *( )

    d d A d x tA t A x t dx x x x A

    dt dt t dt

    ˆ ( )i Ht

    ˆ ( )

    iH

    t

    ˆ* ( ) *i Ht

    * ˆ *i H

    t

    Assume: 0A

    t

    Â : Hermitian

    ˆ ˆ( , ) * *( , )d

    A x t A dx x t A dxdt t t

    ˆ ˆˆ ˆ( , ) * *( ) ( )i i

    x t A H dx x A H x dx

  • Winter 2013 Chem 350: Introductory Quantum Mechanics

    Chapter 4 – Postulates of Quantum Mechanics 63

    ˆ ˆˆ ˆ( , ) ( , ) * ( , )* ( , )i ix t AH x t dx x t AH x t dx

    ˆˆ*( ) ( , ) *( ) ( , )i i

    x HA x t dx x AH x t dx

    *( )( ) ( , )i

    x AH HA x t dx

    Or

    ˆ ˆ[ ]t

    d Ai AH

    dt

    Difficult Step: General produce of 2 Hermitian operators

    * ˆ ˆ ( )f ABg x dx

    *

    ˆˆ ( )Bg x Af dx Reverse Operators!

    *

    ˆˆ( )g x BAf dx

    Examples: ,P

    i P Ht

    2 2

    2, ( )

    2

    di V x

    x m dx

    P V

    i it x

    P V

    t x

    Same as from Classical Mechanics

    2

    2

    v Vma m F

    xdt

    dP V

    dt x

    Also

    2

    2, ( )2

    x di x V x

    t m dx

    2

    m x

    i

    im x

  • Winter 2013 Chem 350: Introductory Quantum Mechanics

    Chapter 4 – Postulates of Quantum Mechanics 64

    i

    Pm

    Or

    1x

    Pt m

    Again: Same as in Classical Mechanics

    Ehrenfest theorem:

    Expectation values in Quantum Mechanics obey relations from classical mechanics