interplanetary handbook, volume i, - nasa mission design handbook, volume i, part 2: ... an...

180
JPL PUBLICATION 82-43 Interplanetary Mission Design Handbook, Volume I, Part 2 Earth to Mars Ballistic Mission Opportunities, 1990-2005 Andrey B. Sergeyevsky Gerald C. Snyder Ross A. Cunniff September 15, 1983 ./ National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California (I_AS_-CR- |7330b) INTE_YLA_E_ AEY MIsSIoN N8_.' 18226 DESIGN dkNDbUOK. VOLU_£ l, PAinT 2: EAETH TO MABZ BALLZS_'ZC hlSSiON CPYOI_TUNI_._S, |9_0-2005 _Jet Propu±sion ZaD.) 176 p Uncias _C AO9/MY AOI CSCL 22A G3/12 18z07 i https://ntrs.nasa.gov/search.jsp?R=19840010158 2018-07-14T20:53:15+00:00Z

Upload: vuongnhi

Post on 02-Jul-2018

219 views

Category:

Documents


3 download

TRANSCRIPT

JPL PUBLICATION 82-43

Interplanetary Mission DesignHandbook, Volume I, Part 2Earth to Mars Ballistic Mission Opportunities,1990-2005

Andrey B. SergeyevskyGerald C. SnyderRoss A. Cunniff

September 15, 1983

./

National Aeronautics and

Space Administration

Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadena, California

(I_AS_-CR- |7330b) INTE_YLA_E_ AEY MIsSIoN N8_.' 18226

DESIGN dkNDbUOK. VOLU_£ l, PAinT 2: EAETH

TO MABZ BALLZS_'ZC hlSSiON CPYOI_TUNI_._S,

|9_0-2005 _Jet Propu±sion ZaD.) 176 p Uncias

_C AO9/MY AOI CSCL 22A G3/12 18z07i

https://ntrs.nasa.gov/search.jsp?R=19840010158 2018-07-14T20:53:15+00:00Z

1. Repot No.82-43, Vol. I, Pt. 2

4. Title and Subtitle

Interplanetary Mission Design Handbook, Volume I,Part 2: Earth to Mars Ballistic Mission

Opportunities, 1990-2005

TECHNICAl. REPORT STANDARD TITLE PAGE

2. Government Access;on No. 3. Recipient's Catalog No.

7. Author_A.B. SergeyevsKy, G.C. Snyder, R.A. Cunniff

|

9. _rforming Organization Name and Address

JET PROPULSION LABORATORY

California Institute of Technology4800 Oak Grove Drive

Pasadena, California 91109

12. Sponsoring Agency Name anct Address

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546

5. Report DateSeptember 15, 1983

6. PerformingOrgan zot o"Code

8. Performing Organization Report No

10. Work Unit No.

11. Contract or Gra_t No.

NAS 7-100

1'3. Type of Report and Period Covered

JPL Publication

14. Sponsoring Agency CodeRD4/P- 186-30-03- ii-00

15. Supplementary Notes

16. A_tract

This document contains graphical data necessary for the preliminary

design of ballistic missions to Mars. Contours of launch-energy requirements,

as well as many other launch and Mars-arrival parameters, are presented in

launch-date/arrival-date space for all launch opportunities from 1990 through

2005. In addition, an extensive text is included which explains mission-

design methods, from launch-window development to Mars-probe and orbiter-arrival

design, utilizing the graphical data in this volume as well as numerous

equations relating various parameters. This is one of a planned series of

mission-design documents which will apply to all planets and some other bodies

in the solar system.

17. Key Wor_ (Selec_d by Author_))

Astronautics

Astrodynamics

Launch Vehicles and Space Vehicles

Lunar and Planetary Exploration

19. Security Cl_sif. (of this report)

Unclassified

18. Distribution Statement

Unclassified - Unlimited

20. Security Clmsif. (of this page)

Unclassified

2i. No. of Pages

176

22. Price

JPL 0184 11f80

JPL PUBLICATION 82-43

Interplanetary Mission DesignHandbook, Volume I, Part 2

Earth to Mars Ballistic Mission Opportunities,1990- 2005

Andrey B. SergeyevskyGerald C. SnyderRoss A. Cunniff

September 15, 1983

National Aeronautics and

Space Administration

Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadena, California

The research described in this publication was carried out by the Jet PropulsionLaboratory, California Institute of Technology, under contract with the NationalAeronautics and Space Administration.

Abstract

This document contains graphical data necessary for the preliminary design of ballistic

missions to Mars. Contours of launch energy requirements, as well as many other launchand Mars arrival parameters, are presented in launch date/arrival date space for all launch

opportunities from 1990 through 2005. In addition, an extensive text is included which

explains mission design methods, from launch window development to Mars probe and

orbiter arrival design, utilizing the graphical data in this volume as well as numerous

equations relating various parameters. This is one of a planned series of mission design

documents which will apply to all planets and some other bodies in the solar system.

i11_

Preface

This publication is one of a series of volumes devoted to interplanetary trajectories of

different types. Volume I deals with ballistic trajectories. The present publication isPart 2 and describes ballistic trajectories to Mars. Part 3, which was published in 1982,

treated ballistic trajectories to Jupiter. Part 4, which was published earlier in 1983,described ballistic trajectories to Saturn. Parts 1 and 5, which will be published in the

near future, will treat ballistic trajectories to Venus and Mars-to-Earth return trajectories,respectively.

iv

Contents

I, Introduction ....................................................... 1

II. Computational Algorithms ...................................... 1

A. General Description .............................................. 1

B. Two-Body Conic Transfer ......................................... 1

C. Pseudostate Method ............................................. 3

III. Trajectory Characteristics ...................................... 4

A. Mission Space ................................................... 4

B. Transfer Trajectory ............................................... 5

C. Launch/Injection Geometry ....................................... 9

1. Launch Azimuth Problem .................................... 9

2. Daily Launch Windows ...................................... 10

3. Range Angle Arithmetic ..................................... 15

4. Parking Orbit Regression .................................... 16

5. Dogleg Ascent ............................................. 17

6. Tracking and Orientation .................................... 17

7. Post-Launch Spacecraft State ............................... 18

8. Orbital Launch Problem ..................................... 18

D. Planetary Arrival Synthesis ....................................... 18

1, Flyby Trajectory Design ..................................... 18

2. Capture Orbit Design ....................................... 24

3. Entry Probe and Lander Trajectory Design .................... 28

E. Launch Strategy Construction ..................................... 31

IV. Description of Trajectory Characteristics Data ............... 32

A. General ......................................................... 32

B. Definition of Departure Variables .................................. 32

C. Definition of Arrival Variables ..................................... 32

V. Table of Constants ............................................... 33

A. Sun ............................................................ 33

B, Earth/Moon System .............................................. 33

C. Mars System ..................................................... 33

D. Sources ........................................................ 33

Acknowledgments ..................................................... 33

References ............................................................. 33

Figures

1.

2.

3.

4.

5.

6.

7.

8.

9.

The Lambert problem geometry ................................... 2

Departure geometry and velocity vector diagram .................... 2

Pseudostate transfer geometry .................................... 3

Mission space in departure/arrival date coordinates, typical example .. 5

Effect of transfer angle upon inclinationof trajectory arc .............. 6

Nodal transfer geometry .......................................... 6

Mission space with nodal transfer ................................. 7

Broken-plane transfer geometry ................................... 8

Sketch of mission space with broken-plane transfer effective

energy requirements ............................................. 8

10. Launch/injection trajectory plane geometry ......................... 9

11. Earth equator plane definition of angles involved in thelaunch problem .................................................. 10

12. Generalized relative launch time tRL T VS launch azimuth E_Land departure asymptote declination &= ............................ 11

13. Permissible regions of azimuth vs asymptote declination launchspace for Cape Canaveral ........................................ 12

14. Typical launch geometry example in celestial (inertial) Mercatorcoordinates ..................................................... 12

15. Central range angle O between launch site and outgoing

asymptote direction vs its declination and launch azimuth ............ 13

16. Typical example of daily launch geometry (3-dimensional) as

viewed by an outside observer ahead of the spacecraft .............. 14

17. Basic geometry of the launch and ascent profile in the trajecto_

plane ........................................................... 15

18. Angle from pedgee to departure asymptote ......................... 16

19. Definition of cone and clock angle ................................. 17

20. Planetary flyby geometry ......................................... 19

21. Definition of target or arrival B-plane coordinates .................... 20

22. Two T-axis definitions in the arrival B-plane ........................ 21

23. Definition of approach orientational coordinates ZAPSand ETSP, Z.APE and ETEP ...................................... 22

vi

24. Phase angle geometry at arrival planet ............................. 22

25. Typical entry and flyby trajectory geometry ......................... 23

26. Coapsidal and cotangential capture orbit insertion geometries ........ 25

27. Coapsidal capture orbit insertion maneuver _V requirements

for Mars ........................................................ 26

28. Coapsidal and intersecting capture orbit insertion geometries ......... 27

29. Characteristics of intersecting capture orbit insertion and

construction of optimal bum envelope at Mars ...................... 29

30. Minimum 3.V required for insertion into Mars capture orbit of

given apsidal orientation .......................................... 30

31. General satellite orbit parameters and precessional motion due

to oblateness coefficient J2 ....................................... 31

32. Voyager (MJS77) trajectory space and launch strategy .............. 31

Mission Design Data Contour Plots,Earth to Mars Ballistic Mission Opportunities,1990- 2005 ............................................................. 35

1990 Opportunity ....................................................... 37

1992 Opportunity ....................................................... 49

1994 Opportunity ....................................................... 61

1996/7 Opportunity ..................................................... 73

1998/9 Opportunity ..................................................... 85

200011 Opportunity ..................................................... 109

2002/3 Opportunity ................................................... 133

2005 Opportunity ....................................................... 157

I. Introduction

The purpose of this series of Mission Design Handbooks is

to provide trajectory designers and mission planners with

graphical trajectory information, sufficient for preliminary

interplanetary mission design and evaluation. In most respectsthe series is a continuation of the previous three volumes of

the Mission Design Data, TM 33-736 (Ref. 1) and its predeces-

sors (e.g., Ref. 2); it extends their coverage to departures

through the year 2005 A.D.

The entire series is planned as a sequence of volumes, each

describing a distinct mission mode as follows:

Volume I: Ballistic (i.e., unpowered) transfers be-tween Earth and a planet, consisting of

one-leg trajectory arcs. For Venus and

Mars missions the planet-to-Earth return

trajectory data are also provided.

Volume II: Gravity-Assist (G/A) trajectory transfers,

comprising from two to four ballistic

interplanetary legs, connected by suc-

cessive planetary swingbys.

Volume III: Delta-V-EGA (AVEGA) transfer trajec-

tories utilizing an impulsive deep-spacephasing and shaping bum, followed by a

return to Earth for a G/A swingby maneu-

ver taking the spacecraft (S/C) to the

eventual target planet.

Each volume consists of several parts, describing trajectoryopportunities for missions toward specific target or swingbybodies.

This Volume I, Part 2 of the series is devoted to ballistic

transfers between Earth and Mars. It describes trajectories

taking from 100 to 500 days of flight time for the 8 successive

mission opportunities, departing Earth in the following years:1990, 1992, 1994, 1996/7, 1998/9, 2000/1, 2002/3, and2005.

Individual variables presented herein are described in detail

in subsequent sections and summarized again in Section IV.Suffice it to say here that all the data are presented in sets of

11 contour plots each, displayed on the launch date/arrival

date space for each opportunity. Required departure energy

C3, departure asymptote declination and right ascension,arrival V and its equatorial directions, as well as Sun and

Earth direction angles with respect to the departure/arrivalasymptotes, are presented.

It should be noted that parts of the launch space covered

may require launcher energies not presently (1983) available,

but certainly not unrealistic using future orbital assembly

techniques.

A separate series of volumes (Ref. 3) is being published

concurrently to provide purely geometrical (i.e., trajectory-

independent) data on planetary positions and viewing/orienta-

tion angles, experienced by a spacecraft in the vicinity of these

planetary bodies. The data cover the time span through 2020A.D., in order to allow sufficient mission duration time for all

Earth departures, up to 2005 A.D.

The geometric data are presented in graphical form and

consist of 26 quantities, combined into eight plots for eachcalendar year and each target planet. The graphs display equa-

torial declination and right ascension of Earth and Sun (plan-etocentric), as well as those of the target planet (geocentric);

heliocentric (ecliptic) longitude of the planet, its heliocentric

and geocentric distance; cone angles of Earth and Canopus,

clock angle of Earth (when Sun/Canopu_-oriented); Earth-Sun-

planet, as well as Sun-Earth-planet angles; and finally, rise andset times for six deep-space tracking stations assuming a 6-deghorizon mask. This information is similar to that in the second

part of each of the volumes previously published (Ref. 1).

II. Computational Algorithms

A. General Description

The plots for the entire series were computer-generated. Aminimum of editorial and graphic support was postulated fromthe outset in an effort to reduce cost.

A number of computer programs were created and/or modi-

fied to suit the needs of the Handbook production.

The computing effort involved the generation of arrays oftransfer trajectory arcs connecting departure and arrival

planets on a large number of suitable dates at each body.

Algorithms (computational models) to solve this problem can

vary greatly as to their complexity, cost of data generated, andresulting data accuracy. In light of these considerations, thechoice of methods used in this effort has been assessed.

B, Two-Body Conic Transfer

Each departure/arrival date combination represents a unique

transfer trajectory between two specified bodies, if the number

of revolutions of the spacecraft about the primary (e.g., the

Sun) is specified. The Lambert Theorem provides a suitableframework for the computation of such primary-centered

trajectories, but it is of practical usefulness only if restricted

two-body conic motion prevails.

Restricted two-body motion implies that the dynamical

system consists of only two bodies, one of which, the primary,

ORIGINAL PAGE IS

3F POOR QUALITY

is so much more massive than the other, that all of the system's

gravitational attraction may be assumed as concentrated at a

point-the center of that primary body. The secondary body

of negligible mass (e.g., the spacecraft) then moves in Kep-

lerian (conic) orbits about the primary (e.g., the Sun) in such

a way that the center of the primary is located at one of the

foci of the conic (an ellipse, parabola, or hyperbola).

The Lambert Theorem states that given a value of the gravi-

tational parameter # (also known as GM) for the central body,

the time of flight between two arbitrary points in space,

R 1 and R2, is a function of only three independent variables:

the sum of the distances of the two points from the focus,

IRII + IR2L, the distance between the two points C= SR2 - R I I,and the semimajor axis, a, of the conic orbital flight pathbetween them (Fig. 1.)

Detailed algorithm descriptions of the Lambert method, in-

eluding necessary branching and singularity precautions, are

presented in numerous publications, e.g., Refs. 2 and 4. The

computations result in a set of conic classical elements (a, e, i,

_2, co, ol) and the transfer angle, Ao12, or two equivalent

spacecraft heliocentric velocity vectors, Vhs/c i- one at depar-ture. the other at the arrival planet. Subtraction of the appro-

priate planetary heliocentric velocity vector, VhpLANETi , atthe two corresponding times from each of these two space-

craft velocity vectors results in a pair of planetocentric velocity

states "at infinity" with respect to each planet (Fig. 2):

V_i = VhS/C at i - VhpLANET i (1)

where i = 1 and 2 refer to positions at departure and arrival,

respectively. The scalar of this V vector is also referred to as

EARTH

-_d.. I

!,I /

LANET

' '//

I'=.f(R 1 +R 2 ,C.a) I

Fig. I. The Lambert problem geometry

the hyperbolic excess velocity, "V-infinity" or simply "speed"(e.g., Ref. 4). The V** represents the velocity of the spacecraft

at a great distance from the planet (where its gravitational

attraction is practically negligible). It is attained when thespacecraft has climbed away from the departure planet, fol-

lowing injection at velocity V1:

= _/V_ "9"1V**1 _'/ , kmts(2)

or before it starts its fall into the arrival planet's gravity well,

where it eventually reaches a closest approach (periapse, C/A)

velocity Vp:

VhEAR Ttt

EARTH

INJECTION

OUTGOING V

ASYMPTOTE h sic

_ _2, ASCENDING NODE

vl

Fig. 2. Departure geometry and velocity vector diagram

ORIGINAL PAGE lg

OF POOR QUALITY

_/V_ 2#_= + , n/s (3)Vp 2 rp

The variables rI and rp refer to the departure injection andarrival periapse planetocentric radii, respectively. Values for

the gravitational parameter/a (or GM) are given in subsequentSection V on constants.

The V. vectors, computed by the Lambert method, repre-

sent a body center to body center transfer. They can, however,

be translated parallel to themselves at either body without

excessive error due to the offset, and a great variety of realisticdeparture and arrival trajectories may thus be constructed

through their use, to be discussed later. The magnitude and

direction of V** as well as the angles that this vector formswith the Sun and Earth direction vectors at each terminus are

required for these mission design exercises.

Missions to the relatively small terrestrial planets such as

Mars are suited to be analyzed by the Lambert method, as the

problem can be adequately represented by the restricted two-

body formulation, resulting in flight time errors of less than1 day - an accuracy that cannot even be read from the contour

plots presented in this document.

C. Pseudostate Method

Actual precision interplanetary transfer trajectories, espe-

cially those involving the giant outer planets, do noticeably

violate the assumptions inherent in the Lambert Theorem.

The restricted two-body problem, on which that theorem isbased, is supposed to describe the conic motion of a massless

secondary (i.e., the spacecraft) about the point mass of a pri-mary attractive body (i.e., the Sun), both objects being placed

in an otherwise empty Universe. In reality, the gravitationalattraction of either departure or target body may significantly

alter the entire transfer trajectory.

Numerical N-body trajectory integration could be called

upon to represent the true physical model for the laws of

motion, but would be too costly, considering the number ofcomplete trajectories required to fully search and describe a

given mission opportunity.

The pseudostate theory, first introduced by S. W. Wilson

(Ref. 5) and modified to solve the three-body Lambert prob-

lem by D. V. Byrnes (Ref. 6), represents an extremely useful

improvement over the standard Lambert solution. For the

giant planet missions, it can correct about 95 percent of thethree-body errors incurred, e.g., up to 30 days in flight time on

a typical Jupiter-bound journey.

Pseudostate theory is based on the assumption that for

modest gravitational perturbations the spacecraft conic motion

about the primary and the pseudo-conic displacement due to a

third body may be superimposed, if certain rules are followed.

The method, as applied to transfer trajectory generation,

does not provide a flight path-only its end states. It solves the

original Lambert problem, however, not between the true

planetary positions themselves, but instead, between two com-

puted "pseudostates." These are obtained by iteration on two

displacement vectors off the planetary ephemeris positions on

the dates of departure and arrival. By a suitable superposition

with a planetocentric rectilinear impact hyperbola and a

constant-velocity, "zero gravity," sweepback at each end of

the Lambertian conic (see Fig. 3), a satisfactory match isobtained.

Of the five arcs involved in the iteration, the last three

(towards and at the target planet) act over the full flight time,

AT_2, and represent:

(1)

(2)

Conic heliocentric motion between the two pseudo-

states R_ and R_ (capital R is used here for all helio-centric positions),

The transformation of R_ to a planetocentric position,

r 2 (lower case r is used for planetocentric positions),performed in the usual manner is followed by a

"constant-velocity" sweepback in time to a point

r_ = r_ - V**2 X zkT12, correcting the planetocentricposition r 2 to what it would have been at T1, had

there been no solar attraction during ATIj, andfinally,

(3) The planetocentric rectilinear incoming hyperbola,

characterized by: incoming V-infinity V_2 , a radial

/ NO-GRAVITY

/ SUN SWEEPBACK A %IR -":_ _ t

EAR- 'L - Voo2 X aT12 I r. ra RECTI'LINEAR

R2 HYPERBOLA,

// PLANETLAMBERT CONIC -

AT12 //r_ = R_- R 2

Fig. 3. Pseudostate transfer geometry

3

target planet impact, and a trip-time ATI2 from ra

to periapse, which can be satisfied by iteration on the

r_-magnitude and thus also on R_.

This last aspect provides for a great simplification of the

formulation as the R 2 end-point locus now moves only along

the V,, 2 [1 r_ vector direction. The resulting reduction in com-puting cost is significant, and the equivalence to the Lambert

point-to-point conic transfer model is attractive.

The first two segments of the transfer associated with the

departure planet may be treated in a like manner. If the planet

is Earth, the pseudostate correction may be disregarded (i.e.,

R_ = Ra), or else the duration of Earth's perturbative effect

may be reduced to a fraction of ATI2. It can also be set to

equal a fixed quantity, e.g., AT i = 20 days. The latter valuewas in fact used at the Earth's side of the transfer in the

data generation process for this document.

The rectilinear pseudostate method described above and in

Ref. 7 thus involves an iterative procedure, utilizing the

standard Lambert algorithm to obtain a starting set of valuesfor V.. at each end of the transfer arc. This first guess is then

improved by allowing the planetocentric pseudostate position

vector r_ to be scaled up and down, using a suitable partial at

either body, such that z_TREQ, the time required to fall alongthe rectilinear hyperbola through ra (the sum of the sweep-

back distance V**i × AT i and the planetocentric distance Ir_ I),equal the gravitational perturbation duration, AT/. Both r7 and

V_,i, along which the rectilinear fall occurs, are continuouslyreset utilizing the latest values of magnitude and direction ofV_, at each end, i, of the new Lambert transfer arc, as the

iteration progresses. The procedure converges rapidly as the

hyperbolic trip time discrepancy, AAT = ATR_.O - ATi, falls

below a preset small tolerance. Once the V_ vectors at each

planet are converged upon, the desired output variables can begenerated and contour plotted by existing standard algorithms.

As mentioned before, the pseudostate method was found

to be unnecessary for the accuracy of this Mars-oriented hand-

book. The simpler Lambert method was used instead in the

data-generation process.

III. Trajectory Characteristics

A. Mission Space

All realistic launch and injection vehicles are energy-limited

and impose very stringent constraints on the interplanetary

mission selection process. Only those transfer opportunities

which occur near the times of a minimum Earth departure

energy requirement are thus of practical interest. On either

side of such an optimal date, departure energy increases, first

slowly, followed by a rapid increase, thus requiring either a

greater launch capability, or alternatively a lower allowable

payload mass. A "launch period" measured in days or evenweeks, is thus definable: on any day within its confines the

capability of a given launch/injection vehicle must equal or

exceed the departure energy requirement for a specified

payload weight.

In the course of time these minimum departure energy

opportunities do recur regularly, at "synodic period" intervals

reflecting a repetition of the relative angular geometry of the

two planets. If 6o I and 6o2 are the orbital angular rates of theinner and outer of the two planets, respectively, moving about

the Sun in circular orbits, then the mutual configuration of

the two bodies changes at the following rate:

col2 = coI -to 2 , rad/s (4)

If a period of revolution, P, is det'med as

27rP =--, s (5)

CO

then

1 1 1

= P-T - PS (6)

where Ps, the synodic period, is the period of planetary

geometry recurrence, while P1 and P2 are the orbital "sidereal(i.e., inertial) periods" of the inner (faster) and the outer(slower) planet considered, respectively.

Since planetary orbits are neither exactly circular nor co-

planar, launch opportunities do not repeat exactly, some

years being better than others in energy requirements or in

other parameters. A complete repeat of trajectory character-

istics occurs only when exactly the same orbital geometry of

departure and arrival body recurs. For negligibly perturbed

planets approximately identical inertial positions in space atdeparture and arrival imply near-recurrence of transfer tra-

jectory characteristics. Such events can rigorously be assessedonly for nearly resonant nonprecessing planetary orbits, i.e.,

for those whose periods can be related in terms of integer

fractions. For instance, if five revolutions of one body cor-

respond to three revolutions of the other, that time interval

would constitute the "period of repeated characteristics."

Near-integer ratios provide nearly repetitive configurations

with respect to the lines of apsides and nodes. The Earth-

relative synodic period of Mars is 779.935 days, i.e. about2.14 years. Each cycle of 7 consecutive Martian mission

opportunities amounts to 5459.55 days and is nearly repeti-

tive, driven by 8 Martian sidereal periods of 686.9804 days. It

is obvious that for an identical mutual angular geometry Mars

would be found short of its inertial position in the previous

cycle by 36.3 days worth of motion (19.02 deg), while Earth

would have completed 5459.55/365.25 = 14.947 revolutions,

being short of the old mark by the same angular amount asSaturn.

ORIGII',IALPAGE |_

OF poOR QUALITY

A much closer repetition of characteristics occurs at 17 full

Martian revolutions (11678.667 days), after 15 Mars-departureopportunities (11699.031 days = 32.0302 years), showing

an inertial position excess of only 10.7 degs., 20.4 daysworth of Mars motion beyond the original design arrival

point.

A variety of considerations force the realistic launch period

not to occur at the minimum energy combination of depar-

ture and arrival dates. Launch vehicle readiness status, proce-

dure slippage, weather anomalies, multiple launch strategies,

arrival characteristics-all cause the launch or, more generally,

the departure period to be extended over a number of days orweeks and not necessarily centered on the minimum energydate.

For this document, a 160-day departure date coverage span

was selected, primarily in order to encompass launch energy

requirements of up to a C 3 = 50 km2/s 2 contour, where

C a = V 2 i.e., twice the injection energy per unit mass.

E I . Arrival date coverage was set at 400 days todisplay missions from 100--400 days of flight time.

The matrix of departure and arrival dates to be presented

comprises the "mission space" for each departure opportunity.

B. Transfer Trajectory

As previously stated, each pair of departure/arrival dates

specifies a unique transfer trajectory. Each such point in the

mission space has associated with it an array of descriptive

variables. Departure energy, characterized by C a , is by far the

most significant among these parameters. It increases towards

EARTH - MARS 1990 , CSL TFLw BALL I ST IC TRANSFER TRAJECTORY

91/ 12/30

.,,,,,. ,///A. ////,"////" I/Y//L_ _

""'°'" ///F///_ /,////,/)_"

'_ ////,'///_/ /1( _ _

_=_,,o°,,: 7,,//,,7'//.!t i _r/'j_l/VIIl'> 'll//Ik_t'_# .,_lll]SlllliL_l_ilL _i " _11111111111'__

9t/02/13

9[101104

90#11/2"5

_ _--- __ _1.I r I

LAUNCH DATE

4BO_0.O _BO_O.O _iD0.O _Bi_O.O _B_60.O_AUNCHJO-_O0000.O

Fig. 4. Mission space in departure/arrival date coordinates, typical example

.48620.0

•48.580.0

•48540.0

48500.0

0

• 48460.0 000o

ckl

48420,0 _3

.J

48380.0 --C_r¢

48340.0

48300.0

48260.0

48220.0

ORIGINAL PAGE Illl

OF POOR QUALITY

the edges of the mission space, but it also experiences a dra-

matic rise along a "ridge," passing diagonally from lower left

to upper right across the mission space (Fig. 4). This distur-

bance is associated with all diametric, i.e., near-180-deg,

transfer trajectories (Fig. 5).

In 3-dimensional space the fact that all planetary orbits are

not strictly coplanar causes such diametric transfer arcs to

require high ecliptic inclinations, culminating in a polar flight

path for an exact 180-deg ecliptic longitude increment be-

tween departure and arrival points. The reason for this

behavior is, as shown in Fig. 5, that the Sun and both trajec-

tory end points must lie in a single plane, while they are also

lining up along the same diameter across the ecliptic. The

slightest target planet orbital inclination causes a deviation

POLAR

TRANSFER _ PLANET/ ORB,T

EARTH 41

= TRUE TRANSFERANGLE

-_1 = TRANSFER ANGLEIN ECLIPTIC PLANE

TARGETPLANETPOSITIONS

f(_l )

ECLIPTIC

Fig. 5. Effect of transfer angle upon inclination of

trajectory arc

.PLANET ORBIT

PLANE TRANSFER

__,_V_ 2 MIN.)

PLANET AT NODE _-J -- ----NAT ARRIVAL _ _- -._

t SUN 7_ _ TECLIPTIC

_ /// ,_ TRANSFER

_ (M_N.CaZlEARTH AT NODEAT DEPARTURE

Fig. 6. Nodal transfer geometry

out of the ecliptic and forces a polar 180-deg transfer, in order

to pick up the target's vertical out-of-plane displacement.

The obvious sole exception to this rule is the nodal transfer

mission, where departure occurs at one node of the target

planet orbit plane with the ecliptic, whereas arrival occurs at

the opposite such node. In these special cases, which recur

every half of the repeatability cycle, discussed in the preceding

paragraph, the transfer trajectory plane is indeterminate and

may as well lie in the departure planet's orbit plane, thus

requiring a lesser departure energy (Fig. 6). The opposite strat-

egy (i.e., a transfer in the arrival planet's orbit plane) may be

preferred if arrival energy, V.,2, is to be minimized (Fig. 7).

It should be noted that nodal transfers, being associated

with a specific Mars arrival date, may show up in the data on

several consecutive Martian mission opportunity graphs (e.g.,

1992-1998), at points corresponding to the particular nodal

arrival date. Their mission space position moves, from oppor-

tunity to opportunity, along the 180-deg transfer ridge, by

gradually sliding towards shorter trip times and earlier relative

departure dates. Only one of these opportunities would occur

at or near the minimum departure energy or the minimum

arrival V date, which require a near-perihelion to near-

aphelion transfer trajectory. These pseudo-Hohmann nodal

transfer opportunities provide significant energy advantages,

but represent singularities, i.e., single-time-point missions,

with extremely high error sensitivities. Present-day mission

planning does not allow single fixed-time departure strategies;

however, future operations modes, e.g., space station "on-

time" launch, or alternately Earth gravity assist (repeated)

encounter at a specific time, may allow the advantages of a

nodal transfer to be utilized in full.

The 180-deg transfer ridge subdivides the mission space

into two basic regions: the Type I trajectory space below the

ridge, exhibiting less than 180-deg transfer arcs, and the

Type II space whose transfers are longer than 180 deg. In

general the first type also provides shorter trip times.

Trajectories of both types are further subdivided in two

parts-Classes 1 and 2. These are separated, generally hori-

zontally, by a boundary representing the locus of lowest

C3 energy for each departure date. Classes separate longer

duration missions from shorter ones within each type. Type I,

Class 1 missions could thus be preferred because of their

shorter trip times.

Transfer energies become extremely high for very short

trip times, infinite if launch date equals arrival date, and of

course, meaningless for negative trip times.

The reason that high-inclination transfers, as found along

the ridge, also require such high energy expenditures at depar-

98/0_tE2

981041[2

98103103

9810U22

971121[3

1,1

G:O

.97/IU03>

97109124

97108115

97107106

97105127

97104/[7

LAUNCH DATE

_o32_._ _o3g_._ _o_d_._ _o,_._ _o,g_._LAUNCH JD-2400000.O

Fig. 7. Missionspace with nodal transfer

ture is that the spacecraft velocity vector due to the Earth's

orbital velocity must be rotated through large angles out of the

ecliptic in addition to the need to acquire the required transfer

trajectory energy. The value of C3 on the ridge is large but

finite; its saddle point minimum value occurs for a pseudo-

Hohmann (i.e., perihelion to aphelion) polar transfer, requiring

2apCa = V2E \l+ap + 1] _ 1950km2/s 2 (7)

where Ve = 29.766 kmts, the Earth's heliocentric orbital

velocity, and ap = 1.49 AU, Mars's (the arrival planet's) semi-major axis. By a similar estimate, it can be shown that for a

true nodal pseudo-Hohmann transfer, the minimum energy

required would reduce to

C3NODAL = 172 - 1 _ 7.83 km2/s 2

(8)

This is the lowest value of Ca required to fly from Earth toMars, assuming circular planetary orbits.

Arrival V-infinity, V_A, is at its lowest when the transfertrajectory is near-coplanar and tangential to the target planetorbit at arrival.

Both C3 and V= A near the ridge can be significantly low-ered if deep-space deterministic maneuvers are introduced into

the mission. The "broken-plane" maneuvers are a category of

,jRIGINAL PAGE iS

OF poOR QUALITY

such ridge-counteracting measures, which can nearly eliminate

all vestiges of the near-180-deg transfer difficulties.

The basic principle employed in broken-plane transfers is to

avoid high ecliptic inclinations of the trajectory by performing

a plane change maneuver in the general vicinity of the halfway

point, such that it would correct the spacecraft's aim toward

the target planet's out-of-ecliptic position (Fig. 8).

Graphical data can be presented for this type of mission,

but it requires an optimization of the sum of critical AV

expenditures. The decision on which AVs should be included

must be based on some knowledge of overall staging and arrival

intentions, e.g., departure injection and arrival orbit insertion

vehicle capabilities and geometric constraints or objectives

contemplated. As an illustration, a sketch of resulting contours

of C 3 is shown in Fig. 9 for a typical broken-plane oppor-

tunity represented as a narrow strip covering the riuge area

(Class 2 of Type I and Class 1 of Type II) on a nominal 1990

POLAR

TRANSFER

ECLIPTIC __ili_____L/_ O pT i M A L

EARTH BROKEN-PLANE

TRANSFER

Fig. 8. Broken-planetransfergeometw

I

48040 0 48080 0 48120.0 481_0.0 48200.0

LAUNCH J0-2400000,0

-48620.0

48580.0

48_40.0

48_00.0

O

48460.0000

48420.0

483_0,0 --

48340.0

'48300.0

'48260.0

482200

Fig. 9. Sketch of mission space with broken-plane transfer, effective energy requirements

launch/arrival date C a contour plot. The deep-space maneuver

AVBp is transformed into a C 3 equivalent by converting the

new broken-plane C3B P to an injection velocity at parkingorbit altitude, adding AVBe, and converting the sum to a new

and slightly larger C3 value at each point on the strip.

C. Launch/Injection Geometry

The primary problem in departure trajectory design is to

match the mission-required outgoing V-infinity vector, V, to

the specified launch site location on the rotating Earth. The

site is defmed by its geocentric latitude, 0z, and geographic

east longitude, Xz. (Figs. 10 and 11).

Range safety considerations prohibit overflight of popu-

lated or coastal areas by the ascending launch vehicle. For each

launch site (e.g., Kennedy Space Center, Western Test Range,

or Guiana Space Center), a sector of allowed azimuth firing

directions EL is deffmed (measured in the site's local horizontalplane, clockwise from north). For each launch vehicle, theallowed sector may be further constrained by other safety

considerations, such as spent stage impact locations down the

range and/or down-range significant event tracking capabilities.

The outgoing V-infinity vector is a slowly varying function

of departure and arrival date and may be considered constant

for a given day of launch. It is usually specified by its energy

LAUNCH

MERIDIAN_

ORZGINAL PAGE Ig

OF POOR QUALITY

magnitude Ca = [V=i 2, called out as C3L in the plots andrepresenting twice the kinetic energy (per kilogram of injected

mass) which must be matched by launch vehicle capabilities,

and the V-infinity direction with respect to the inertial Earth

Mean Equator and equinox of 1950.0 (EME50) coordinate

system: the declination (i.e., latitude) of the outgoing asymp-

tote 5, (called DLA), and its right ascension (i.e., equatorialeast longitude from vernal equinox, T) a** (or RLA). These

three quantities are contour-plotted in the handbook data pre-sented in this volume.

1. Launch azimuth problem. The first requirement to be

met by the trajectory analyst is to establish the orientation of

the ascent trajectory plane (Ref. 8). In its simplest form this

plane must contain the outgoing V-infinity (DLA, RLA)vector, the center of Earth, and the launch site at lift-off

(Fig. 10). As the launch site partakes in the sidereal rotation of

the Earth, the continuously changing ascent plane manifests

itself in a monotonic increase of the launch azimuth, Ez., with

lift-off time, tL, (or its angular counterpart, c_**- az. , measuredin the equator plane):

cotan Et.cos q_LX tan 5= - sin _L X cos (_= - eL)

sin (_ - %)

(9)

N

ASYMPTOTE

MERIDIAN

FLIGHTPATH

V_, DEPARTUREASYMPTOTE

LAUNCH

_=0

VERNALEQUINOX EQUATOR

TRAJECTORY PLANE

Fig. 10. Launch/injection trajectory plane geometry

ORIGINALPAGE19OF POORQUALITY'

The daily time history of azimuth can be obtained from Eq.(9) for a given _=, 8, departure asymptote direction by

following quadrant rules explained below and using the

following approximate expressions (see Fig. 11):

ClL = _L+GHADATE+(_EARTHX tL (I0)

GHADATE = 100.075+0.9856123008Xdso (11)

where

GHA DA TE

t"OEAR TH

e L = Right ascension of launch site (¢z,' XL) attL (deg)

= Greenwich hour angle at 0n GMT of any

date, the eastward angle between vernal

equinox and the Greenwich meridian (deg),assumes equator is EME50.0

= sidereal (inertial) rotation rate of Earth

(15.041067179 deg/h of mean solar time)

dso = launch date in terms of full integer dayselapsed since 0 a Jan. 1, 1950 (days)

tL = lift-off time (h, GMT, i.e., mean solar time)

A relative launch time, [RLT, measured with respect to an

inertial reference (the departure asymptote meridian's rightascention a**), can be defined as a sidereal time (Earth's

rotation rate is 15.0 deg/h of sidereal time, exactly):

t_ - t_LtRL T = 24.0 15.0 , h (12)

This time represents a generalized sidereal time of launch,

elapsed since the launch site last passed the departure asymp-

tote meridian, a**.

The actual Greenwich Mean (solar) Time (GMT) of launch,

tL, may be obtained from tRL r by transforming it to meansolar time and adding a date, site, and asymptote-dependent

adjustment :

tRLTX 15.0 a** -GHADATE -_L (EAST)tL - + (13)

¢OEARTH Ca)EARTH

The expression for Z L (Eq. 9) must be used with computa-tional regard for quadrants, singular points, and sign conven-

tions. If the launch is known to be direct (i.e., eastward),

then Y'L' when cotan Z L is negative, must be corrected to

Z L = ZLNEG + 180.0. For retrograde (westward) launches,180.0 deg must be added in the third (when cotan Z is posi-

GREENWICHMERIDIAN

Oh GMT A GREENWICH HOUR ANGLEEAST LONGITUDE OF'_, ((;HA)

LAUNCH SITE _'L/ _ \

I __Jl,_ _ ] VERNAL( C'O'f/'._ll_L-e, X ] EQUINOX

LAUNCH SITE_ • - / -- _)" "_J.

/ _ DEPARTUREANGLE TRAVERSED _ ASYMPTOTEBY LAUNCH SITE _ MERIDIANSINCE Oh GMT

OF LAUNCH DATE LAUNCH SITE

AT LAUNCH, tL (GMT)

Fig. 11. Earth equator plane definition of angles involvedin the launch problem

tive) and 360.0 deg in the fourth quadrant (when cotan Zis negative).

A generalized plot of relative launch time tRL T VS launchazimuth Z L can be constructed based on Eqs. (9) and (12),

if a fLxed launch site latitude is adopted (e.g., ¢L = 28.3 deg

for Kennedy Space Flight Center at Cape Canaveral, Florida).Such a plot is presented in Fig. 12 with departure asymptote

declination 5=. as the contour parameter. The plot is applicable

to any realistic departure condition, independent of _., date,or true launch time tL (Ref. 9).

2. Daily launch windows. Inspection of Fig. 12 indicatesthat generally two contours exist for each declination value

(e.g., $. = -10 deg), one occurring at tRL T during the a.m.hours, the other in the p.m. hours of the asymptote relative"day."

Since lift-off times are bounded by preselected launch-site-

dependent limiting values of launch azimuth _;L (e.g., 70 degand 115 deg), each of the two declination contours thus con-

tains a segment during which launch is permissible-"a launch

window." The two segments on the plot do define the two

available daily launch windows.

As can be seen from Fig. 12, for 5.. = O, the two dailylaunch opportunities are separated by exactly 12 hours; with

an increasing 15o, I they close in on each other, until at 15_ I =I_LI they merge into a single daily opportunity. For 18=1 >

I_zl, a "split" of that single launch window occurs, disallow-

ing an ever-increasing sector of azimuth values. This sector issymmetric about east and its limits can be determined from

lO

ORIGINAL PACE l_t

OF POOR QUALITY.

J_

LU

-I-(oz

J

F.-<.J

uJn.-

uJFm0

C6

>-u')<

24

22

20

18

16

14

12

10

8

95 100 105 110 115 120

Fig. 12. Generalized relative launch time tRL T vs launch azimuth T-L and departure asymptote declination _**.

Pair of typical example launch windows for $** = -10 deg shown by bold curve segments

(reproduced from Ref. 9).

cos _=

= _+- (14)sin _,LLIMIT COS _bL

As 5.. gets longer, the sector of unavailable launch azimuthsreaches the safety boundaries of permissible launches, and

planar launch ceases to exist (Fig. 13). This subject will beaddressed again in the discussion of "dogleg" ascents.

Figure 14 is a sketch of a typical daily launch geometry

situation, shown upon a Mercator map of the celestial sphere.The two launch windows exhibit a similar geometry since the

inclinations of the ascent trajectory planes are functions of

launch site latitude _L and azimuth Y_Lonly:

cos i = cos _/_ x sin rz (15)

The two daily opportunities do differ greatly, however, in

the right ascension of the ascending mode _2 of the orbit and

in the length of the-traversed in-plane arc, the range angle/9.

The angular equatorial distance between the ascending node

and the launch site meridian is given by

sin _= X sin Y_Lsin (a L - £2) = sin i (16)

Quadrant rules for this equation involve the observation that a

negative cos E L places (a L - f2) into the second or third quad-rant, while the sign of sin (% - _2) determines the choicebetween them.

The range angle 0 is measured in the inertial ascent trajec-

tory plane from the lift-off point at launch all the way to the

departure asymptote direction, and can be computed for a

given launch time t L or ct.. - aL(tL) and an azimuth Y_Lalready known from Eq. (9) as follows:

cos 8 = sin a= X sin $z, + cos a=. X cos ¢L X cos (% - %)

(17)

11

ORIG|NAL PAGE !_1OF POOR QUALITY

180

160

140

._ 120

"I"_- 100

m

N

<"rc.}Z

<--1

"A.OE',,ET,

LAUNCHREGIONREGION

80 "//"" r.,,-,,.,,/////

00NN..."......4O

20 JFi --__LIMITING-LAUNCHAZIMUTH

0 I I I J

-90 -70 -50 -30 -10 10 30 50 70

ASYMPTOTE DECLINATION 6oo , deg

Fig. 13. Permissible regions of azimuth v= asymptote

declination launch space for Cape Canaveral

9O

sin(% - %) x cos8®

sin 8 = sin _L (18)

The extent of range angle O can be anywhere between

0 deg and 360 deg, so both cos 0 and sin O may be desired in

its determination. The range angle O is related to the equa-

torial plane angle, Act = tz=. - t_L, discussed before. Even

though the two angles are measured in different planes, they

both represent the angular distance between launch and depar-

ture asymptote, and hence they traverse the same number of

quadrants.

Figure 15 represents a generally applicable plot of central

range angle O vs the departure asymptote declination and

launch azimuth, computed using Eqs. (17) and (18) and a

launch site latitude ¢c = 28.3 (Cape Canaveral). The twin

daily launch opportunities are again evident, showing the

significant difference in available range angle when following a

vertical, constant 5=. line.

It is sometimes convenient to reverse the computational

procedure and determine launch azimuth from known range

angle O and tRLr, i.e., &_ = a= - %, as follows:

"O-LU

E3

<..J

-J

<E0

<

OLU

0 3I

-40

-10

0 _

10

2O

3O

40

-45

ASYMPTOTE RELATIVE LAUNCH TIME tRJLT , h

6 9 12 15 18

"'_ ........ LAU_ICH __:":':"" .......I II_'L° I AZIMUTH I I

I I

1ST WINDOW

OPENS AT /

Z/,, = 70 ° /1ST WINDOW- -o / CLOSES AT

//EASTER/Y _L = 110 °LAUNCH

_1 ZL = 90 ° (_ SUN

- (ASSUMED)

600 = - 15 °

2ND WINDOY

OPENS AT

_,Lo = 70 °

-

BY DEFINITION

21 24/t_,T = oh= 24 h ATMoo - MERIDIAN2ND WINDOW

AT

_-,Lc = 110 ° ./ DAI LY TRACK_r OF LAUNCH SITE

AT _L = 28"3o

eL 1O(°° - _Z, 3(°°1 = 2850j--1 1 1 1 I 1 I

0 45 90 135 180 225 270 315

R I GHT ASCENSION ct, deg(EARTH EQUATORIAL CELESTIAL LONGITUDE)

ASSUMED V,_,ASYMPTOTE

LOCATION:

6o0 = -15 °

(x=o = 315 °

Fig. 14. Typical launch geometry example in celestial (inertial) Mercator coordinates

12

ORIGINAL PAGE killOF POOR QUALITY

400,D

B

360

D

320m

m 280"0

c_"

240

z<

200z<rr-- 160

rr"I-Ztu 120

80

m

4O

0 T,i,l,i,o-70 -60

_:,- 6od \ -_

_j\ _L=,2o

(_i" / .i.,f_J \ o='=='°" I\ (/.__ _.00,. I NOTF: _L IS LAUNCH AZIMUTH

o,os wo," t i I

I '

,,,,,,,,,illilili ililillililililii' 'ilillili:lliihiliiilllilllllllliill lil__lllililil" liiliiiliiiililil

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

DEPARTURE ASYMPTOTE DECLINATION (5oo, deg

Fig. 15. Central range angle 0 between launch site and outgoing asymptote direction vs its declination and launch azimuth.

Pair of typical example launch windows for 5= = -10 deg shown by bold line segments

(reproduced from Ref. 8).

cos _® X sin (a= - %)

sin Y'L = sin 0 (19)

sin 5=. - cos 8 X sin Cz,

cos zz. = sin O × cos_z. (20)

Figure 16 displays a 3-dimensional spatial view of the same

typical launch geometry example shown previously in map

format in Fig. 14. The difference in available range angles as

well as orientation of the trajectory planes for the two daily

launch opportunities clearly stands out. In addition, the figure

illustrates the relationship between the "first" and "second

daily" launch windows, defined in asymptote-relative time,

tRLT, as contrasted with "morning" or "night" launches,defined in launch-site-local solar time. The latter is associated

with the lighting conditions at lift-off and consequently allows

a lighting profile analysis along the entire ascent arc.

The angle ZALS, displayed in Fig. 16, is defined as the

angle between the departure V= vector and the Sun-to-Earth

direction vector. It allows some judgment on available ascent

lighting.

The length of the range angle required exhibits a complex

behavior-the first launch window of the example in Figs. 14

and 16 offers a longer range angle than the second, but the

second launch window opens up with a range angle so short

that direct ascent into orbit is barely possible. Further launch

delay shortens the range even further, forcing the acceptance

of a very long coast (one full additional revolution in parking

orbit) before transplanetary departure injection. A detailed

analysis of required arc lengths for the various sub-arcs of the

13

URIGINAL PAGE !8

OF POOR QUALITY

SECOND "DAILY"

) LAUNCHDOW

(EVENING

LAUNCH)

W l N DOW

CLOSES

_/_, = 110 °

OPENS

TRANSPLANETARY

INJECTION

CIRCLE

SUN

(ASSUMED)

FIRST "DAILY" (tR], T )• LAUNCH WINDOW

(NOON LAUNCH)

WINDOW

]_L = 700

EARTH LAUNCH SITE

_L = CONST.

SECOND

DEPARTURE

SUN-TO-EARTH

V ECTO R

ZALS

FIRST

DEPARTURE OUTGOING

ASYMPTOTE

DEPARTURE

-TRAJECTORY

ENVELOPE

Fig. 16. Typical example of daily launch geometry (3-dimensional) as viewed by an outside observer ahead of the spacecraft

14

BOOSTER AS(,LAUNCH SITE

ORIGINAL PAGE rg

OF POOR QUALITY

/PARKING ORBIT. /

COAST ARC _X_///

i

I

I

FINAL STAGE BURN _._ _.

GEE OF

/

81 BURNING ARC OF BOOSTER VEHICLES INTO PARKING ORBIT

82 BURNING ARC OF FINAL STAGE THRUST

e RANGE ANGLE BETWEEN LAUNCH SITE AND DEPARTURE RADIAL ASYMPTOTE

_=0 ANGLE BETWEEN PERIGEE AND DEPARTURE RADIAL ASYMPTOTE

u/ TRUE ANOMALY OF INJECTION

Fig. 17. Basic geometry of the launch and ascent profile in the trajectory plane (after Ref. 9)

departure trajectory is thus a trajectory design effort of para-

mount importance (Fig. 17_

3. Range angle arithmetic. For a viable ascent trajectory

design, the range angle 0 must first of all accommodate the

twin burn arcs 01 and 02, representing ascent into parkingorbit and transplanetary injection burn into the departure

hyperbola. In addition, it must also contain the angle from

periapse to the V.. direction, called "true anomaly of the

asymptote direction" (Fig. 18):

-1(21)

cos o= = c3 x rl+_

ue

where:

r = periapse radius, typically 6563 krn, for a horizontalpinjection from a 185-kin (100-nmi) parking orbit

I_ = GM, gravitational parameter of Earth (refer to theTable of Constants, Section V).

The proper addition of these trajectory sub-arcs also requitesadjustment for nonhorizontal injection (i.e., for the flight

path angle 7l > 0), especially dgnificant on direct ascent

miuions (no coast arc) and mt=sions with relatively low

thrust/weight ratio injection stages. The adjustment is accom-

plished as follows:

O = 01 + OCOAST + #2 + _ - i_l (22)

where:

15

140

UJn-

D 130I--

W

oAii

o __. 120>-

ZOO

"' 110

I-

10025

L

\

ORIGINAL PAGZ iS

OF POOR QUALITY

I I I50 75

370 km

PERIGEE

ALTITUDE

185 km (100 nmi)

1200 nmil _

!

NOTE: 2

C3 = V_DE P IS TWICETHE TOTAL ENERGYPER UNIT MASS

I I I100 125 150

C3,km3/s2

I I

175 200

Fig. 18. Angle from perigee to departure asymptote

225

= is the true anomaly of the injection point, usuallyis near 0 deg, and can be computed by iteration

using:

en sin _'z

tan 7z - 1 + e/./cos v1 (23)

7r = injection flight path angle above local horizontal,deg

en = eccentricity of the departure hyperbola:

C3 xre, = 1 + _ (24)

To make Eq. (22) balance, the parking orbit coast arc,

8coAs T, must pick up any slack remaining, as shown in

Fig. 17. A negative OcoAs T implies that the ZL-solution was

too short-ranged. A direct ascent with positive injection true

anomaly vt (i.e., upward climbing flight path angle, 7i, atinjection) with attendant sizable gravity losses, may be accept-

able, or even desirable (within limits) for such missions.

Alternately, the other solution for Z L, exhibiting the longerrange angle 0, and thus a longer parking orbit coast, OcoAs T,

should be implemented. An extra revolution in parking orbit

may be a viable alternative. Other considerations, such asdesire for a lightside launch and/or injection, tracking ship

location and booster impact constraints, may all play a signif-

icant role in the ascent orbit selection. A limit on maximum

coast duration allowed (fuel boil-off, battery life, guidance

gyro drift, etc.) may also influence the long/short parking orbit

decision. In principle, any number of additional parking orbit

revolutions is permissible. Shuttle launches of interplanetarymissions (e.g., Galileo) are in fact required to use such addi-

tional orbits for cargo bay door opening and payload deploy-ment sequences. In such cases, however, the precessional

effects of Earth's oblateness upon the parking orbit, prirnarily

the regression of the orbital plane, must be considered.

4. Parking orbit regression. The average regression of the

nodes (i.e., the points of spacecraft passage through the

equator plane) of a typical direct (prograde) circular parkingorbit of 28.3-deg inclination with the Earth's equator, due to

Earth's oblateness, amounts to about 0.46 deg of westward

nodal motion per revolution and can be approximately com-puted from

where

540 °Xr 2 X,/2 Xcosi= s , deg/revolution (25)

/,2o

r = Earth equatorial surface radius, 6378 km$

ro = circular orbit radius, typically 6748 km for an

orbital altitude of 370 km (200 nmi)

16

ORIGINAL PAG.Z E,._

OF POOR QUALITY

J2 = 0.00108263 for Earth

i = parking orbit inclination, deg. Can be computed fora given launch geometry from

cos i = cos _t, × sin ZL (26)

This correction, multiplied by the orbital stay time of N

revolutions, must be considered in determining a biased launch

time and, hence, the fight ascension of the launch site atlift-off:

%EFF = _L + (2 × N , deg (27)

5. Dogleg ascent. Planar ascent has been considered exclu-

_avely, thus far. Reasons for performing a gradual powered

plane change maneuver during ascent may be many. Inability

to launch in a required azimuth direction because of launch

site constraints is the prime reason for desiring a dogleg ascent

profile. Other reasons may have to do with burn strategiesor intercept of an existing orbiter by the ascending spacecraft,

especially if its inclination is less than the latitude of the

launch site. Doglegs are usually accomplished by a sequence of

out-of-plane yaw turns during first- and second-stage burn,

optimized to minimize performance loss and commencing as

soon as possible after the early, low-altitude, high aerodynamic

pressure phase of flight is completed, or after the necessary

lateral range angle offset has been achieved.

By contrast, powered plane change maneuvers out of

parking orbit or during transplanetary injection are much less

efficient, as a much higher velocity vector must nowbe rotatedthrough the same angle, but they may on occasion be opera-

tionally preferable.

As already discussed, a special geometric situation develops

whenever the departure asymptote declination magnitudeexceeds the latitude of the launch site, causing a "split azi-

muth" daily launch window. Figure 13 shows the effects of

asymptote declination and range safety constraints upon the

launch problem. As the absolute value of declination increases.it eventually reaches the safety constraint on azimuth, prevent-

ing any further planar launches. The situation occurs mostly

early and/or late in the mission's departure launch period, and

is frequently associated with dual hunches, when month-long

departure periods are desired.

The Shuttle-era Space Transportation System (STS), includ-

hag contemplated upper stages, is capable of executing dogleg

operations as well. These would, however, effectively reduce

the launch vehicle's payload (or 6"3) capability, as they did on

expendable launch vehicles of the past.

6. Tracking and orientation. As the spacecraft moves away

from the Earth along the asymptote, it is seen at a nearly

constant declination-that of the departure asymptote, 6**

(DLA in the plotted data). The value of DLA greatly affects

tracking coverage by stations located at various latitudes;

highest daily spacecraft elevations, and thus best reception, are

enjoyed by stations whose latitude is closest to DLA. Orbit

determination, using radio doppler data, is adversely affected

by DLA's near zero degrees.

The spacecraft orientation in the first few weeks is often

determined by a compromise between communication (antenna

pointing) and solar heating constraints. The Sun-spacecraft-

Earth (SPE) angle, defined as the angle between the outgoing

V-infinity vector and the Sun-to-Earth direction, is very

useful and is presented in the plots under the acronym ZALS.

It was defined in the discussion of Fig. 16. This quantity hasmany uses:

(I) If the spacecraft is Sun-oriented, ZALS equals the

Earth cone angle (CA), depicted in Fig. 19 (the cone

PLANET

\

CONEANGLE

TOOBJECT

STAR(CANOPUS)

Fig. 19. Definition of cone and clock angle

17

(2)

angle of an object is a spacecraft-fixed coordinate,

an angle between the vehicle's longitudinal -Z axis and

the object direction).

The Sun-phase angle, cbs (phase angle is the Sun-object-spacecraft angle) describes the state of the object's

disk lighting: a fully lit disk is at zero phase. For the

Earth (and Moon), several days after launch, the sun-phase angle is:

6ps = 180- ZALS (28)

(3) The contour labeled ZALS = 90 ° separates two cate-

gories of transfer trajectories-those early departures

that first cut inside Earth's orbit, thus starting out atnegative heliocentric true anomalies for ZALS >90 °,

and those later ones that start at positive true anoma-

lies, heading out toward Jupiter and never experiencing

the increased solar heating at distances of less than1 AU for ZALS < 90 °.

7. Post-launch spacecraft state. After the spacecraft has

departed from the immediate vicinity of Earth (i.e., left the

Earth's sphere of influence of about 1-2 million km), it moveson a heliocentric conic, whose initial conditions may be

approximated as

Vs/c = VEARTt4 + V. (29)

Rs/c = REART_ + VS/c X At (30)

where R and V of Earth are evaluated from an ephemeris at

time of injection and At represents time elapsed since then (in

seconds). The V vector in EME50 cartesian coordinates can

be constructed using @_3L = V , DLA = 8., and RLA = c_in three components as follows:

V = (V × cos_ × cos 8**, V X sina. X cosS.,

V** × sin 6.*) (31)

8. Orbital launch problem. Orbital launch from the Shuttle,from other elements of the STS, or from any temporary or

permanent orbital space station complexes, introduces entirelynew concepts into the Earth-departure problem. Some of

the new constraints, already mentioned, limit our ability

to launch a given interplanetary mission. The slowly regressing

space station orbit (see Eq. 25) generally does not contain

the V-inffmity vector required at departure. Orbit lifetime

or other considerations may dictate a space station's orbital

altitude that may be too high for an efficient injection burn.

Innovative departure strategies are beginning to emerge,

attempting to alleviate these problems - a recent Science

Applications, Inc. (SAI) study (Ref. 10) points to some of

the techniques available, such as passive wait for natural

alignment of the continuously regressing space station orbit

plane (driven by Earth's oblateness) with the required

V-infinity vector, or the utilization of 2- and 3- impulse man-

euvers, seeking to perform spacecraft plane changes near the

apogee of a phasing orbit where velocity is lowest and thus

turning the orbit is easiest. These two approaches can becombined with each other, as well as with other suitable

maneuvers, such as:

(1) Deep space propulsive burns for orbit shaping and

phasing,

(2) Gravity assist flyby, including Earth return AVEGA,

(3) Aerodynamic turns at grazing perigees or at inter-

mediate planetary swingbys, and

(4) Multiple revolution injection bums, requiring several

low, grazing passes, combined with apogee plane changemaneuvers, etc.

All of these devices can be optimized to permit satisfactory

orbital launches, as well as to achieve the most desirable condi-

tions at the final arrival body. In general, space launch advan-

tages, such as on-orbit assembly and checkout of payloads and

clustered multiple propulsion stages, or orbital construction of

bulky and fragile subsystems (solar panels, sails, antennas,radiators, booms, etc.) will, it is hoped, greatly outweigh the

significant deep-space mission penalties incurred because of

the space station's inherent orbital orientation incompatibilitywith departure requirements.

D. Planetary Arrival Synthesis

The planetary arrival trajectory design problem involves

satisfying the project's engineering and science objectives at

the target body by shaping the arrival trajectory in a suitable

manner. As these objectives may be quite diverse, only four

illustrative scenarios shall be discussed in this section-flyby,

orbiter, atmospheric probe, and, to a small extent, landermissions.

1. Flyby trajectory design. In this mission mode, the arrival

trajectory is not modified in any deterministic way at theplanet-the original aim point and arrival time are chosen to

satisfy the largest number of potential objectives, long before-hand.

This process involves the choice of arrival date to ensuredesirable characteristics, such as the values of the variables

VHP, DAP, ZAPS, etc., presented in plotted form in the datasection of this volume.

18

ORIG,,_AL PAGE l_

OF POOR QUALITY

DAP, the planet-equatorial declination, 6**, of the incoming

asymptote, i.e., of the V-infinity vector, provides the measure

of the minimum possible inclination of flyby. Its negative isalso known as the latitude of vertical impact (LVI).

The magnitude of V-infinity, VHP = IV._L, enables one to

control the flyby turn angle A_ between the incoming and

outgoing V** vectors by a suitable choice of closest approach

(C/A) radius, rp (see Fig. 20):

A_ = 180-2p, deg

where p, the asymptote half-angle, is found from:

(32)

1 1cos p - - (33)

e V: r** pl+--/ap

VHP also enables the designer to evaluate planetocentric

velocity, V, at any distance, r, on the flyby hyperbola:

2 _p V:V = x/--- 7- + ** ,km/s (34)

In the above equations,/ap (or GMp), is the gravitational param-eter of the arrival body.

PLANETVERNAL EQUINOX

L VI = -

VERTICALIMPACTPOINT

SUN

PLANET EQUATOR

\\

ZAPEi

/ \

EARTH

\\\

_2

V_IN B

='RIAPSE

OUTBOUNDASYMPTOTE

TURN ANGLE

= 180-2p

INBOUNDASYMPTOTE

Fig. 20.

)ING NODE

Planetary flyby geometry

19

Another pair of significant variables on which to basearrival date selection are ZAPS and ZAPE-the angles between

F-infinity and the planet-to-Sun and -Earth vectors, respec-

tively. These two angles represent the cone angle (CA) of the

planet during the far-encounter phase for a Sun- or an Earth-

oriented spacecraft, in that order. ZAPS also determines the

phase angle, q_s, of the planet's solar illumination, as seen bythe spacecraft on its far-encounter approach leg to the planet:

_'s--180-zAes (3s)

Both the cone angle and the phase angle have already been

defined and discussed in the Earth departure section above.

The flyby itself is specified by the aim point chosen upon

the arrival planet target plane. This plane, often referred toas the B-plane, is a highly useful aim point design 'tool. It is a

plane passed through the center of a celestial body normal to

V, the relative spacecraft incoming velocity vector at infinity.

The incoming asymptote, i.e., the straight-line, zero-gravity

extension of the V**-vector, penetrates the B-plane at the aimpoint. This point, defined by the target vector B in the B-plane,is often described by its two components B • T and B • P,,

where the axes T and R form an orthogonal set with V. The

T-axis is chosen to be parallel to a fundamental plane, usually

the ecliptic (Fig. 21) or alternatively, the planet's equator. Themagnitude of B equals the semi-minor axis of the flyby hyper-bola, b, and can be related to the closest approach distance,

also referred to as the periapse radius, rp, by

or

,(( v:r):)l,:IB[ Vi 1 + **#pv - 1 , km (36)

% = V''_'**+ \_V_] + IBl2 ,km (37)

The direction angle 8 of the B-vector, B, measured in the

target plane clockwise from the T-axis to the B-vector position

can easily be related to the inclination, i, of the flyby trajec-

tory, provided that both 5** (DAP) and the T-axis, from which

0 is measured clockwise, are defined with respect to the same

fundamental plane to which the inclination is desired. For asystem based on the planet equator (Fig. 22):

cos%e = cosoee¢ × cos5 (38)**PE Q

which assumes that Ovv,Q is computed with the T-axis parallel

to the planet equator (i.e., TeE Q = V** × POLEeEQ), not theecliptic, as is frequently assumed (TEc L = V × POLEEcL).Care must be taken to use the 0 angle as dofined and intended.

ORIGINAL PAGE IS

OF POOR QUALITY

TARGET B-PLANE,1 TO INCOMING PARALLEL TO

I ..,..% OJ"

\ - " -TjC' B IHYPERBouc\ _ W I PATH OF

/ ....V_ "TRAJECTORY PLANE

B MISS PARAMETER, B_

(TARGET VECTOR)

0 AIM POINT ORIENTATION

'_ PARALLEL TO INCOMING ASYMPTOTE, MooT PARALLEL TO ECLIPTIC PLANE

AND ±TOS"

R =SXT

Fig. 21. Definition of target or arrival B-plane coordinates

The two systems of B-plane T-axis definition can be recon-ciled by a planar rotation. -AO, between the ecliptic T- and

R-axes and the T'- and _,'-axis orientations of the equator

based system

tan AO =sin(% - %p)

cos 5= × tan tSEp - sin 5= X cos (a - aEp)

(39)

where

aEp and 5Ep are right ascension and declination of the

ecliptic pole in planet equatorial coordinates. For Mars usingconstants in Section V:

o_£e= 267.6227, BE? = 63.2838, deg

a= and 5** are RAP and DAP, the directions of incoming

V, also in planet equatorial coordinates.

It

PEQ POLE

PPE,

ORIGINAL PAGE I_lOF POOR QUALITY

ECLIPTIC POLE (EP)

PLrCLDECLINATION

OF EP, _EP

PEQ RIGHTASCENSIONOF EP, <XEp

- 90°

ECLIPTIC PLANE

(ECL)

PLANET EQUATOR

(PEQ)

o_,_- 180

B-PLANE(±TOV=)TECL = V=X Pecl.

TpE Q = VooX PPEQ

Ao¢ = 90 - [(aEp - 90) - (%0 - 180)] = o¢_ - aEp

A0= ARCTAN [SIN Aot/(COS _5,_x TAN 6Ep - SIN 5,_ x COS An,)]

Fig. 22. Two T-axis definitions in the arrival B-plane

The correction dx0 is applied to a 0 angle computed in the

ecliptic system as follows (Fig. 22):

OpE Q = OEC L + AO (40)

A

The ecliptic T, RECL axes, however, have to be rotated by-A0 (clockwise direction is positive in the B-plane) to obtain

planet equatorial T, RPEQ coordinate axes. The B-magnitudeof an aim point in either system is the same.

The projections of the Sun-to-planet and Earth-to-planetvectors into the B-plane represent aim point loci of diametric

Sun and Earth occultations, respectively., as defined in Fig. 23.The B-plane 0-angles (with respect to TF.CL axis) of these vari-

ables are presented and labeled ETSP and ETEP, respectively,

in the plotted mission data. In addition to helping design orelse avoid diametric occultations, these quantities allow

computation of phase angles, _i, of the planet at the spacecraft

periapse, at the entry point of a probe, or generally at any

position r (subscript S = Sun, could be replaced by E = Earth,

if desired), (see Fig. 24):

cos '_s = -cos flo. X cos ZAP s - sin 13®X sin ZAP S

where

× cos (ETsP - Os/c) (41)

Os/C = the aim point angle in the B-plane, must be withrespect to the same T, as ETSP.

/3® = the arrival range angle from infinity (a position farout on the incoming asymptote) to the point of

interest r (Fig. 25).

The computation of the arrival range angle, t3=, to the

position of the desired event depends on its type, as follows:

21

ORIGINAL P,_QE I_

OF POOR QUALITY

ARRIVAL

B-PLANE

SUN (OR EARTH) TO

PLANET

//

/

SHADOW

(SUN OR

EARTH)

'(ORIIII

PLANET

ETSP

(OR ETEP)

T

TO SUN

(OR EARTH) R

Fig. 23. Definition of approach orientational

coordinates ZAPS and ETSP, ZAPE and ETEP

l. At flyby periapse, (3. ;) 90 deg):

.

cos #= = cos (-v=) --I

V 2 r== p

l+--

gp

(42)

(rp is periapse radius).

At given radius r, anywhere on the flyby trajectory(see Fig. 25):

3= = -v + v (43)

v= should be computed from periapse equation,

Eq. (42) v r at r can be obtained from (-v= < v r _; +

v=, v r has negative values on the incoming branch):

3.

r V2 )r 2+ p = -1

r /./pcos v = (44)

(1 +rpV----_2_/

At the entry point having a specified flight path angle

"rE (Fig. 25):

_. = -v,. + vE (45)

//x

/ \

I v=

INCOMING

ASYMPTOTE

180-ZAPS

/TO SUN

TRAJECTORY ARC, _]_ RECL

PECL

PHASE ANGLE, dab

Fig. 24. Phase angle geometry at arrival planet

_)s = 90 °

r, RADIUS TO

A POINT ON

TRAJECTORY

PROJECTED ONTO

UNIT-SPHERE

A=ETSP- 180 °-

22

OF POOR QUALI,'_

PLANETARY

ENTRY

INTERFACE

ARBITRARY TRAJECTORY

POINT AT RADIUS r

AND TRUE ANOMALY vr_

FICTITIOUSENTRY PERIAPSE

RADIUS, rp //

ENTRY

OUTGOING

ASYMPTOTE

FLYBY PERIAPSE

RADIUS, rpF

TURN ANGLE

= 180-2p

INCOMING

ASYMPTOTE

VERTICAL

IMPACT

FLYBY

ENTRY POINTAT RADIUS

rE = rSURF + h E ,

AND FLIGHT PATH

ANGLE _/'E

ENTRYTRAJECTORY

IBFI bEFLYBY MISS

PARAMETER

TRAJECTORY

Fig. 25. Typical entry and flyby trajectory geometry

23

where vE is the true anomaly at entry, should alwaysbe negative, and can be computed if entry radius and

altitude, rE = rsuRP + hE and 7E, the entry angle, areknown:

r 2+ -1

rE Upcos v_. = (46)

(l+----_p ]rpV2 t

¥P

whereas the fictitious periapse radius rpto satisfy 7E at rE, is equal to

for the entry,

I,>E. <v'->I_ /dp

(47)

The B value corresponding to this entry point can be com-

puted from Eq. (36), while the 0 angle in the B-plane would

depend on the desired entry latitude inclination, Eq. (38), or

phase angle, Eq. (41).

The general flyby problem poses the least stringent con-

straints on a planetary encounter mission, thus allowing

optimization choices from a large list of secondary parameters,such as satellite viewing and occultation, planetary fields and

particle in situ measurements, special phase.angle effects, etc.

A review of the plotted handbook variables, required in the

phase-angle equation (Eq. 41), shows that the greatest magni-

tude variations are experienced by the ZAPS angle, which is

strongly flight-time dependent: the longer the trip, the smallerZAPS. For low equatorial inclination, direct flyby orbits, this

implies a steady move of the periapse towards the lit side and,

eventually, to nearly subsolar periapses for long missions. This

also implies that on such flights the approach legs of the tra-jectory are facing the morning terminator or even the dark

side, as trip time becomes longer, exhibiting large phase angles

(recall that phase is the supplement of the ZAPS angle on

the approach leg). This important variation is caused by a grad-

ual shift of the incoming approach direction, as flight time in-creases, from the subsolar part of the target planet's leading

hemisphere (in the sense of its orbital motion) to its antisolar

part.

The arrival time choice on a very fine scale may greatly

depend on the desire to observe specific atmospheric/surface

features or to achieve close encounters with specific satellites

of the arrival planet. Passages through special satellite event

zones, e.g., flux tubes, wakes, geocentric and/or heliocentric

ORIGINAL PAGE I_

OF POOR QUALITY

occultations, require close control of arrival time. The number

of satellites passed at various distances also depends on the

time of planet C/A. These fine adjustments do, however,

demand arrival time accuracies substantially in excess of those

provided by the computational algorithm used in this effort,

which generated the subject data (accuracies of 1-5 min for

events or 1-2 h for encounters would be required vs uncertain-

ties of up to 1.5 days actually obtained with the rectilinear

impact pseudo-state theorem). Numerically searched-in inte-

grated trajectories, based on the information presented as a

first guess input, are mandatory for such precision trajectorywork.

Preliminary design considerations for penetrating, grazing,

or avoiding a host of planet-centered fields and particle struc-

tures, such as magnetic fields, radiation belts, plasma tori, ringand debris structures, occultations by Sun, Earth, stars, or

satellites, etc., can all be presented on specialized plots, e.g.,the B-plane, and do affect the choice of suitable aim point

and arrival time. All of these studies require the propagation

of a number of flyby trajectories. Adequate initial conditions

for such efforts can be found in the handbook as: VHP (V)

and DAP (8..) already defined, as well as RAP (a), the

planet equatorial right ascension of the incoming asymptote

(i.e., its east longitude from the ascending node of the planet's

mean orbital plane on its mean equator, both of date). The

designer's choice of the aim point vector, either as B and 0, oras cartesian B - T and B • R, completes the input set. Suitable

programs generally exist to process this information.

2. Capture orbit design. The capture problem usuallyinvolves the task of determining what kind of spacecraft orbit

is most desired and the interconnected problem of how and at

what cost such an orbit may be achieved. A scale of varying

complexity may be associated with the effort envisioned-anelliptical long period orbit with no specific orientation at the

trivial end of the scale, through orbits of controlled or opti-

mized lines of apsides (i.e., periapse location), nodes, inclina-

tion, or a safe perturbed orbital altitude. Satellite G/A-aided

capture, followed by a satellite tour, involving multiple satel-

lite G/A encounters on a number of revolutions, each designed

to achieve specific goals, probably rates as the most complex

capture orbit class. Some orbits are energeticaUy very difficult

to achieve, such as close circular orbits, but all require signifi-

cant expenditures of fuel. As maneuvers form the backgroundto this subject a number of useful orbit design concepts shall

be presented to enable even an unprepared user to experiment

with the data presented.

The simplest and most efficient mode of orbit injection is

a coplanar burn at a common periapse of the arrival hyperbola

and the resulting capture orbit (Fig. 26). The maneuver A Vrequired is:

24

ORIGINAL PAGE i_

OF POOR QUALITY

J 2/Zp J_/_p X raAV = V_=+ -- -

rp % + r), km/s (48)

A plot of orbit insertion AV required as a function of rp and

P (using Eq. 50) is presented in Fig. 27. The apoapse radius of

such an orbit of given period would be

The orbital period for such an orbit, requiring knowledge

of periapse and apoapse radii, rp and ra, is

IFP = 2_" L--"Y--_ J , s(49)

If on the other hand, a known orbit period P (in seconds)

is desired, the expression for AV is

/ / j(2/_p 2/ap 2/_pX

av = v: + -- - e ,(5o)rp rp

2#p XP 2rA = 3 rt2 rp , km

X/

(51)

An evaluation of Eq. (50) (and Fig. 27) shows that lowest

orbit insertion AV is obtained for the lowest value of rp, the

longest period P, and the lowest V. of arrival.

Of some interest is injection into circular capture orbits, a

special case of the coapsidal insertion problem. It can be

shown (Ref. 9) that an optimal A V exists for insertion into

capture orbits of constant eccentricity, including e = 0, i.e.,

circular orbits, which would require a specific radius:

COAPS I DA L

CAPTU R E

ORBIT

COTANGENTIAL

CAPTU R E

ORBIT

v.ASYMPTOTE

/

APPROACH

HYPERBOLA

COTANGENTIAL /ORBIT PERIAPSE

\

/ _rCA \ ,,_\

\v H \./" TT T'

_VE_- \ \ COAPSIDAL BURNAND PERIAPSE OF

HYPERBOLIC PERIAPSE \ ITS CAPTURE ORBIT

Fig. 26. Coapsidal and cotangential capture orbit insertion geometries

25

ORIGINAL PACI_ I_

OF POOR QUALITY

O

>

Z

£l-

Z

ffO

<

I I IMARS SURFACE-SYNCHRONOUS

CIRCULAR ORBIT (COl

P = 24.62 H,rp = B.012tl RM

DEIMOS SYNCHRONOUS CO

P - 30.30 H,rp = 6.93 RM

PHOBOS SYNCHRONOUS CO

P = 7.65 H,rp = 2.77 RM

I

PERIOD

I I2 4

rp - 1.0883 RM

(hp -

rp = 2 RM. 24 H ELL

p = 3 RM, 24 H ELLIPTICAL

ORBIT {ELL)

rp = PERIAPSE (COAPSIDAL

INSERTION) RADIUS

(1 RM = 3397,5 kin)

l l l l I 16 8 10

ARRIVAL V_ krn/$

Fig. 27. Coapsidal capture orbit insertion maneuver AV

requirements for Mars (using Eq. 50)

2 laprco-

v_(52)

while the corresponding optimal value for A V would be

v®avco - _ (53)

Frequently the orbital radius obtained by use of Eq. (52) isincompatible with practical injection aspects or with arrival

planet science and engineering objectives.

A more general coplanar mode of capture orbit insertion,

requiring only tangentiality of the two trajectories at an

arbitrary maneuver point of radius r common to both orbits,

Fig. 26, requires a propulsive effort of

V 2 lap /2 lap (rA + re - r)AV= _+_ - (54)r _/ r(r A +rp)

It can be clearly seen that by performing the burn at periapse

the substitution r = r brings us back to Eq. (48).

The cotangential maneuver mode provides nonoptimal con-

trol over the orientation of the major axis of the capture orbit.

If it is desired to rotate this line of apsides clockwise by

I A60 , one can solve for the hyperbolic periapse r and theP CA

bum radius r using selected values of true anomaly at hyper-

bolic burn point vn and its capture orbit equivalent

utilizing the following three equations (where E and H stand

for elliptic and hyperbolic, respectively):

(_. v_ )sinuH_ rcA[ _; +2 X(rA-r )sinve

2r'IrP ( 1+ _rc'tV_)lap

(56)

and

rca _ 2)

= (57)

( </z ---_/cos_.+l

2r.

1)r . p - cosve

(58)

The procedure of obtaining a solution to these equations is

iterative. For a set of given values for rA, r , and an assumedpAco, a set of vH and vE, the hyperbolic and elliptical burn

point true anomalies which would satisfy Eqs. (55-58) canbe found. This in turn leads to r, the maneuver point radial

distance, and hence, A V (Eq. 54). A plot of A V cost for a setof consecutive A6o choices will provide the lowest AVvaluepfor this maneuver mode.

For an optimal insertion into an orbit of an arbitrary major

axis orientation one must turn to the more general, still co-

planar, but intersecting (i.e., nontangential burn point) man-euver (see Fig. 28). It provides sufficient flexibility to allow

numerical optimization of A V with respect to apsidal rotation,Aco.

P

A more appropriate way to define apsidal orientation is to

measure the post-maneuver capture orbit periapse positionangle with respect to a fixed direction, e.g., a far encounter

point on the incoming asymptote, -V**, thus defining a cap-ture orbit periapse range angle

COAPSIDAL

CAPTU R E

ORBIT

OF POOR QUALIFY

INTERSECTING

CAPTU R E

ORBIT

r 2

v.2ND BURN

POINT

OPTION

v=ASYMPTOTE

APPROACH

HYPERBOLA

INTERSECTINGCAPTURE ORBIT /

PERIAPSE, rp

\\

I vNOTE :

E = ELLIPTIC

H = HYPERBOLIC

-_'_\ HYPERBOLIC FLYBY

COP-T----- PERIAPSE, rCA, CAN

VARY: rA >t rCA >t O,

PROVIDED r s IS AVOIDED.

OPTIMAL BURN AM

REQUIRES FCA >1 rtp.

III

1ST BURN POINT

OPTION

= Aeop + arc cos (59)

Fig. 28. Coizpsidal and intersecting capture orbit insertion geometries

where

Q = lira XrpXrcA [21_+rcA V 2 ]

Taken from Ref. 9, the expression for the intersecting burn

AVis:

av _ = v_+2._ _ ;$ - _ +_

+

J[21av(r-rcA)+ V_ (r2-4A)] (r-rp)(r A -r) I

(60)

rA and rp =

planet-centered radius at burn, rA _ r _ tc, 4,

km

apoapse and periapse radii of capture ellipse

= closest approach radius of flyby hyperbola

= flag: 5 = +1 if injection occurs on same leg

(inbound or outbound) of both hyperbola

and capture ellipse, 8 = -I if not.

It should be pointed out that Eq. (57) and (58) still apply

in the intersecting insertion case, while Eq. (56) does not

(as it assumes orbit tangency at burn point).

The evaluation of intersecting orbit insertion is more

straightforward than it was for the cotangential case. By

assuming V and orbit size (e.g., V = 3 km/s, rp = 1.0883ILVI.P = 24 hours, a typical capture orbit) and stepping through

a set of values for vE. the capture orbit burn point true anomaly,

one obtains, using Eqs. (57-60), a family of curves, one for

each value of RCA, the hyperbolic closest approach distance.As shown in Fig. 29, the envelope of these curves provides the

optimal insertion burn AV for any value of apsidal rotation

Aw desired. The plot also shows clearly that cotangential andapsidal insertion burns are energetically inferior to burns on

the envelope locus. For the same assumed capture orbit, a

family of optimal insertion envelopes, for a range of values

of arrival I,', is presented in Fig. 30.

The location of periapse with respect to the subsolar point

is of extreme importance to many mission objectives. It can be

controlled by choice of departure and arrival dates, by AV

expenditure at capture orbit insertion, by an aerodynamic

maneuver during aerobraking, by depending on the planet'smotion around the Sun to move the subsolar point in a manner

optimizing orbital science, or by using natural perturbations

and making a judicious choice of orbit size, equatorial inclina-

tion, i, and initial argument of periapsis, _o, such as to causeregression of the node, _, and the advance of periapsis, _,both due to oblateness to move the orbit in a desired manner

or at a specific rate. Maintenance of Sun-synchronism could

provide constant lighting phase angle at periapse, etc., by some

or all of these techniques. For an elliptical capture orbit

(Fig. 31)

- 3 Rs....._._ 180

---- __ X p2 COS i × _,rr deg/s (61)

3=TX--

Rg n J2

p2

(2 - (5/2) sin 2 i) X 18.__0,deg/sff

(62)

where

, mean orbital motion, rad/s (63)

_A+rea --

2 , semi-major axis of eUipitical orbit, km (64)

p --

2rA9

rA+ 9, semi-latus rectum of elliptical orbit, km (65)

R S = Equatorial surface radius of Mars, km

"/2 = Oblateness coefficient of Mars (for values see Sec-tion V on constants).

For the example orbit (1.0883 × 10.733 RM) used in Figs.29 and 30, if near equatorial, the regression of the node and

advance of periapse, computed using Eqs. (61-65), would

amount to -0.272 and +0.543 deg/day, respectively. For

contrast, for a grazing (a = 3697.5 km) low-inclination, near-circular orbit, the regression of the node would race along

at -11.34 deg/day, while periapse would advance at 22.68 deg/

day: i.e., it would take 15.87 days for the line of apsides to do

a complete turn.

It should be noted that _2 = 0 occurs for i = 90 deg, while

= 0 is found for i = 63.435 deg. Sun-synchronism of the

node is achieved by retrograde polar orbits, e.g., 1.0883 RMcircular orbit should be inclined 92.649 deg.

3. Entry probe and lander trajectory design. Entry tra-

jectory design is on one hand concerned with maintenance of

acceptable probe entry angles and low relative velocity with

respect to the rotating atmosphere. On the other hand, the

geometric relationship of entry point, subsolar point and

Earth (or relay spacecraft) is of paramount importance.

Lighting during entry and descent is often considered the

primary problem to be resolved. As detailed in the flyby and

orbital sections above, the choice of trip time affects the valueof the ZAPS angle which in turn moves the entry point for

longer missions closer to the subsolar point and even beyond,

towards the morning terminator.

Landers or balloons, regardless of deceleration mode,

prefer the morning terminator entry point which provides a

better chance for vapor-humidity experiments, and allows a

longer daylight interval for operations following arrival.

The radio-link problem, allowing data flow directly to

Earth, or via another spacecraft in a relay role, is very complex.

It could require studies of the Earth phase angle at the entry

locations or alternately, it could require detailed parametric

OR'GINP, L P'?_3_ _

OF POOR QUALII3f

..I

:3tr II

o

...I

oh-3-m ---..¢: >. ==",, LU

"-,>.u...r _EI"0_.0 z

w p-

0

cO

0

E

o_ ,,::) , d (_

0

0

0

--k0

"T

Z

u._-mOZZ_ILl 0

Z

cO

m.

CN

II

o

m.

0p.

o

0

0

0

0

,q-

0

0

if)

u

w

O0Z_

W

Z >0 n-

> H U

_z0

_-<vl

I-o I

-r

ZZ

0,_

m .JzO0,_

_cZuJoco.

oon"

Zz0'_

O.JzO0 m

n"Zwo-a.

I I I I 1

S/W)I 'IOI_A_ 'i::I3AN::INVlAI NOIIEI:::ISNI IIBEIO SEI_'IAI

1 I

-8

o

oo0

(:3

$o 00 co,-- o d

(11

Q.Om

8" _6

O_ =._o" 2U.I _"

(3 o

',.9 "Z o

uJ ._

-< amr,,, ._

B

U.,I {J

i.

< "6c.)

.t,

e-

oi

I,I.

29

ORIGINAL PAGE Ig

OF POOR QUALITY

¢-q

\

3O

ORIGINAL PAGE i4

OF POOR QUALITY

RUEANOMALY

ELLIPSE

PLANET

EQUATOR

f

ADVANCE OF

PERIAPSE

_J

LINE OFAPSIDES

S/C MOTION

REGRESSION

OF NODE

OFNODES

(ASCENDING

NODE)

Fig. 31. General satellite orbit parameters and precessional

motion due to oblateness coefficient '/2 (from Ref. 9)

studies involving relative motions of probe and relay spacecraft

throughout probe entry and its following slow descent.

Balloon missions could also involve consideration of a

variety of wind drift models, and thus, are even more complex

as far as the communications problem with the Earth or the

spacecraft is concerned.

E. Launch Strategy Construction

The constraints and desires, briefly discussed above, may be

displayed on the mission space launch/arrival day plot as

being limited by the contour boundaries of"C3L, the dates,DLA, VHP, ZAP, etc., thus displaying the allowable launch

space.

Within this launch space a preferred day-by-day launch

strategy must be specified, in accordance with prevailing

objectives. The simplest launch strategy, often used to maintaina constant arrival date at the target planet, results in daily

launch points on a horizontal line from leftmost to rightmostmaximum allowable C L boundary for that arrival date.Such a strategy makes u3e of the fact that most arrival charac-

teristics may stay nearly constant across the launch space.

Lighting and satellite positions in this case are fixed, thus

allowing a similar encounter, satellite G/A, or satellite tour.

A different choice of strategy could be to follow a contourline of some characteristic, such as DLA or ZAP. One could

also follow the minimum value locus of a parameter, e.g.,

CaL (i.e., the boundary between Class 1 and 2 within Type I

or II) for each launch date, throughout the launch space.

Fundamentally different is a launch strategy for a dual o,

multiple spacecraft mission, involving more than one launch,

either of which may possibly pursue divergent objectives. As

an example, Fig. 32 shows the Voyagers 1 and 2 launch strat-egy, plotted on an Earth departure vs Saturn arrival date plot.

A 14-day pad turnaround separation between launches was

to be maintained, a 10-day opportunity was to be available

for each launch, and the two spacecraft had substantially

different objectives at Jupiter and Saturn-one was to be

Io-intensive and a close Jupiter flyby, to be followed by aclose Titan encounter at Saturn, and the other was Ganymede-

and/or Callisto-intensive, a distant Jupiter flyby, as a safety

precaution against Jovian radiation damage, aimed to continue

past Saturn to Uranus and Neptune. Here, even the spacecraft

departure order was reversed by the strategy within the

launch space.

Launch strategies for orbital departures from a space station

in a specific orbit promise to introduce new dimensions into

mission planning and design. New concepts are beginning to

emerge on this subject e.g., Refs. 10 and 11.

OCALL_STO INTENSIVE _ GAnYMEdE ANO I0 INTENSIVE

JAN 1

lg82

DEC 1

19B0

16 20 24 28 1 S g 13 17 21

AUGUST 1977 SEPTEMBER

LAUNCH DATE

Fig. 32. Voyager (MJS77) trajectory space and launch strategy

31

IV. Description of Trajectory CharacteristicsData

A. General

The data represent trajectory performance information

plotted in the departure date vs arrival date space, thus clef'ru-

ing all possible direct ballistic transfer trajectories between the

two bodies within the time span considered for each oppor-

tunity. Twelve individual parameters are contour-plotted. The

first, C3L, is plotted bold on a Time of Flight (TFL) back-

ground; the remaining ten variables are plotted with bold con-

touring on a faint CsL background. Eleven plots are presented

for each of eight mission opportunities between 1990 and2005.

The individual plots are labeled in the upper outer cornerby bold logos displaying an acronym of the variable plotted,

the mission's departure year, and a symbol of the target planet.

These permit a quick and fail-safe location of desired informa-tion.

B. Definition of Departure Variables

CsL: Earth departure energy (km2/s2); same as thesquare of departure hyperbolic excess velocity

V 2 = CsL = V_ - 2 tIE/R t, where

V/ = conic injection velocity (kin/s).

R, = R S + hp injection radius (km), sum of

surface radius RSpt.ANET and injection

altitude ht,. where RSEaRrH refers toEarth's surface radius. (For value, see

Section V on constants.)

lAe = gravitational constant times mass of thelaunch body (for values, refer to Section V

on constants).

C3L must be equal to or exceeded by the launchvehicle capabilities.

DLA: 6**L, geocentric declination (vs mean Earth equator

of 1950.0) of the departure _ vector. May im-pose launch constraints (deg).

RLA: e'_.L, geocentric right ascension (vs mean Earthequator and equinox of 1950.0) of the departure

vector. Can be used with CaL and DLA tocompute a heliocentric initial state for trajector_

analysis (deg).

ZALS: Angle between departure V** vector and Sun-Earth

vector. Equivalent to Earth-probe-Sun angle several

days out (deg).

C. Deflr tion of Arrival Variables

VHP. V_A, planetocentric arrival hyperbolic excessvelocity or V-ird'mity (km/s), the magnitude of the

vector obtained by vectorial subtraction of the

heliocentric planetary orbital velocity from the

spacecraft arrival heliocentric velocity. It repre-

sents planet-relative velocity at great distance from

target planet, at beginning of far encounter. Can

be used to compute spacecraft velocity at any

point r of flyby, including C/A (periapse) dis-

tance rp :

V= V_ +_ ,km/sr

where

DAP:

RAP:

ZAPS:

ZAPE:

ETSP:

ETEP:

lAp(MARS = gravitational parameter GM ofSYSTEM) the arrival planet system - Mars

plus all satellites. (For values,refer to Section V on con-

stants.)

80.A , planetocentric declination (vs mean planetequator of date) of arrival V_. vector. Defineslowest possible flyby/orbiter equatorial inclination(deg).

a_A, planetocentric right ascension (vs meanplanet equator and equinox of date, i.e., RAP ismeasured in the planet equator plane from ascend-

ing node of the planet's mean orbit plane on the

planetary equator, both of date). Can be used

together with VHP and DAP to compute aninitial flyby trajectory state, but requires B-plane

aim point information, e.g., B and O (deg).

Angle between arrival V**vector and the arrival

planet-to-Sun vector. Equivalent to planet-probe-

Sun angle at far encounter; for subsolar impact

would be equal to 180 deg. Can be used with

ETSP, VHP, DAP, and 0 to determine solar phase

angle at periapse, entry, etc. (deg).

Angle between arrival V_. vector and the planet-to-

Earth vector. Equivalent to planet-probe-Earth

angle at far encounter (deg).

Angle in arrival B-plane, measured from T-axis*,

clockwise to projection of Sun-to-planet vector.Equivalent to solar occultation region centerline

direction in B-plane (deg).

Angle in arrival B-plane, measured from T-axis*,

clockwise, to projection of Earth-to-planet vector.

Equivalent to Earth occultation region centerline

direction in B-plane (deg).

*ETSP and ETEP plots are based on T-axis def'med as being parallel to

ecliptic plane (see text for explanation).

32

V. Table of Constants

Constants used to generate the information presented are

summarized in this section.

A. Sun

GM = 132,712,439,935. km3/s 2

RSURFAC E = 696,000. km

B. Earth/Moon System

GMsYsTEM = 403,503.253 kma/s 2

GMEART H = 398,600.448 073 km3/s 2

J2 = 0.00108263

REART H = 6378.140 km

S UR FACE

C. Mars System

GMsYsTEM = 42,828.287 kma/s 2

J2MAR s = 0.001965

Direction of the Martian planetary equatorial north pole

(in Earth Mean Equator of 1950.0 coordinates):

a e = 317.342 deg, 6_, = 52.711 deg

Mean

Planet Surface Orbit

and GM, Radius, Radius,* Period,

Satellites km3/s 2 km km hours

Mars 42,828.286 3397.5 - 24.6229621

(alone)

Phobos 0.00066 13.5 X 10.7 × 9.6 9374 7.6538444

Deimos 0.00013 7.5 X 6.0 × 5.5 23457 30.2985774

*Computed from period and Mars GM, rounded.

D. Sources

The constants represent the DE-118 planetary ephemeris

(Ref. 12) and Mariner 9/Viking trajectory reconstruction data.

Definition of the Earth's equator (EME50.0) is consistent

with Refs. 13-14, but would require minor adjustments for

the new equator and equinox, epoch of J2000.O (Ref. 15).

Acknowledgments

The contributions, reviews, and suggestions by members of the Handbook Advisory

Committee, especially those of K. T. Nock, P. A. Penzo, W. I. McLaughlin, W. E. BoUman,

R. A. Wallace, D. F. Bender, D.V. Byrnes, L.A. D'Amario, T. H. Sweetser, and R. E.

Diehl, graphic assistance by Nanette Yin, as well as the computational and plotting

algorithm development effort by R. S. Schlaifer are acknowledged and greatly appreci-

ated. The authors would like to thank Mary Fran Buehler, Paulette Cali. Douglas Maple,

and Michael Farquhar for their editorial contribution.

References

1. Sergeyevsky, A. B., "Mission Design Data for Venus, Mars, and Jupiter Through

1990," Technical Memorandum 33-736, Vols. I, II, III, Jet Propulsion Laboratory,

Pasadena, Calif., Sept. 1, 1975.

2. Clarke, V. C., Jr., Bollman, W. E., Feitis, P. H., Roth, R. Y., "Design Parameters for

Ballistic Interplanetary Trajectories, Part II: One-way Transfers to Mercury and

Jupiter," Technical Report 32-77, Jet Propulsion Laboratory, Pasadena, Calif., Jan.

1966.

33

3. Snyder, G. C., Sergeyevsky, A. B., Paulson, B. L., "Planetary Geometry Handbook,"JPL Publication 82-44, (in preparation).

4. Ross, S., Planetary Flight Handbook, NASA SP-35, Vol. III, Parts 1,5, and 7, Aug.1963 - Jan. 1969.

5. Wilson, S. W., "A Pseudostate Theory for the Approximation of Three-Body Trajec-tories," AIAA Paper 70-1061, presented at the AIAA Astrodynamics Conference,

Santa Barbara, Calif., Aug. 1970.

6. Bymes, D. V., "Application of the Pseudostate Theory to the Three-Body Lambert

Problem," AAS Paper 79-163, presented at the AAS/AIAA Astrodynamics Confer-ence, Provincetown, Mass., June 1979.

7. Sergeyevsky, A. B., Bymes, D. V., D'Amario, L. A., "Application of the RectilinearImpact Pseudostate Method to Modeling of Third-Body Effects on Interplanetary

Trajectories," AIAA Paper 83-0015, presented at the AIAA 21 st Aerospace SciencesMeeting, Reno, Nev., Jan, 1983.

8. Clarke, V.C., Jr., "Design of Lunar and Interplanetary Ascent Trajectories," Tech-

nicalReport 32-30, Jet Propulsion Laboratory, Pasadena, Calif., March 15, 1962.

9. Kohlhase, C. E., Bollman, W. E., "Trajectory Selection Considerations for Voyager

Missions to Mars During the 1971-1977 Time Period," JPL Internal Document

EPD-281, Jet Propulsion Laboratory, Pasadena, Calif., Sept. 1965.

10. Anonymous, "Assessment of Planetary Mission Performance as Launched From a

Space Operations Center," Presented by Science Applications, Inc. to NASA Head-

quarters, Feb. 1, 1982.

1 I. Beerer, J. G., "Orbit Change Requirements and Evaluation," JPL Internal Document

725-74, Jet Propulsion Laboratory, Pasadena, Calif., March 9, 1982.

12. Newhall, XX, Standish, E. M., and Williams, J. G., "DE- 102 : A Numerically Integrated

Ephemeris of the Moon and Planets, Spanning 44 Centuries," Astronomy andAstro-

physics, 1983 (in press).

13. Explanatory Supplement to the Ephemeris, Her Majesty's Stationery Office, London,1961.

14. Sturms, F. M., Polynomial Expressions for Planetary Equators and Orbit Elements

With Respect to the Mean 1950.0 Coordinate System, Technical Report 32-1508,

pp. 6-9. Jet Propulsion Laboratory, Pasadena, Calif., Jan. 15, 1971.

15. Davies, M. E., et al., "Report of the IAU Working Group on Cartographic Coordinates

and Rotational Elements of the Planets and Satellites: 1982," CelestialMechanics.

Vol. 29, No. 4, pp. 309-321, April 1983.

Mission Design DataContour Plots

Earth to Mars BallisticMission Opportunities 1990- 2005

35

Earth to Mars

1990

Opportunity

ENERGY MINIMA

DEPARTURE ARRIVALVALUE TYPE (YEAR/MONTH/DAY) (YEAR/MONTH/DAY)

C3L 17.780 I 90/08/29 91/03/18

C3L 14.389 II 90/09/10 91/10/05

VHP 2.3281 I 90/08/27 91/05/24

VHP 2.3958 II 90/07/13 91/05/17

PRECEDING PAGE BLANK NOT FILMED"

37

,

C3L

1990 EARTH)#

911117./30

91111120

91/I0ttt

91109101

91107123t.zJF--

Q

J 9t/O6/t3

>

r_rY(:

9t/0_/04

9110312"3

9tlO2/t3

9t101104

_K)I 1 t/2"3

I

! .. ,%_.. /.,:.

-1[I"

Ill,o o

oO,

!

4804O. 0

ORIGINAL PAGE IS

OF POOR QUALITY

MARS 1990 , C3L , TFLBALL IST IC TRANSFER TRAJECTORY

0

0

_ ,///_- //_/, II/

_ ll/l I //J///, . ////,'//,

!

AI

LAUNCH OATE

48 I;_0.0LAUNCH J0-2400000.0

0

• v

48160.0!

48080.0I

48200.0

- 48620.0

48580.0

48540.0

48500.0

0/

48460.0000

48420.0 _

J

48380.0 --

48340.0

48300.0

48260.0

48220.0

38

ORIGINAL PAGE Ig

OF POOR QUALITY

911t2130

9LILt/20

9t/tO/tt

9[/09101

9t/07/23

I_df--

£3

91106113

>

er

91/05/04

9t/03/25

91/02/[]

91101/04

90/t I./25

EARTH

-42.:_

- MARS 1990, C3L , DLABALL IST IC TRANSFER TI_ECTORY

/

j ,44 .44 4 5 4 J _: o: &

,,;',,_+__,xd4/ i ,:r," ," ,////

,,,, 1,4',£ //• -- ,///

V/Ill"Ill)IX"_// //2/_____/

C/LZ / l/,/ilJilfllI1_'0_ • " " 1 ."

i-- jJ

S

So,

r_ _ 0 t'_ -- 0 04

0 0 0 0 0 0 0

8 8 S S S 8 S

LnUNCH OglTE

48040.0 48080.0 48 120.0 48160.0LAUNCH JD-2400000.0

_/>-

34.

40.

O

S(3,,

v

48200.0

1

d1990

48620.0

48580.0

48540.0

.48500.0

0

0.48460.0 0

000

48420.0 _

48380.O --

48340.0

48300.0

48260.0

48220.0

.

d1990

9ILL2130

9t/tO/it

9t/og/ot

9[107123

i,iI.--(Zn

-91/06/[3

rYCE

9t/05/04

9t/03/25

9t/02/I3

ORIGINAL PAGE lgOF POOR QUALITY

EARTH - HAAS 1990 C3L , RLABALLIST[C TRANSFER TRAJECTORY

i

48040.0

0 0

S S

L_UNCH DATE

' i ! i

48080.0 48120.0 48160.0L_UNCH JD-2400000.O

!

48200.0

48620.0

48580.0

48540,0

48500.0

0

48460.0 (_

000

o4

48420.0

.J(Z

48380,0 --e¥

GZ

48340.0

48300.0

48260.0

48220.0

4O

ORIGINAL PAGE 14

OF POOR QUALITY

9! / 12/30

9L/LL/20

9tltO/tt

9tlO910t

9ti07123I,II.--(I:0

9[/06/15d_>

crr'r"_: /

91105104 /

91103125 _60.

9t/O2/t3

ERRTH

/

//

/

HRRS 1990 , C3L , ZRLSBALL IST IC TRANSFER TRAJECTORY

5,44 .,;,,d .,7 ,54 ,.4 ,..: <_ ,4 ,di¢'I _i"_ i_ ,"il _ ell _ _ _ _ e,i I'%,I

_ _ Z;"//I/I///_///////'///_,o/ _/k_FS'//_'/////fi//,'//_Y/1

I / i//I//Y_C2Y_F//i/E//Jf_/ s//C/_//////i i //'//XilJ _-,.,_:_y/_'////////,I/lI ' k__ _

/I///I///,'//li(/.]t_ i- J,';___ i/I //k'l////lll//it.7__ if_E: i/'l

//////U/i/l_ {1_ _[ /J_A Y IL' f '

I17 ,UL__ -,_,,.._;">-,,Ili71/11II

}.

LAUNCH JD-2400000.O

1

ZALS

d1990

- 48620.0

•48580.0

' 48540.0

48500.0

0

48460.0000

I48420.0

>48380.0

48340.0

48300.0

48260.0

48220.0

41

1990 EARTH

911 L2130

9[111120

91110111

9110910t

91/07/23

wk-££G

9t/06/13>

pr"n-(I

91/05104

91103125

91102113

91/01/04

90111/2_

# J

f J

f J

#/ /I _

f J

f f" .-

Z.// _ /zdZ//@

'/ _

o _ _ _

0

oO,

i

48040.0

ORIGINAl- PAGE _gOF POOR QUALITY

- HAAS 1990BALL [ ST lC TRANSFER

JO,,9 ,8. ,'7.

/ /.,4"//"

//" -"Y_.-_2f /,

,,," j z_" ///j

_///__

0 0

o o

/Z/ ,

//.1/

/

!

f

C3LTRAJECTORY

d,4d ,,;d ,; d d j

_00

0O,

_///, -.

"///

• / / /

/ /

Z

;'<.

_Z//IIII

i

48080.0

!

,00

o,0

oO,

LAUNCH DATE

48120.0LAUNCH JD-2400000.O

, VHP

,0

o

oO"

48160.0

_: d 4 j d

/'1'/ /V''J"/-/l///x _`-

" /// _o_1,,,F/l,'_,f'/_,

&.

°

i:

0

S S

• 1

48200.0

- 48620.0

' 48580.0

• 48540.0

•48500.0

0

48460.0

000

48420.0

d

48380.0

48340.0

48300.0

48260.0

48220.0

42

9tit2/30

9[/L[/20

91/LOItt

91/09/0[

9[/03/25

9t102113

9110[/04

i

48040.0

EARTH

ORIGINAL PAGE _gOF POOR QUALITY

- HAAS 1990 , C3L ,BALL IST lC TRANSFER TRAJECTORY

...... 14

DAP

_: ,_'

0 _ _ 0

0 0 0 0 0

0 0 0 0 0

LAUNCH DATE

• i i v

48080.0 48120.0 48160.0LAUNCH JD-2400000.O

J J

_4.

40.

, i

48200 0

48620.0

48580.0

48540.0

48500.0

48460.0

48420.0

48380.0

48340.0

48300.0

48260.0

48220,0

1

DAP

d1990

0

00000

O4

&

d

crcr

43

)

FlAP

d1990

9t112130

91111120

91110111

91109101

91107123i,iI.--CE0

E91106/13

crcr(Z

91105104

91103125

91102113

91/01t04

9011t/25

EARTH -

1;

11m1_

I_¢'1

\..%. ,- :

/,f /

///i / :;: if'/

I / _ ::, , : : ,

//I s

III I

.- • J___• _ /// .

14__. l/if8 1" "

/,,_...,Loy_ - i i;

• l i

O' CO¢kl

0 0

o o

i

48O4O.O

ORIGINAL PAGE IgOF POOR QUALITY

MARSBRLLISTIC TI_INSFER TRAJECTORY

1990 , C3L , RAP

.... / /./////

Z////t///i

IIII/ ,. •

/l,'/

/L///. ," // /,-7,.,.,,_--_.

III J,,#,,,,LJJ

7/7' _ ---..

/._. _.. J ..2.2 _ _,-

_ V/" / ._- \

, //: /1" : t l

_f ///_ __.._/r //

"-.2"_- ,o

o

o o

1

/ "//t" .'2 ."

/ • $ /"

//

// - .

-, IIl_,Ill

/l x

//t I

/'

/,

• .-%-.

/ .....

• i ,ll//_z ." ."/ f _

/

_J/ ///// /_./ /...... •., .. ....

....

/I/1

" _ ir,-x4 z

• �HI I

¢Xl

0

0

rcd.,d, j d

"" IIII

51.I I.lff.- .- . .

40..- / .. ....-.-.-I_/.//

_=

,N?

I

I!

/

)

48080.0

LAUNCH DATE

48120.0LAUNCH _D-2400000.0

g 8 :0 _

S S ;

i

48160.0• !

48200.0

- 48620.0

' 48580.0

• 48540.0

' 48500.0

0

48460.0

000

48420.0 c3

_1(Z>

48380.0cycr

48340.0

48300.0

48260.0

48220.0

44

ORIGINAL PAGE i_

OF POOR QUALfl'Y'

91112/30

9tltt/20

911101tt

9tlOqlOt

91107123

I,Ik--(T.O

t- 91106/13>

(Y(-yCE

91/05104

9L103125

91102113

9tlOt104

90111125

EARTH

/

/v

/J

/

/

MARS 1990, C3L , ZAPSBALL I ST I C TRANSFER TRAJECTORY

II/Ih //_

• ./_).

'f///_Y//_ ¢_-__ _c" 7_ ,.

_ //_'_ _ _ _ _ __ __°.

/p_b_ '.--- __ _ .__I__

0 _

0 0 0

0 0 0

LAUNCH DATE

• ! • i

48080.0 48120.0i

48040.0!

48160.0LAUNCH JO-2400000.0

r_

34.

40.

O

48200.0

1

ZAPS

1990

- 48620.0

48580.0

48540.0

• 48500.0

O

O' 48460.0 0

000

I• 48420.0 £3

._J(1:_>

• 48380.0 --E_

• 48340.0

• 48300.0

48260.0

48220.0

46

, 9.

ZAPE

d1990

9t/t2130

9tlttl20

9tll.OI [!

9t10910[

9[109123

i,ih-(Z0

(_9[/06113>

cycr(E

9[/05104

9t/03/25

91/02/t3

9t/Oil04

901ttl25

0

O

EAATH

0

0

i

48040.0

ORIGINAL PAGE |_

OF POOR QUALITY

- HAASBRLLISTIC

1990 , C3LTRANSFER TRAJECTORY

, ZAPE

j rcd

0 _ _ 0

0 0 0 0

0 0 0 0

LnUNCH DATE! w

48080.0 48t20.0LAUNCH JD-2400000.O

,0

0

0O,

i

48160.0

S

S

4e_ e_ a

34.

40.

0

SO_

• !

48200.0

- 48620.0

48580.0

48540.0

48500.0

0

48460.0000

48420.0

J

>48380.0 --

48340.0

48300.0

48260.0

48220.0

48

EARTH

9t/t2/30

911[[120

9LILOI[!

9|10910[

9t107123L_

G:O

(_E91106113>

crQ:(T.

9[105104

9t103125

911021t3

9t10[104

901ttl25O, aO ¢0

04 _ 0

_o0 0 0

0 0 0O_ O_ O_

t • v

48040.0 48080.0

- HAASBALL [ ST I C

O'RIG]NAL PAGE ;,'_OF POOR QUALITY

1990 , C3L ,TRANSFER TRAJECTORY

ETSP

_ 0

0 0 0 0

0 0 0 0

LAUNCH DATE

• ! , I

48120.0 48160.0LAUNCH JD-2400000.O

,0

S

S0',

J oo_

34,

40.

UO0

SO'

48200.0

- 48620.0

48580.0

48540.0

48500.0

48460.0

48420.0

48380.0

48340.0

48300.0

48260.0

48220.0

10.

ETSl

199(

0

OOOOO

0JI

rm,-"3

_1GZ

prrrG:

47

11.

ETEP

1990 EARTH

91112130

qI/LL/20

9lllOIll

91109101

91107123i,iI.-.-(T.D

_-_9t/06/13

n,

91105104

91103125

91102113

91101104

90/11/_

I

i

u

!

!

V, .i_/

i,.

O O

0 0

i

48040.0

I

\\

\\

,;/

..: '/!

l'-_

URIGINAL PAGE ig

OF POOR QUALITY

MARSBI:ILLISTIC TRI::INSFER TR_ECTORY

i)0.

\

1990 , C3L , ETEP

/

rl /iv

IIII

////A////A/Ilia

//

.% ..- .

////

_L /11

////,

• / / / _1_1//

////

ii1_ " . .

i _ i .¢_

" " __'R__: : _ _,_"1

4U°

- - _g45/I/ [i

O O

O O

6,g4 ,.;4 4 6 i 6

...... ///.// // ,,'_

////,

......."'" '//X

...... I I I

._...111 ,

1//

- .- -

_,.7: >- ,- ---

__.

T'_

rl

IL /1 /I

/7"/M

J //i

...,....p=

><:::] j

'00

O_0

0O'

34.

I///A 40.

• !

48080,0

_ _ 0

g 8 :

L_UNCH O_TE

' £ '48120.0 481 0.0 48200.0LRUNCH JO-2400000.O

48620.0

48580.0

48540.0

' 48500.0

0

0,484b0.0 0

00o

48420.0

J

'48380.0

'48340.0

,48300.0

'48260.0

48220.0

48

ORIG.,'_,IALPAC.Z ;_

OF POOR QUALITY

Earth to Mars

1992

Opportunity

ENERGY MINIMA

DEPARTURE ARRIVALVALUE TYPE (YEAR/MONTH/OAY) (YEAR/MONTH/DAY)

C3L 18.341 I 92/10/06 93/05/09

C3L 11.732 II 92/09/30 93/09/19

VHP 2.3844 I

VHP 2.3987 II

92/10/29 93/07/25

92/09104 93/08/04

49

=

C3L

1992 EARTHN

94103114

94102102

93112124

93111/14

93110105Ld

_.931081_

>

(Z"9310"?117

9310610'7

93104128

93103119

93102107

ot"-o

O,

48810.5

i

i

i :

i

ORIGINAL PAGE IS

OF POOR QUALITY

- MARS 1992BALLISTIC TRANSFER

///Ji.

- =

//_ "//_//

///

//g/.. ",'.. . I /f/ | - . .

_/./.

_,'//,"//3

N• /

I •

'" F/d,#

I

I Ilg

, C3L TFLT_AJECTORY

0, 0,

48850.5

o0

LAUNCH DATE• !

48890.5LAUNCH JO-2400000.0

0 ¢_4 .-,

e.e

o_ 0_ o_

48930• 5 48970.5

49425.5

49385.5

49 345.5

' 49305.5

0

' 49265.5 0°000

_uI

49_E5.5 o

(_

49185.5 -'r_n,(Z

49145.5

49105.5

49085.5

49025.5

5o

9&103114

94/02/02

93/t_/24

93111114

93/t0/05bJI..--

C3

(_q3108126>w.w

cr

_31o7117

93t0_/07

93/04/E8

93/03119

93102107

ORIG!_.IAL P,-_C_. ;._'OF POOR QUALITy.

EARTH

_d

- HAAS 1992 , C3L , DLIZlBCW_LISTIC TRRNSFER TRAJECTORY

_" ..... j _:T

/ ,'," " " 3_,./' / //,

\

/d...,/,

;/""" IL_'/X//__. ".;,;,t /

.... .,.,.... [ ........ iii, ..

/"/ _ " i

///,__

I _ P- ,0

0 0 0

!

48810.5

• x_-__.-;I/I/V,l

0 _ _ 0 _

0 0 _ _ _

LRUNCH D_TE

I i • • !

48890.5 48930.5 48970.5L_UNCH JD-2400000.0

• !

48850.5

=

DLA

1992

- 49425.5

493855.55

493455.55

493055.55

0

49265.5 8OOO

04i

492255..5 0

_1

491855,55 '--n,n,

491455.55

49105.55

490655.55

• 490255.55

51

ORIGINAL PAGE tg

l OF POOR QUALII"_

1992 EARTH- MARS 1992. C3L . RLA" I_ILL I ST I C TRRNSF'ER TRf:IJECTOR¥

I " _ _'h_. k, " le// a4.

o

° N'Z_'_g/Iit. ' _°>_ &//V/tl (YIZ_F._ I //I X_ -

//I'[II,k_",_1 b '/II

,,,o,,,.-_s'l:.-l_FJ_,/,_,/I//I,II ,_,o_,

93 #02# 0"/ "' ....... 49025 5

0 N -" 0 (_I -- O n4 --

LAUNCH DATE

# • i • i i -

48810.5 48850.5 48890.5 48930.5 48970.5LAUNCH JO-2400000.0

52

ORIGINAL PAGE I_

OF POOR QUALITY

94103114

94/02/02

93112124

93111/14

93/10/05

LdimG:Q

J93/08/26Q:>

IX

93107ti7

93106107

93/04128

93103119

93102107

EARTH - MARS 199; :::) . C3L• 8t:ILLIST[C TRRNSFER TRf:kTECTORY

/

////

i

f

//

, ZFILS

J

I\

"4.. J=

• //

//

p-

o o

i

488 ].0.5

/

//

/ A

/F /

.=

/h

5-"

M• j

f

/

,o

o

48850.5

0 _ 0

LAUNCH DATEv

48890.5 "48930.5LAUNCH JD-2400000.0

i

48970.5

4_

ZALS

d1992

- 49425.5

,49385.5

49345.5

49305.5

C

049265.5 0

000

I49225.5

_1EE>

49185.5n"n"(]:

49145.5

49105.5

' 49065.5

49025.5

63

1992

94103114

94/02/02

93112124

93111114

93110/0"3

W

Q;O

93/08126

>

n,n,"(I:

93107117

93106107

93/04128

93103119

93102107

EARTH

//l,£_ J

f J

"8,/

i"fJ- !

f J

/ /i

A_f� /I " "

A ]1

i

48810.5

ORIGINAL PAGE iS

OF POOR QUALITY

HARS 1992, C3L , VHPBALL [ ST l C TI:_iNSI:'F.J_ TI_:kTECTORY

Io,

,o

o

(%1o,

• !

48850,5

0 -- 0

0 0 _ _

LAUNCH DATEw

48890.5 48930.5LAUNCH 3D-2400000.0

¢,

• . /

i/ - -o- /

: .'." : :

,,e/,/'/,_"// : :

v

489'70.5

- 49425.5

49385.5

49345.5

49305.5

0

49265.5 0°

000

0_

49225.5

...JQ:>

49185.5 --n,n,(Z

49145.5

'49105.5

,49O65.5

49025.5

54

e_

ORIGINAL PAC:-: r"

OF POOR QUALITY

94103114

94102102

93112124

93111114

9311010_

I.dI--

O

1_93108126>

n,n,G:

93107117

93106107

93104128

93103119

93102107

- MARS 1992, C3L ,B:ILLISTIC TRRNSI:'[R TRROECTOR¥

_IL v

o,.

v

489"/0.5

/;, ,,,,W< ;g_//_l".._IkVk,/////77'///// (/g.:. @"..,_I1/k,//\

///_// / ( /%@" _._l/Ik?P'k'<'

%_ _ .+#'1_%_"/1#!I111II\,/ li'Lk__ _ _

0 1_1 _ 0 _ _ 0 ¢_1

LAUNCH OI::ITE

• I • I • v

488-50.5 48890.5 48930.5LAUNCH ,TD-2400000.0

!

488t0.5

-49425.5

49385.5

49345.5

49305.5

0

49265.5 8

000

49225.5 _

49185.5--

'49145.5

1992

49105.5

49065.5

49025.5

55

B

RAP

d1992

94103114

94102102

93112124

93111114

93110105

l..dI--

_93108126(I.>

.gcr.

93107117

93106107

93104128

93t03119

93102107

ORIGINAL PAGE Ig

OF POOR qUALITY

EARTH - MARS 1992 , C3L ,* BRLLISTIC _ TIRI:I_CTORY

WD.

\%

_1"10.

: "///2

:yi

'19o_-- \ "_

• / / • .

"F II

/J,,.

X

J

|

i

i

_ _- ,004 _

o o o

48810.5

d]]

_ f/3F

III///J

r/j,,Yl

• v

48850.5

LAUNCH DATE

48890.5LAUNCH JO-2400000.O

RRP

22.

i_-; z,.28.

4-_/;35.

_i'2'

10.

0 ¢_ ,,-.

48930 .5 48970.5

- 4942'3.5

' 49385.5

'49345.5

49305.5

0

49265.5000

49225.5

._J

>49185.5 --

r_

49145.5

49105.5

49065.5

49025.5

56

ORIGINAL PACIE _1OF POOR QUALITY

94103114

94/02/02

9311.2/24

93/11./14

93110103

I.dI-

Q

(_. 93/08/26

Q:

0:93107l 17

93106107

93104128

931031t9

93102#07

I--o......

[,,.o

o,

_EARTH - MARS 199;::> , C3L ,ltlLLI ST I C TRRNSIqDR TRRJECTORY

ZI::IPS

!

488 tO. 5

d

/>',/// i

</ "/ / _,, _ -/<"i ,i /{ l lr_ N

L. I'ILL _ '_/7_ _I I I liV#i-'iv/xi I/I '"

I"- O' 0 "" "'*0 0 " "-' "-'

O_ O_ 0_ O_ O_ O_ O_

LRUNCH DmTE

88 0.5 48890.5 48930.5LAUNCH JD-2400000.0

22.24.

28.

35.

O,

v

489"70.5

i

ZAPS

1992

49425.5

49385.5

49345.5

.49305.5

0

.49255.5 8

000

I,49225.5

>,49185.5 --

,49145.5

49105.5

49065.5

49025.5

57

.

ZAPE

d1992

94103114

9410210E

93112124

93111/14

93/t0/05WI.-(3:O

(_93108126

G.G.

9310711_

93106107

93/04/28

93103tt9

9310E/07

ORIGINAL PAG_E [_

OF POOR QUALITY

EARTH - MARS 1992. C3L• BI:ILLISTlC TRANSFER TRI::I,.TECTORY

, ZAPE

{,,,.o

0

ON

f

..2' ,, );L'f:/::>J"

"'/F'/. /

/

/

/._.!//._;.;.

III i(11

_//////h_"v ,' !' I1/l/liD ="

I r I//ll//j

.11t_,"-_" J/" / _7_

__ _ _ --_,';

Z __.. --2 _gk::;:"_/\ ''''_

i

48810. 5

0 0 0 0 _

LI=tUNCH DI:ITE

! i !

48850..5 48890.5 48930..5

',I1

LAUNCH JD-2400000.0

2224

2_.9

O,

i

489'70. ,5

- 49425.5

'49385.5

,49345.5

49305.5

0

049265.5 0

000

49225.5 _

49185.5

49145.5

49105.5

49065.5

49025.5

51B

94103114

94102102

93112124

931111L4

93110105

l.iJI--(T.Q

93108126

>

93107117

93106107

93104128

931031L9

9310210?

ORIGINAL PAGE ;'_

OF POOR QUALiTf

EARTH

I

I\I\

I/

,J

! ,

._2(

lid

z

i,.

; /

.. : ',,,.._,-."

- HAAS 1992 . C3LBI::ILLIST IC TRt::INSF'ER TRAJECTORY

J/ LA"f_

/

o _

o o o

0_ 0, o

!

48810.5

, ETSP

• !

48850.5

I('1_ I I

II1_1

::: ::

[/11/I

v'¥ /I

5

0 _

L_UNCH D_TE

48890.5 48930.5 489 0.5LQUNCH JD-2400000.0

10.

ErsP

d1992

49425.5

49385.5

49345.5

49305.5

0

o49265.5 o

oo0

49225.5 _

49185.5 _

49145.5

49105.5

49065.5

49025.5

Sg

11.

ETEP

d1992

94/03/t4

94102102

931t212a

93/tilt4

93/t0/05

Ldt--

0

J 93108/26CE>

crr-e(Z

93107117

93106107

93#04128

931031 t9

93102107

ORIGINAL PAGE IS

OF POOR QUALITY

EARTH HAAS 1992, C3L , ETEPBALLISTIC TRANSFER TRAJECTORY

J o JJ ,-4 _

t_.0

0

c_O,

J

_I _0.

48810.5

0 _ -- 0

LAUNCH DATE

488 0.5 48890.5 48930.5LAUNCH J0-2400000.0

22.24.

28.

35.

O,

i

,18970.5

49425.5

49385.5

49345.5

49305.5

0

49265.5

000

I49225.5

J

49185.5 --

49145.5

49105.5

49065.5

49025.5

6o

ORIGINAL P,o,GZ _'3

OF POOR QUALITY

Earth to Mars

1994

Opportunity

ENERGY MINIMA

DEPARTURE ARRIVALVALUE TYPE (YEAR/MONTH/DAY) (YEAR/MONTH/DAY)

C3L 13.766 I 94/11/06 95/07/05

9.4674 II 94/10/24 95/08/27C3L

VHP

VHP

2.5727

2.5142

94/11/12

94/11/03

95/08/21

95/09/06

61

1

C3L

1994

ORIGINAL PAG_ [_

OF POOR QUALI='i_"

961041|?

96/03/08

_101128

_1121Z9

9'3/I. !./09Lg

Q

_9"3109130>

19_10612t

9_I071|2

9'3106102

95/04/2]

95103114

88

EARTH - MARS 1994 , C3L, BALL [ST IC TRANSFER TRAJECTORY

r/

i

i

J

qlt

O,

49570.5

i

I

I

/v,"

!

i .

fJ

//

,i

'//

ffJ

r,////I

r- --i

Jar .ca-_

"C =

!

p,-

! ,J.

. TFL

_J_I 14.

14.

_= :

=_= !

8 _q - oo S _

O_ O_ O_ O_ 0 •LAUNCH DATE

| • w • !

49610.5 49650.5 49690.5LAUNCH J0-_400000.0

0_

o

49"730.5

,50150.5

,50110.5

.50070.5

0

0,5OO30.5 o

000

O_I.49990.5 r_

_J

•49_0.5 ,-c_

.49910.5

•49870.5

•49830.5

.49790.5

62

96104/17

96103108

96/0tl28

951t2/19

9511t109bJI--

Q

(_I09130

9510812t

95107112

95/06/02

9_104123

9"5103114

OF POOR QUALITY

EARTH

_"\ vh, // I ///'///,_/:".__ _°

//�:�'/I/Ill /._ ,\_ : ,,r_,,__,,

/

- HAAS 1994, C3L , DLABRLL IST IC TRI:_NSFER TRAJECTORY

J 6 J _; ,S J

_ _ ?',-_ . ,_

• / ",:,',"z;

I

O'

0 t_ -- 0 _I -- 0

0 O 0 _ "-= "-_ "4

O_ O_ O_ O_ O_ O_ O_

LAUNCH DATE

i ! • ! • ! • • i

49570.5 49610.5 49650.5 49690.5 49730.5LAUNCH JD-2400000.O

1

DLA

d1994

- 50190,5

'5O 150.5

501 tO .5

•50070.5

0

0'50030.5 0

000

ojI

'49990.5i-3

.J

>49950.5

EE

49910.5

49870.5

49830.5

49790.5

63

, 3.

RLA

d1994 EARTH

96104117

96103108

96101128

95112119

95111109

b.Ji--(IQ

_T.95 / 09130>

95/08121

93107112

95106/02

93104123

95/03114

,oo

=0o

_t

O,

141

\

/,

/ /

V /

i Ii i_

.\

\," /

/' /

! /

'i

o

I

49570.5

ORIGINAL PAGE IgOF POOR QUALITY

- MARS 1994 , C3LBALL I ST ! C TRIRNSFER TRAJECTORY

i j

, /' i

.//

//I

,i

w w

qJ

f//,---.f I

!

o

,q(>

///i _

///i _

" 17Y

f _/

f I'/-

./ 21,,

_ t

_ . ,. ; .-.?

n ./ .

..- .

./ Ix ,'i/

/' /_-//

/ / ,' /I////,,/

v

496 lO .5

l't_

I JJ].

,// .... ,,, ,V/'

V_ / /

" / /_

• la¢ • /

/ r r#w / A " •

'_.j

-:---'_- -:_i_

L_UNCH DRTE

49650.5L_UNCH JD-2400000.O

. RLA

!

49730.5

-50190.5

'50150.5

-50110.5

•50070.5

o

050030.5 o

000

I49990.5

>49950.5

49910.5

49870.5

49830.5

49790.5

64

96104117

96103108

96101128

95112119

9511110__J

G:a

_:q_/Oe/30>

E_rY(I

95/08/21

95107112

95106102

95/04/23

_3103114

\

/

/_/ ,,

J//r//I l

[rI

: .\ '\\

\"NI

/ X,

9R

ORIGINAL PAGE |_

OF POOR QUALITY

rIARS 199zl- , C3L , ZRLSBRLLIST[C TI_INSFER TI_IJECTORY

i

49570.5!

496 I0.5• !

49690,5!

49730,5

t

ZALS

d1994

50190.5

50150.5

50110.5

50070.5

O

O50030.5 0

0

0

I49990.5

._IC_>

49950.5 "-"C_rr(_

49910.5

49870.5

49830.5

49790.5

65

=

VHP

d

96/04/t7

96/03/08

96101128

95112119

95/tLlO_Wl,-_ZQ

_ 9"31091 30

r_

95108/21

951071|2

95/0@/02

95/04/23

95/03/14

5"" f /If,Pe/

/ / /

,t• " " I1_

r _B ,

._- #1 J•"j r_

o o

ORIGINAL PAGE r.S

OF POOR QUALITY

MARS 1994, C3L , VHPBRLL IST IC TRRNSFER _ECT0I_'

fir j

SS;

, , _;f-_/

i

/////

f///

/

"J 41

• / /I

/

J J ;

I

0 -"

66 83.Jo:

.,/

• //

ll_

i • _, !

49570.5 49610.5

[4.

: a

/ 22.

........ 45.

////V/'//////k'_"

IZ" P I

t ."

I,

o 3 _ __ _ _ 0

LAUNCH OATE

49650.5 49690.5 49730.5LAUNCH J0-2400000.0

50190.5

50150.5

50110.5

50070 5

0

050030 50

000

49990 5 _

49950 5

49910 5

49870 5

49830.5

49790.5

68

EARTH -

961041[?

96103108

96101128

95112119

95/11109

I--

O

_.95109130

12;95/08121

95107112

c;P3106/02

9"3/04/23

951031t4

0

0

=7.

.5

/.z',

=_

v

49570.5

ORIGINAL P._:C'_ _

OF POOR QUALITY

HAAS 1994, C3L , DAPBRLLISTIC TRANSFER TRAJECTORY

).

/

,//"., /',

/

496 iO. 5

,.7)

/

-//'_

,' . S

i/

f/_/_ - . . /- /

• _ z/."/ ///

///

//

iG" /

?

e• : :" :.=

J J JJ&d J

.

• /

2 .

f /

• // ,/ 7-i//

//0"///

f/j-/-

_._.'S__/

/ .

/ /

' /,/V/,.

/<,, //

// /

",,'.;77/'o

////_//;2

/_ ///_,_.,/.

*_ '_..__.5

-E

&ll

/N

- /

/

_ ' -_'_" _-t10.

: : : : % L--

: "b.

-." : :

/_., If)

14.

22.

28.

35.

45,

O _ _ 0

L_UNCH DRTE• i !

496_0.5 49690,5LAUNCH _D-2400000.0

O_

I,")

_%0

w

49'730.5

1994

- 50190.5

' 50150.5

.50110.5

•50070.5

o

o50030.5 0

000

0_I

,49990.5 c3

J(_>

49950.5n,rr(_

49910.5

49870.5

49830.5

49790.5

67

.

RAP

d1994

9610411?

96103108

96101128

95112119

95111109

bJ

(IO

C_95109130

>

n,n,(Z

95108121

9510711E

95106102

95104123

95103114

....,.,.

/

,/?

!i123',

o

O_

[

49570.5

ORIGINAL PAGE iSOF POOR QUALITY

- MARS 199L_ , C3L , RAP81:ILLISTIC TRRNSFER TRt::klECTORY

,0

o

£

_>50.

;_JO-q

==--"=

-.._j/ .

/ r"

L

/ /

"_/ ///x /

r

J

- i//

# / Ji I.

r

/ z'_ ?_/// --

/4 "" "'" "11.

/.:; -.

X; / .:

/ ,¢

i

//

VD "_

LAUNCH DATE

• i

49650.5LAUNCH JD-2,tO0000.0

: : ::,_// .... ///

_0. /J(

8

0 ,"

,; 3o, o,

496 iO. 5

J J

r _ r _//f. •

./. _/-'_ .

/

j <; _; o: j

..... _8:- _:-v,r.-. 22.

- t ,'" -/'--_-_---_-_./ ,,"///__..{///

• ' - 45.

"i

_ /// /

5.O.

"-iU.

i

i

r_

o

49690.5i

49730.5

50190.5

50150,5

50110.5

50070.5

0

50030.5OOO

49990.5

49950.5 --

49910.5

49870.5

49830.5

49790.5

EARTH

9610411?

96103108

9610[128

95112119

O'J9_111109

Q

$_,o9,3o _'

° :c_9510_12t

95107112 _'.

95106/02 !

93104123

95103114

o

o

i

49570.5

I

7

!,-ql

/I

/,

I J °

/41v

ORIGINAL P/-,CZ _

OF POOR QUALITY

- MARS 1994 , C3L ,81:LLISTIC TRI:INSFER TRPJECTORY

ZAPS

v

,...-.,

/

i/,

•., _,.

J

7"+.

_8:

, ,., _,-',',,_ 28., ///

_/'_/_"_/z 35._ 45.

I///

• 'J _- I

_ ._°

_ _O.

_._j _.

_ '0.

49650.5LAUNCH JD-2400000.0

I

49690.5. !

,4961o. 5i

49730.5

=

ZAPS

d1994

-50190.5

50150.5

50110.5

50070.5

0

50030.5000

I49990.5

J

>49950.5 --

49910.5

.49870.5

'49830.5

49790.5

69

=

ZAPE

d1994

961041[7

96103108

96101128

951t2It9

9511[1(R

bJk--Q:a

_L- <J_/OQ 130

95108121

95107112

95106102

95104123

951031t4

ORIGINAL PAGE _OF POOR QUALITY

EARTH

JJ

(

/J

,o ,oo

I:0 (10o o

o', o,

!

49570.5

- HAAS 199_ , C3L , ZAPEBFILLISTIC TRANSFER TRAJECTORY

• .7"/

iI

I

ii

iiI

I. )

i

I

w • : kw_

/ m . .

J

11,

0 _

0 0

LAUNCH DATEv w

49610.5 49650.5LAUNCH JD-2400000,O

o

¢M

/ i." z_.,

"./_v//.=

"///Z//_.-.-.._/ag_'//,

*- _N / /_

////

"//h,//_w/

r'_ ;-'-ab_._u_°

\% !

49690.5

14.

_8:22.

28.

35.

45.

w

49730.5

-50190.5

.5o15o.5

.50110.5

'50070.5

0

50030.5000

Od

49990.5 I

(_>

49950.5 --rYn,(_

499 I0.5

49870.5

49830.5

49790.5

7o

EARTH

96104117

96103108

9610LI28

95112119

95111109

Ld

Q

_._5/09/30

¢.y¢YC:

95108121

95107112

95106102

95104123

95103114

J/

/,

•o ,o i_o _

o o o

0, o, o,

r l

49570.5 49610.5

ORIG;.,_AL '_c,-PF,== ,_:3OF POOR QUALITY

- MARS 1994 , C3L , ETSPBRLLiSTIC TRANSFER TRAJECTORY

iI

I

I!i

i

_/ - /.%

////

/'/ /1"/,,

7/2

/_/ ..... //" " 22.

//. _ ...... /, .... //////. _.

. _ _;'"_//// A /4,"A ///

/_/ x"_' _ "//_/ / / : : : .'.: .: /// / :-

- -// . ,//,,410.

_";=_11/[/I//L_ ,:

° _(I _ /llllllll

2.

(>

o

S

LAUNCH DATE

49650.5LAUNCH JD-2400000.O

49690.5 49730.5

10.

ErsP

d1994

-50190.5

50150.5

50110.5

50070 5

0

050030 5 o

000

O_I

49990 5 o

J<I>

49950 5-¢Y¢F

49910 5

49870 5

49830.5

49790.5

71

11.

ErEPORIGINAL PAGE |8

OF POOR QUALITY

14.

!

49730.5

50190.5

50150.5

50110.5

"50070.5

0

'50030.5

000

'49990.5

>49950.5

49910.5

49870.5

49830.5

49790.5

72

ORIGINAL PAGE [9

OF POOR QUALITY

Earth to Mars

1996/7

Opportunity

ENERGY MINIMA

DEPARTURE ARRIVAL

VALUE TYPE (YEAR/MONTH/DAY) (YEAR/MONTH/DAY)

C3L 9.0071 I 96/11/30 97/07/19

C3L 8.9323 II 96/11/21 97/09/29

VHP 3.4813 I 97/01/06 97/08/31

VHP 2.8683 II 96/11/16 97/09/15

73

,

C3L

c;1996/7 EARTH

ORIGINAL P/',_E;_OF POOR QUALITY

- MARS 1996/? , C3LBALL [ST IC TRANSFER TRAJECTORY

TFL

98105122

981041t2

98103103

98101122

97112113

I--Q:Q

C_97t11103>

rYrYQ:

9"7/09/24

97108115

97107106

97105127

971041 t7

i

50325.5

o,

,0o_

g ¢ _ 80

LAUNCH DATE

5o3_5.5 5o,65.5LAUNCHJD-2400000.O

5o4a,5.5

p-

o

!

50485.5

- 50955.5

.50915.5

50875.5

•50835.5

0

050795.5 0

000_toJI

50755.5 O

<r>

50715.5 --c_c_

50575.5

50635.5

50595.5

50555.5

74

ORIGINAL PAc2_ _3

OF POOR QUALITY

EARTH - HAAS 1996 / ? , C3L , DLR- BILL I ST IC TRRNSFER TRt:kTECTORY

.

DLA

d199617

98/05/22

98104112

98103103

98101122

97112/13bJI-.(T.Q

d 97/11/03

>

97109124

97108115

97107106

97105127

971041170

0

,0O_

i

50325.5

I I___I ___I .___,_.

":"""_" _ ;I .Y "--.'_",,/,,_,/4/-'-'

g0

LAUNCH DATE

'5036 ....5.5 50405.5 50445.5 50485,5

LAUNCH JD-2400000.O

- 50955.5

50915.5

50875.5

50835.5

0

050795.5 0

000

50755.5

J

>50715.5 --

'50675.5

,50635.5

50595.5

50555,5

75

, 3.

RLA

d199617 EARTH

ORIGINAL PAGE IS

OF POOR QUALITY

- MARS 199617 , C3LBILL I ST I C TRt_SI:'ER TRI_ECTORY

RLA

98105122

9BI04112

98/03/03

9810t/22

971t2113

W

0

J 97/11103Q:>

n¢n¢

97109124

9'7/08/L5

97107106

97105/27

97104117

t ON

_.

_,,. _..

I .,_

I>>:_ J

/ /Y /

..._ ._-_ _ ,._D_.._

I

50325.5

o _ - _ _ -

_ _ _ _ -LAUNCH DATE

"5036 ' '5.5 50405.5 50445.5LAUNCH JO-2400000,O

- 50955.5

.50915.5

,50875.5

'50835.5

0

50795.5

000

cu

50755.5 I

>50715.5 --

n,re(I

50675.5

50635,5

50595.5

50555,5

76

EARTH

ORIGINAL PAGE 14OF POOR QUALITY

- HAAS 199617, C3L ,B4:ILLISTIC TRRNSF'ER TRAJECTORY

ZALS

,

ZALS

d199617

98105/22

98104112

98103103

98/0L122

971L21L3

W

(IO

J 971Lt103

>

(:Z:E_(I

97/09/24

971081L5

97107106

97105127

97/04/17

I

, . /.

/ // i

!

\ _l\• \

t,,G#

o

,0 ,oo_

i

50325.5

L

r

,'//A - ._- _-

y//./i -

/

// /

0 "'

i i i iLAUNCH DATE

• !

"50365 •5 50405,5LAUNCH JD-2400000,0

• !

50445.5

?-

o

• 45.

35.

----- 28.

_//_// 24.-//1 19.

: 12.

I.. 14.

_.t.

K_.'<_-

_/_

|. t

!./ _.o.

1/ /

//

).

).

),

euo

50485,5

-50955.5

•50915.5

50875,5

50835.5

0

50795.5

000

I50755.5

>50715.5 --

50675.5

'50635.5

,50595.5

,50555,5

77

MHP

d199617 EARTH

ORIGINAL PAGE |S

OF POOR QUALI"rY

- HAAS 19961"7 , C3L , VHP_:ILLISTIC TRANSFER TRI_ECTORY

98/05/22

981041t2

98103103

98101122

97112/t3W

Q

(_97/11/03>

IX

97109124

97108115

97107106

97105127

97104117

1//

_r.J

/'1//

ai _ ii 1

n_

//

. /r, _/

- /

- \

O" ¢"-'_ 0

• v

503;_5 ,5 50365,5

v

/

J/A

p,m--i

/i

J

LnUNCH 0nT[

!

50465.5 50445.5LAUNCH JO-2400000,0

t"..,.=

o

45.

_-/-/ 28.

24,19.

_ 16.

- -"- h?.

I'" 14.

22.

: : 50.I / /

• l !

J

o

50485.5

50955 5

50915 5

50875 5

50835 5

0

50795 5 0°000

0u

50755 5

>507|5 5-"

50675 5

50635 5

50595 5

50555 5

EARTH

ORIGINAL PAGE |4

OF POOR QUALITY

- MARS 199617, C3LBRLL I ST I C TRt:INSFER TRPJECTORY

DRP

,

DAP

d199617

98/05/22

981041 t2

98/03/03

98101122

97/t2/t3

Wt.-G_

o _

(_9711 1103

n"rr

97109124 [

97/07/06

97105127

97/04/t'7 !

$

!

50325.5

5

J /iI / I

I /

I

. - /

( ,

/ /

/. /J ./ ..-_k_,

/ / ,'/,/X

./X

.... _// /

'I/ _/ /

//_/ I / l y/

#l "

e g g

• r

50365.5

I i

I =

°

•-' -" O O

LAUNCH DATE• v

50405.5LAUNCH JD-2400000.O

50445.5 50485,5

- 50955.5

•50915.5

•50875.5

•50835.5

0

"50795.5

000

I"50755.5

>50715.5--

50675.5

"50635,5

.50595,5

.50555,5

,

Ft P

d199617 - MARS

BALLISTIC

ORIGINAL PAGE_ 1SOF pOOR QUALITY

199617, C3LTRRNSF'ER TRAJECTORY

, RAP

98105/22 50955.5

98104112

98103/03

98/01122

97112113LdI--.

O

_L-97111/03>

QZ97109124

97108115

97107106

97105127

97104117

£

o

i

50325.5

o,

o

o _ - 8

LAUNCH DATE• !

50365.5 50405.5

LAUNCH JD-2400000.O

_o

,,,w

I

50435.5

T_

o o

!

50485.5

50915,5

50875.5

,50835.5

0

050795.5 0

000

04I

50755.5 0

J(I>

'50715,5 --n,n,(I

50675.5

50635.5

50595,5

•50555,5

8O

ORIGINAL PAGE i,_OF POOR QUALITY

EARTH - P1ARS 1996/7 , C3L , ZAPSB:ILLISTIC TI:_IN_ER TI:_::_ECTORY

=

7_APS

d199617

98105122

98/041t2

98/03/03

9810t/22

97112113

I,I

C£Q

.97/11/03

97/09/24

971081[5

97107/06

97105127

97/04117

o

o

i

50325.5

t/_ yj_J

• /

3 3 3

LAUNCH DATE

• i • ! " !

50365.5 50405.5 50445.5LAUNCH 3D-2400000.O

8

o

o,

• !

50485.5

-50955.5

50915.5

,508'75.5

.50835.5

0

0'50795.5 0

000

I.50755.5

•50715.5 --

'50675.5

50635.5

50595.5

50555.5

81

zAPE

d199617 EARTH - MARS

BI:ILL [ ST I C

ORIGINAL PAGE IgOF PoOR QUALrR'

L996 / 7 , C3LTRRNS/ER TRRJECTORY

, ZAPE

98/05/22

98104112

98103103

98/0t/22

971121[3

U.J

971tt/03

>

rYc_Q;

97/09/24

971081 [5

97107106

97105127

97/04/17

o

0

!

50325.5

0tq___£. /z

! .,'.,.',F.'_Y_c,tO,

0 _ _ 0 _

o _ - _ _

L_UNCH DRTEi • i i 1

_036_._ _040_._ _044_._ _048_._

L_UNCH JD-2400000,O

O,

0

,0O'

50955.5

50915 5

50875

50835

50795

50755

50715

50675

50635 5

50595.5

50555.5

0

5o000

5A

.J

5--rr

82

EARTH - MARS, BALLISTIC

ORIGINAL PAGE 19

OF POOR QUALITY

199617, C3L , ETSPTRANSFER TRAJECTORY

10.

ETSP

1996/7

98105/22 -50955.5

981041 t2

98/03103

9810tl22

971t21t3

bJl--C[0

97/1t/03a_>

rY,,yQz

97/09/24

971081t5

97107106

97105127

97104/|7

o

o

503;_5.5

o,.=0

o

,oo,

0 _ _ 0

LAUNCH DATE

• v • !

5os_.5 5o_o5.5 5o_45.5LAUNCH JD-2400000.O

[,,.

o

0,

o

o

{...o,

• q

50485.5

50915.5

.50875.5

50835.5

0

• 50795.5 8

000

I•50755.5 O

>•50715.5 --

.50675.5

50635.5

50595.5

50555,5

83

11.

ETEP

d199617 EARTH - MAAS

BR_LISTIC

ORIGINAL PAGE Ig

OF POOR QUALITY

19961"-/, C3LTRt:IN_ER TRAJECTORY

ETEP

98105122 50955.5

98/04/t2

98103/03

98/01/22

97108115

97/07/06

97105/27

i

50325.5

0 _ -- 0

LAUNCH DATE

r • w

50365.5 50405.5LAUNCH JD-2400000.O

• !

50485.5

50915.5

50875.5

50835.5

0

50795.5000

I,50755.5 0

>,50715,5 --

'50675.5

.50635.5

'50595.5

.50555.5

Earth to Mars

1998/9

Opportunity

ENERGY MINIMA

DEPARTURE ARRIVALVALUE TYPE (YEAR/MONTH/DAY) (YEAR/MONTH/DAY)

C3L 9.0164 I 99/01/16 99/07/30

C3L 8.4403 II 99/02/07 99/12/31

VHP 3.7826 I 99/02/19 99/09/20

VHP 3.3391 II 98/12/08 99/09/23

85

,

C3L

1998/9 EARTH - MARS* BALL IST [C

oRIGINAL PAGE _9

OF POOR QUALITY

1998/9 , C3L TFLTI_ANSFEI_ TRAJECTORY

00106115 -51710 5

00105106

00103127

00102116

O010t107

tJ

(ID

(_.9_111128

>

rr

(I99110/19

99109109

99t07131

9910612t

99105112

l>

o,. o,. o,. _,-.., o (_J --.,

_, 8 8 .:

!

51075.5!

51115.5LAUNCH

_=_ a__m

0 0,1 _ 0

•" _ 0 0

LAUNCH DATE

51155.5

JO-2_00000.0

!

51195.5

/ 30.26.

"_ 22.

19.

/ _0.

!

Jj 28.

!-.

o

!

51235.5

51670

51630

51590

51550

51510

51470

51430.5

51390.5

51350.5

51310.5

0

5_ooo_t04

5A

_J

>5-'

86

ORIGINAL PAGE I_'OF POOR QUALITY

00106115

00105106

0010312?

00102116

00101107

WI--CZQ

199111128(Z>

r,,(Z13:

991 [0119

9910910_

99107131

99106/21

99105112

i

51175.5

EARTH - MARS 199819 , C3L . TFL* BALL IST IC TRANSFER TRAJECTORY

",,;6 .... q& "o:_ ,6 ,_ ,; " ",_"

I ;__;___..;_ /,W/_'I_._,_ _,o_o._>,_,i T/_/_/X//I /L,/.,-C-_F-_IV-/I// .5159o.5

.51550.5

/ _-F • ...,sJ_'!__-?"/-m='_ I.y/ F /// , oo2_._ -- y 'Z '51510.5 =

• ..--.- , .,_/r }'/,_// l-_Vl

PJ_.'-l _ ,_'-I:tl/,__'"' .I , _,,,o._-_

__-Jl/ _ll#lll,/llU • ._,_ _,_,o.,"ii / II-_ Y_.///, 5135o._

51310.5

"* _ 0 0 0 0 0 0

LAUNCH DRTE

i I

_i_._ 51_._ _i_9_._ _13._.5LAUNCH J'O-2400000.0

87

,

DLA

d199819 - MARS

B__L IST IC

ORIGINAL PAGE IS

OF POOR QUALITY

1998/9 , C3L , DLATRRNSFER TRf::IJECTORY

001061t5

00105106

00/03/27

001021t6

00101107Wf-.(ZQ

.99111128>

rYcr(I

991101t9

99/09109

99107131

9910612t

99105112

o, o,-- 0

00 " -- " -- 0 0 0

LAUNCH DATE

! i ! i

51115.5 51155.5 51195.5 51235,5LAUNCH JD-2400000.O

!

51075,5

-51710.5

' 51670.5

'51630.5

51590.5

51550.5

51510.5

51470.5

,51430.5

51390.5

51350.5

51310,5

88

ORIGINAL PAGE |$OF POOR QUALITY

001061[5

00105106

00/03/2?

00102116

00101/07b_lt.--

Q

991li128

>

99110119

99109109

99107131

99106121

99105112

EARTH

..$.

- MARS 1998/9 , C3L , DLRBILL I ST I C TRflNSFER TRAJECTORY

- ,.; ;.-.-_

., ..i.;-;._/_""?'•-->"y-- ;x:_.

\_-tO.

. . I//_l./I/,i

0

- - -13. _-10.

_ 0 _ _ 0

0 0 0 0 0 0

L_UNCM D_TE

51175.5 51215.5 51255.5 51295,5L_UNCH J0-2400000.0

8wOo

v

5 1335,5

51710.5

51670.5

5 1630.5

51590.5

0

o51550.5 0

000

0uI

51510,5 n

_J

>514'70.5 --

rrrr(£

51430.5

51390.5

51350.5

51310.5

8I

i

RLA

d199819

ORIGINAL PAGE lg

OF POOR QUALITY

EARTH - MARS 1998/9 C3L . RLA• :ILLISTIC Ti:_INSFER TRI::_ECTOR¥

00/06/15 -51710.5

00105106

00103127

001021t6

O010L/07WI,-(I0

99111128>

n-n"(I[

991 I0119

99109109

99107/31

99106121

99105112

0 _ _ 0 _ _

0 _ _ _ _ _ 0 0 0

LAUNCH DATEi v v

51075.5 51L 15.5 51 L55.5 5 i 195.5 51235.5LAUNCH JO-2_O0000.O

'516"70.5

51630.5

' 51590.5

(

51550.5(((

51510.5E

51470.5 -E[¢

51430.5

51390.5

51350.5

51310,5

00106115

00105106

00/03/27

001021[6

00101;07I,Ip-(EC3

_9911 I128(I>

crCId(I

991[0119

99109109

9910713[

99106121

99105112

ORIGINAL PAGE [_

OF POOR QUALITY

EARTH - HAAS 1998/9 , C3LBALL I ST I C TRANSFER T;0R,3ECTORY

D ,C I D ,0 % 2"

, RLA

,2'70,

,

"-_'/5 " / // I" " _I

/ / / \

• " / _ )0.

\, \ \._\ \ ,-

\ _o.

..:..;....:.._:..<;._>-:/_/ //_.._....,..:>_;_.?.-__ .

. r¢/'/"

_.>._._..--_- _ ....,

/',.,,

r._"

i! r ___,., )7/////)/ ',

i

\

_0

_________----__ =------ .)00.

_ 0 _ _ 0 _

0 0 0 0 0 0 0 0

LAUNCH DATE

' ' ' ' ' " ' '513"351175.5 51215.5 51255.5 51295.5 5.5

LAUNCH JD-2400000.O

-51710.5

51670.5

51630.5

'51590.5

0

051550.5 o

000

0_

51510.5 _

_.1

51470.5

(_

,51430.5

51390.5

'51350.5

51310.5

91

,

ZAI

d199819 EARTH

ORIGINAL PAGE igOF POOR QUALll'Y

- MARS 199819 C3LBRLLISTIC TRI::IINSFER TRf:_ECTORY

ZRLS

00106/t5 51710.5

00105106

00103127

00102116

0010|107LLJI--.

O

(_99111128

99110119

99109109

99107131

9910612[

99105112

O'

0

aOo,

I

51075.5

• / l'

/' /

/

\i

_t_ ,

4(.."_._ L_._.O- "

p. /_'2

;j."f,".<'..;<<"_;> .. / . .

LO- _ _ ii//)

LnUNCH DnTEi i • _ !

51115.5 51155.5 51195.5LAUNCH JD-2400000.O

,0(%1

0

o,o,

!

51235.5

51670.5

51630.5

'51590.5

0

51550.5 g000

.51510.5 &

J

>.51470.5 --

n-c_(I

51430.5

.51390.5

.51350,5

.51310.5

12

ORIGINAL PAGE

OF POOR QUALITY

EARTH - HAAS 1998 / 9 , C3LBALLISTIC Tt:tI:INSF'ER TI:tI_ECTORY

J S d J ,'_ :"

,-/ .

00/06/15

00/05/06

00/03127

00/02/t6

9910713!

9910612[

991051!2

, ZALS

/

_ _ _ _ I" I_ I_"o

- o o o o o o o

LAUNCH DATE

I I l

51175.5 51215.5 51255,5 51295.5LAUNCH JD-2400000.0

v

51335.5

-51710.5

,51670.5

,51630.5

• 51590.5

0

0.51550.5 0

000_t

I.51510.5 c_

.J

.51470.5 --cYoc(I

'51430.5

.51390.5

.51350.5

51310.5

199819 EARTH

ORIGINAL PAGE ISOF poOR QUALITY

- MARS 1998/9 C3L'BALL I ST I C TRRNSF'ER TRAJECTORY

. VHP

00106115 -51710.5

00/05/06

00:03/27

00102/16

00/01/07

bJI-.

J 99111128(I>

rrr'r"

99/10/19

99109109

99107131

99106121

991051 [2

o,,

o

o0o,

// AL,_'

5 I0"15.5

o,o

o

0_

_ 0 _ _ 0

_ _ _ 0 0 0

LAUNCH DATE

v v I • 1

51115.5 51155.5 51195.5 51235.5LAUNCH JO-2400000.O

' 51670.5

51630.5

.51590.5

0

' 51550.5 o°

0oo

(w

.51510.5 _

_.1

,51470.5crrrq_

51430.5

.51390.5

'51350.5

51310.5

ORIGINAL PAGE |9

OF POOR QUALITY

00106/t5

00/05/06

00/03/27

001021[6

O010tlO?

bJ

£D

99/[[128

>

CE991[0119

99109109

99/09131

99/06/2I

99/05/[2

ao¢kl

o,

EAATH - HAAS 1998 / 9 C3LBRLL I ST IC TRRNSFER TRI:_ECT01RY

, VHP

t

\I

, •. j

_13/.

I_ f /,'I/

._¢._ ,.i_ /' .f °

II

i ) / i,/41/

• - I/ ,i ill/. "

::; _' J,j4,_i//_lii__

///i/

//

i

51 I75.5

0

0,

0 _ _ 0

0 0 0 0 0

LAUNCH DATE

51215.5 51255.5 51295.5L_UNCH JD-2400000.O

o

,oo

,0o

(>o,

!

51335.5

51710.5

51670.5

51630.5

5 1590.5

0

51550.5 0_

000

0dI

51510.5

.J

5 1470.5 --rrrrrE

51430.5

51390.5

5 ! 350.5

51310.5

199819 EARTH

ORIGINAL PAGE ISOF POOR QUALITY

- MARS 199819 C3L , DAPB:ILLISTIC TRRNSFER TRAJECTORY

00/06/15 51710,5

00105/06

00/03/2?

00102116

00/01/07I.=JI--(3:C3

dE991tlt28>

crn"

991 [01 t9

99/09/09

99107131

9910612t

99105/t2

\\

, /

0._ _- ----_ •

wl, i

,.__

__.**J

o _ _ _ _ _ o o o

-L_UNCH D_TE

51075.5 51115.5 51155.5 51195.5 51235.5LAUNCH JD-2_O0000.O

51670.5

51630.5

51590

51550

51510

51470

51430

51390

51350

51310

0

58000

56

_J

5--rr

I6

ORIGINAL PAGE I_

OF POOR QUALITY

00106/t5

00/05/06

00/03/27

001021 [6

00/01107bJ

0

(_9911iI28>

r-r

991101[9

99/09/09

99/07/31

99106121

99105112

i

51175.5

EAATH - HAASBALLISTIC

199819, C3LTRANSFER TRPJECTORY

• .:. - .-;.x jr /

DAP

I--"-" -_'" " / '

---- -.._V_ / / -,_.

"<<,>.___., "-'_. , ,

_7_ _ _Yt/i,'/I,'/,i I _ [ f........__ _$" (il'k_IIXi \ \ \ \_"+>.>_, ilf_fl IN \ x 'x '-"

_i-. _..._i//// /I /

-- 0 0 0 0 0 0 0

O, O" O"

LAUNCH DATEi i • i

51215.5 51255,5 51295,5LAUNCH JO-2400000.0

2_.

/

50.

VET--.

16.

8

51335,5

-51710.5

.51670.5

' 51630.5

•5 1590.5

0

051550.5 0

000

o4I

51510.5 £3

_J(E>

5 1470.5 --crcr(_

51430.5

51390.5

51350.5

.51310,5

97

g

199819

ORIGINAL PAGE !_

OF POOR QUALrrf

EARTH - MARS [998/9 C3L , RAPBALL IST IC TRANSFER TRI:kTECTORY

00/06/15 51710.5

00105106

00/03/27

00102/t6

00101107Ldt--(£O

_i. 9911[12B>

t7c-C[

99110/[9

99109109

9910713[

99106121

99105/[2

L_- _t ).

0

w

51235.5

0 _ _ 0 _ _ 0

LAUNCH DATEi , ! l i

51075.5 51115.5 51155.5 51195.5LAUNCH J0-2400000.0

51670.5

51630 5

5 t 590

51550

-51510

51470

51430

51390

51350

51310

0

_oo0o

d

>5--

Q_

98

ORIG!NAL Pt_C-_ _OF POOR QUALITY

00/06/15

00/05/06

00103127

00/02/16

00/01107bJk--

O

-A99111/28

n,n,

99110119

99/09/09

99107131

99106121

99105112

EARTH - HARS 199819 , C3LBRLL I ST I C TRANSFER TRI:::_ECTORY

": _ _ :i' '

L .-, _:. " /.i i .- ,..- -.f. .S-'X jl i

RAP

_:{ .4

• [/"/J, _,'

/, _i //

/:

I"//z_:

cO I_ ,0 ,0 _0 _ _0,,,I _ 0 0_1 _ 0 _ "4

-- 0 0 0 0 0 0 0

O, O' O_ O, O_ O_ O_

LAUNCH DATE,=

51175.5 512{5.5 51255.5 51295.5

." II (_; _ , 1 . /

LAUNCH JO-2400000.0

8,ooo,o,

51335.5

51710.5

51670.5

51630,5

51590,5

0

051550,5 0

00o

I.51510,5 o

.51470.5 --

'51430.5

51390.5

51350.5

51310.5

1

YAPS

d199819 EAATH

ORIGINAL PAGE

OF POOR QUALrP(

- FIARS 1998/9 C3LB:ILLISTIC TRRNSFER TRAJECTORY

• ZA,PS

00106115 51710.5

00105106

0010312?

00102116

00/01/07

LdI--

0

(_.99111128

>

crG:

991[01L9

99109109

99/07/31

99/06/21

99/05/[2

/ 0

"".-". ";d-")

/1 "U /'.-"//Dd._."/"/../

/_j. ///'/" ;/'/_.<-_ ./ /

...:.-><--<.'_

......... - /_,'L" /__ .-' ....._-;;-_

o,

go

Ioo,

i

51075.5

0 _ -- 0 _ _ 0

LRUNCH OnTE

LAUNCH JD-2400000.O

o

t:

i

51235,5

51670.5

51630.5

51590.5

0

51550.5 00

00o

od

51510.5 _

1

>51470,5 --

OCn,(Z

51430.5

51390.5

51350.5

51310.5

1@0

ORIGINAL PAG'Z f_OF POOR QUALITY

00/06/t5

00105106

00103127

001021 tb

001O11O7

bJI--(ZE]

J _9111128

CY.(Z

991101[9

99109109

99107131

99106121

99105112

EARTH - HARS 1998/9 , C3LBALL [ ST l C TRf:INSFER TRCM'ECTORY

, ZAPS

_/..-/" - __l"tn

_. _--_ __--'-

_ 0 _ _ 0 _

0 0 0 0 0 0 0

LAUNCH DATE

5i175.5 5i2i5.5 51255.5 51295.5 51335.5LAUNCH JO-2400000.O

-51710.5

51670.5

51630.5

51590.5

0

051550.5 o

000

CxlI

51510.5 O

-J(_

51470.5 --cec,,(3:

51430.5

51390.5

•51350.5

.51310.5

101

e

ZAPE

d199819 EARTH

oRIGINAL PAGE IS

OF POOR QUALITY

- MARS 1998/9, C3LBRLL I ST IIC ,TI:_INSFER TI:_I_ECTORV

, ZAPE

00/06/15 -51"710.5

00105106

00103127

001021 t6

00101107

WI--.CE0

99111128(I>

IX

99110119

99109109

99107131

99106121

99105112

/

O'

O

o,

o

/

-'./'.I-":./La

--_Y44 ._.S'/-_.

_o

:-._./',,0

/_/.i

•//" //i

"7./ / .'"_ J.//_..!/"4;_'''/./_/__ _/"/'_. ;/'/-/ "_..I

"..<.;.'.b:;_ ., ."/

i

51075.5

O _ _ O _ _

_ _ _ _ O O O

LAUNCH DATE

51115.5 51155.5 51195.5 51235.5LAUNCH JO-2400000.0

'51670.5

51630.5

51590.5

0

51550.5 g

000

o_

51510.5 _

_J

>51470.5

n"n-(_

51430.5

.51390.5

51350.5

51310.5

IOZ

O0/Ob/t5

00105106

00103/27

001021t6

00/0[107L.dim(:ZQ

U 991t1128G:>

or

(I99/101[9

99109109

99/07131

9910612!

991051t2

ORIGINAL PAGE !_

OF POOR QUALITY

EAATH - HARS 1998/9 . C3LI_ILLISTIC TRI:INSFER TRAJECTORY

, ZAPE

,I, _l*i O.

_/_i _'/ / '

_0

_oO'

i

51175.5

0 N _ O

LAUNCH DATE

!

51_i5.5 5i_55.5 51_45.5_Ausc_Jo-_.ooooo.o

I""

0,0o

i

51335.5

51710.5

51670.5

51630.5

51590.5

0

051550.5 0

000

04I

.51510.5 O

u(I

51470.5 '-oror

51430.5

51390.5

51350.5

51310.5

10.

ETSP

199819 EAATH

ORIGINAL PAGE ISOF POOR QUALITY

- MARS t998/9 C3LBRLLISTIC TRANSFER TRAJECTORY

, ETSP

00/06/15

00105106

00103/27

00/02/t6

0010tl0?

i,iI--

C)

(_99/11/28

cr

99110/t9

99109109

99/0713t

99106121

99/05/t2

//

484 ,_./"

J I

_r,u f

I

!I

I

Ii

!

,t82: -. .

,_J,,

4' //

' // / _

, _F 1 .,k,"

O j

/

//,_Tf

A

F.,

=Dr//

m_

j ..

._._-_U;

/

=

///

A /

'PI

/

i///

..1/

/

/

./

i

/161

/

_-" _._ :_.

- Lft_ /

0'_ '

I. ___:• _

2.t.

->.-=4/_1

: : : ::: 28.

/'_J _I.L I /

_ 1_1/ _.

0 ,-" -- _ _ 0 0 0

i

51075.5 5t195.5i,

511i5.5

LAUNCH DATE

51155.5LAUNCH JD-2400000.O

!

51235,5

-51710.5

•51670.5

,5163C.5

51590.5

0

51550.5000_t0u

51510.5 _

...1

51470.5 --crn,(I

5 1430.5

51390.5

'51350.5

51310.5

104

ORIGINAL PAGE i_l

OF POOR QUALITY

00106/15

00105106

00103127

00/02116

00101107I._I--(3:C3

.-199111128(3:>

991101L9

99109109

9910713[

99106121

991051t2eo

_o0',

EARTH - HAAS 1998/9 , C3L , ETSP" BALLISTIC TRt::INSI_R TRAJECTORY

,,,. '.! ;

/S'........"I ....>.;.-..'....._i_dd___,Z'_,/ _..-,...-" ,/,rf_,_ ;./ ,.y .,?-_ _ / _¢. 5o.

",.-//?,.y._/.'/Cd// ..-.f'/__ ,_

../ /_

_ '_;"MI/"/._ _ //I_II\.'i . _.;:_/i, ,"".,_ 17"1,- - p.- -I,, y/_..;,../IN.__. ,',....

51175.5

p-

F, 0 O O O O

LAUNCH DATE

LAUNCH JO-2400000.O

t-

o

I

51335.5

-51710.5

51670.5

51630.5

51590.5

0

51550.5

000_t0_I

51510.5 m

_J

>51470.5 --

r_n,

51430.5

51390.5

'51350.5

51310.5

11.

ETEP

199819 EARTH

ORIGINAL PAGE ISOF POOR QUALITY,

- MARS 1998/9 , C3L , ETEPB:ILLIST[C TRRNSF'ER TRAJECTORY

00106115

00105106

00103127

00102118

00101107

Ldt--Q:Q

-J991tl128(3:_>

n,rY(I

99/tO/t9

99/09/09

fX;)107131

9910612!

_t051t2

180,

o,

=oo_

o _ _ _ _ - _-- -- -- -- _ 0 0 0

LAUNCH OQTE

51115.5 51155.5 51195.5 51235.5LAUNCH JO-2400000.0

I

51075.5

51710.5

51670.5

51630.5

51590.5

O

51550.50

OOO',=tCU

51510.5 _

_1

514"70.5 --rYn-Q:

51430.5

' 51390.5

'51350,5

51310.5

106

ORIGINAL PAGE @_

OF POOR QUALITY

001061[5

00/05/06

0010312?

00/02/1b

O010t/O?wI-cEo

_J1-991 l [128

cr

991 tOI t9

99109109

9910713t

9910612!

99105112

EARTH - MARSBALL IST IC

r2.%

1998/9, C3LTRANSFER TRAJECTORY

, ETEP

• /1._ __ ,,____ _---_,...._

_-- _li ,,,,,,_ _ , i il_iilit t:7"_i_--___ _'_" I" I /i//i/IS/,I I11 _ _u.. [_. _ _ _//_///1/ / , --

_ _-. !-......---I-"'-'_--'_

66 66&J 6 W64

" ,.'/kTI_

a0 i_

I0

• !

51295.5

0

0 _ _ 0

0 0 0 0

LAUNCH DATE

i • i

51215.5 51255.5LAUNCH JD-2400000.O

_178.

i

51175.5

_00

O,O_

w

51335.5

-51710.5

• 51670.5

51630.5

51590.5

0

051550.5 0

000

I51510.5 0

._I(I:>

.51470.5 -"rr(3C(E

51430.5

51390.5

51350.5

51310.5

107

Earth to Mars

2000/1

Opportunity

ENERGY MINIMA

DEPARTURE ARRIVALVALUE TYPE (YEAR/MONTH/DAY) (YEAR/MONTH/DAY)

C3L 8.6342 I 2001/03/19 2001/09/10

C 3 L 7.8538 II 2001/04/16 2002/01/27

VH P 3.4757 I 2001/04/08 2001 / 10/24

VHP 3.7766 II 2001/01/13 2001/10/08

PRECEDING PAGE BLANK NOT FILMED

109

1

C3L

d2000/1

ORIGINAL PAGE I_

OF POOR QUALITY

EARTH - MARS 2000/ 1 , C3L TFL* BALLISTIC TRANSFER TRAJECTORY

02107120 52475.5

02106110

02105101

02103122

02102110

bJI--

Q

I_02101101>

01111122

01110/13

01109103

01107125

01106/15

_ _ _ 0 0 0 0 0

LAUNCH DATE

! ' ! i

51840.5 51880.5 51920.5 51960.5 52000.5LAUNCH JD-2400000.O

52435.5

52395.5

•52355.5

0

52315.5

000

52275.5

>52235.5 --

52195.5

52155.5

52115.5

52075.5

110

EARTHW

_l_ltO

_l_lOt

02103122

0210211OL=J}-(Z0

_02101101>

OC

(I0111tl22

01110113

0[109103

01107125

01106115,o mr) _-owl --, o

• I

51935.5 51975.5

- MARSBALL IST IC

2000/TRANSFER

ORIGINAL PAGE I_OF POOR QUALITY

1 , C3L , TFLTRAJECTORY

• , • . • , • • . • .

o o

LAUNCH DATE

520i5.5

LAUNCH JD-2400000,O

,0

"52055.5

8p-o

52095.5

- 52475.5

52435.5

.52395.5

'52355.5

0

0.52315.5 0

000

I.52275.5 Q

>'52235.5

52195.5

52155.5

52115.5

52075.5

111

e

DI3

d2OO011

oRIGINAL pAGE Ig

OF poOR QUALII"_

EARTH - MARS 2000 / 1 , C3L , DLA* BALL TST IC TI_SFER TRAJECTORY

02107/20 -52475.5

021061LO

02105/01

02103122

021021[0

W

Q_Q

- 02101/01

Ollttl22

Ot I LOI [3

01109103

0[107125

01106115

i

518,i0.5

\

o0 _

-- _ 0 0 0 0

oS oS _ S S SLAUNCH DATE

' ; , , I v

51880.5 51920.5 51960.5LAUNCH JD-2400000,O

0

1

52000.5

52435.5

52395.5

52355.5

C

52315.5

CCC,q

52275.5 i

>52235.5 --

n-n-(3:

52195.5

52155.5

52115.5

52075.5

112

ORIGINAL PAGE 14

OF POOR QUALITY

EARTH

02/07/20

02/O@ltO

02t0510t

02103122

021021t0

W

(3:0

.0210tlO1>

cr

Otlttl22

O[ItOl[3

0t109103

01107125

OtlOblt5

,o u_ P-_1 .-, o

o

I , v

5t935.5 51925.5

-HAASBALL [ ST I C

2000/TRANSFER

i , C3L , DLATRAJECTORY

j j 6 4 6

o o o

LAUNCH DATE!

52015.5LAUNCH JD-2400000.O

,o¢u

o

"52055.5

o

5C_

ipo

o

52095,5

-52425.5

' 52435.5

.52395.5

52355.5

0

o52315.5 o

ooo

I522?5.5 0

.J(I>

52235.5 '-"rrrr(3:

52195.5

.52155.5

.52115.5

52075,5

113

1

RLA

d200011

_f_iGINAL PAGE Ig'3F pOOR QUALfT_

EARTH - MARS 2000 / 1 , C3L , RLAi_:ILLISTIC TRI::WSFER TRI_ECTORY

02107120 - 52475.5

021061t0

02/05101

02103122

021021t0WI,-.(:I:,m

_T0210IlO1

Or.CE.EF.

Ol/tt/22

O[ItOIt3

01/09103

01107125

01 I06115

o

u

5 1840.5

o mN _ N

-- -- 0 0 0 0 0

oS oS _ s _ _ sLAUNCH DATE

v v ! •

5L880.5 51920.5 51960.5 52000.5LAUNCH _D-2400000.0

52435.5

52395.5

52355.5

0

52315.5 0°000

('kl

52275.5 1

_J

:>52235.5 --

rY

52195.5

52155.5

52115.5

52075.5

114

ORIGINAL PAGE Ig

OF POOR QUALITY

02107120

021061[0

0210510t

02103122

02102110ILlt--<IO

_02/01/01G_;>

O_OL

01111#22

01110113

01109103

01107125

01106115

EARTH - MARS 2000 / 1 , C3L , RLF:I_+ BALL I ST I C TRANSFER TRAJECTORY

6 6 ., 6 6

,,,. /_ _A__" I/_

\ N

<o.___ __ Q_ _ _.;,,,.,W_ ___,/

___.. ,=.. ,,,o.___ lft__!/A' \,,

_" ,._ % _ \.J'.LI'lllil///'_ '_ X___,.

--_ _ _...2_.

,0 u'_ D" t"" *,0 ,0 ",0 _t_t_l _ 0 Od -" 0 Oa

0 0 0 0 0 0

LAUNCH DATE

i _ i " !

5 1935.5 51975.5 52015.5 52055,5LAUNCH JD-2400000,0

0

0

• !

52095.5

-52475.5

.52435.5

.52395.5

52355.5

0

052315.5 0

000

I52275.5 0

52235.5 --

52195.5

,52155.5

.52115.5

.52075.5

115

1

ZALS

d200011 EARTH

oRIGINAL pAGE ISOF poOR QUALt1'Y

- MARS 2000/ 1 , C3L.BALL ! ST ! C TRANSFER TRI::_ECTOR¥

, ZALS

02107120 52475,5

021061t0

02105/0t

02/03122

02/02/10L.JI--

Q

_02/01/01

n,

0111II22

01110/13

01109/03

0L/07/25

01106/t5

e_

S

So

//

/ ,./

1

/70_

/f/_/.-- ,I /--

/ /-zz,.-..// ., ,/I / /5"/

518,_0.5

0 _ _ _

LAUNCH DATEi I i !

51880.5 51920.5 51960.5LAUNCH JO-2_O0000.O

o_

80

,,g.o

k

52000.5

52435

52395

52355

52315

522"/5

52235

52195

52155

52115

52075

0

_g000

5A_J

5-IX

116

OR|GINAL PAGE 19

OF pOOR QUAU'PI

02107120

02106110

0210510t

02/03/22

021021t0

bJ)--(EQ

d O21OtlOl

01111122

01/i0/13

01/09103

0t/07/25

OtlOblt5

EARTH - HARS* BALLISTIC

200011 , C3L , ZRLSTRt::INSFER TI:_:IJECTORY

/?C

I , I

51935.5 51975.5

--_..i q

0 0 0 <:3 0 0

LAUNCH DATE!

52015.5LAUNCH JD-2iO0000.0

0_

o

"52055.5

o

t-

o

i

52095.5

- 524"/5.5

' 52435.5

,52395.5

.52355.5

0

(:352315.5 0

000

CuI

,52275.5 n

_J_E

52235.5 --cecrq_

52195.5

52155.5

52115.5

52075.5

117

d20OO11

ORIGINAL PAGE Ig

OF POOR QUALITY

EARTH MARS 2000 / 1 C3L- B::ILLISTIC TI_::INSFER TRf::kTECTORY

VHP

02/07/20 - 52475.5

02/06110

02105101

02/03/22

02/02110LdI--

(IO

02/01/0t

0t/[[/22

01110113

01/09/03

01/07125

0110¢/t5

• /

/." /

0

- _ _ _ _

L_UNCH DATE

51880.5 5[9i0.5 519;0.5

unuNc.Jo .oooooo

t_

3

30

518_0.5

0

0

v

52000.5

52435.5

• 52395.5

52_55.5

c

52315.5 CCCC

(_

52275.5

>52235.5 -

r_r_(I

52195.5

52155.5

52115.5

52075.5

118

ORIGINAL PAGE iSOF POOR QUALITY

02107120

021061 tO

02105/01

02103122

02/02110b.lI--CE0

-J0210110t(E>

CEr-t"(E

01111122

01/10/13

01109103

01107125

01106115

EARTH HAAS 2000/ 1 , C3L , VHPBALL l ST ! C TRANSFER TR'PJECTORY

J 8 ,_ J J

-/

7 /

l;3 t'- t-

i

51935.5• i

51975.5

,0 ,0 ,0 #3 ID

0 _ "" 0

; _ 2, 3 V-0 0 0 0 0

LAUNCH DATE

• ' '520"5 '52015,5 5,5 52095.5LAUNCH JD-2400000.0

52475.5

52435.5

52395.5

.52355.5

0

0.52315.5 0

000,¢t0dI

' 52275.5 £3

._1(E>

52235.5 --n-n,(:I:

52195.5

52155.5

52115.5

52075.5

1111

2000/1 EARTH

ORIGINAL PAGE IS

OF POOR QUALITY

- MARS 2000/ 1 , C3LBALL I ST I C TRANSFER TRAJECTORY

, B::IP

02/07/20 - 52475.5

021061t0

02105101

02103122

02/02/tO

bJI--(Z

-J02101101

>

0ii11122

01110/13

01/09/03

01/07/25

01106115

I|,

J

//

/ /I " / ,

/¢d_._.:,..,

/.d/11"/ ,"/'/s :.1 /

eel.

r_

S

o

i

5184.0.5

_ -- 0 0 0 0 0

o o o _ _ _ _LAUNCH DATE

5t880.5 5t920.5 51960.5 52000.5LAUNCH JD-2400000.O

•52435.5

•52395.5

'52355.5

0

.52315.5000

'52275.5 _

52235.5 --

52195.5

52155.5

52115,5

52075.5

ORIGINAL PAGE |4

OF POOR QUALITY

02/07/20

02106/t0

02105/0t

02103122

02102110

L=J

CZtm

J02/01/01El:>

(:T.Or/it/22

OtltOIt3

0t109103

0t/07125

01106115

EARTH

5_

- MARSBALL IST IC

2000/ i , C3L , DAPTRANSFER TRAJECTORY

//,,

6 o _ 6 c;

//i;///. ,_

• • "l7

_--12.3

',0

7_

• '(/ (

_-I0,

I

51935.5

o

8

["- t_- wD _) wD tt'}

O O O O O O

LAUNCH DATE

, , • ,j • ,51975.5 52015.5 20 5.5 52095.5LAUNCH J0-2400000.0

- 524?5.5

•52435.5

' 52395.5

•52355.5

(D

0.52315.5 0

000_t0_I•522?5.5

.J

52235.5 --crrr(£

52195.5

52155,5

52115.5

520?5.5

121

.

RAP

d2OOO11

ORIGINAL PAGE 19OF poOR QUALITY

EARTH - MARS 2000/ 1 , C3L , RRP- BRLLISTIC TI_INSFER TRAJECTORY

02/07/20 - 524'75.5

021061 tO

02/05/01

02/03/22

02/02/t0bJI--(Ia

_02/Ot/Ot>

CEE_CZ

01/11/22

01/10113

01109103

01107/25

0110b/15

JJl'l _ _ °

3tO.

L300

o_ 0 _

LAUNCH DATEi i i !

5i840.5 51880.5 51920.5 51960.5I__UNCH JD-2400000.O

o o

!

52000.5

' 52435.5

52395.5

' 52355,5

0

52315.5 0_

000

0u

522'75.5 1

_1

52235.5 --n-n"

52195,5

52155.5

52115,5

52075.5

ORIGINAL PAGE I_1

OF POOR QUALITY

02107120

021061t0

0210510t

02103122

021021t0

bJ

a

_-02/Ot/Ot

Ot/ttl22

OtllOIt3

0t109103

0t107125

OtlObl[5

EARTH

I

!13,

- MARS 2000 / 1 , C3L , RAPBALL I ST I C TRANSFER TRI::QECTORY

6 6 o ., 6 6

/h".</MC-".-_IL/_/_ " '.

__ _____- _7 /. "..I...z//////. _'/_ / / _ :" ..,i

I .,_'=. / "-'_-_.

._ _____ , • .

0 0 0 0 0 0

S S S F, _ _ F_ F,L ,4UNCH DATE

I I ! ' ,_51935.5 51975.5 52015.5 520 5.5LAUNCH JO-2iO0000.0

tno

o

, i

52095.5

- 52425.5

52435.5

52395.5

52355.5

0

52315,5 8000

I522?5.5 0

J

52235.5

52195.5

52155.5

'52115,5

.52075.5

123

1

ZAPS

2OOO11

ORIGINAL PAGE lg

OF POOR QUALITY

EAATH - HAAS 2000/ 1 , C3L , ZAPSBALL I ST I C TRRNSFER TRPJECTORY

02107120 -52475 5

02106110

02105101

02/03/22

02102110

bJ

(IO

02101101££>

01111122

01/1,3/13

01/09/03

01107/25

01106115

r,,-l,

S

i

518_0.5

J

/ /"

J ./"

- o _ _ _ -

_ _ _ _ 0 0 0

LAUNCH DATE

518 0.5 51920.5 51960.5 52000.5LAUNCH JD-2400000.O

52435 5

52395 5

52355 5

0

52315 5 00(300

C_

• 52275 5

"3

-J(E>

52235 5 --n-n-

52195 5

52155 5

52115 5

52075.5

124

ORIGINAL PA3E ;3

OF POOR QUALITY

02107120

021061 tO

02105/01

02103122

02102/t0W).-

O

(_02101101

0[1[II22

OtliO/t3

0t109103

0t107125

0tI06/1_,0

- rvlARS 2000/ 1 , C3L , ZlqPSBALL ! ST I C TRANSF'ER TRAJECTORY

s

i

51935.5

0 _ _ 0 _

0 0 m 0 0 0 0

LNUNCH DNTE

' I ! • 1

51975.5 52015.5 52055.5LAUNCH JO-2_O0000.O

"U'3

0

0

, !

52095.5

52475

52435

52395

52355

52315

52275

52235

52195

52155

52115

52075

0

5o000,,m"('klI

5O

J

5""

125

1

ZAPE

d2OO011 EAATH

ORIGINAL PAO_ _gOF POOR QUALITY

2000/1 , C3L ,TRRNSF'ER TRRJECTORY

ZAPE

02/07/20 52475,5

02106110

02105101

02103122

02102110

u.JI--

O

.02/01/0t>

IZ

0111|122

011[0113

01109103

01107125

01106115

I

"/

/ , /

/ .,- /- -

f .'.- . ..'zz- i

i

51840.5

).

ff x .

_ _ 0 0 0 0 0

_ _ oo o - _LAUNCH DATE

518 0.5 51920,5 51960.5 52000,5LAUNCH JD-2400000.O

524 35.5

52395.5

52355.5

0

52315.5

000

522?5.5

.52235.5

52195.5

52155.5

52115,5

52075,5

126

ORIGINAL PAC,,E t_

OF POOR QUALITY

02/07/20

02/061t0

02105101

02103/22

02102110bJ

£E0

02101101

01111122

OtltOIt3

01109103

01107125

OtlObl[5

EARTH - MARSBALLISTIC

2000/ 1 , C3L , ZAPETRRNSFER TRPJECTORY

. _/ //h///7 ' / /

• _/,, //,'////_//,,//,,

_,,., ,$_,_ ,, .

tI

LAUNCH DATE

i !

5t_35.5 5t_5.5 52015.5 52055.5LAUNCH JO-2400000.O

um

:00

F=

0

0

i

52095.5

- 524?5.5

52435.5

,52395,5

,52355.5

0

0.52315.5 0

000

I,522"75.5 £3

l-j

.J(E

52235.5 --C_n,(E

52195.5

52155.5

52115,5

520"75.5

127

10.

ETSP

2000/1 EARTH

.ORIGINAL PAGE lgOF POOR QUALfTY

- MARS 2000/ i , C3LBALLISTIC TRRNSF'ER TRt:k1ECTORY

, ETSP

02/07/20

02106/t0

02/05/0t

02/03/22

021021 tOWk-Q:

° /J02101/Ol(I

rr ['7; /Oil [ i 122

Ot / tOI t3

o,,oo,o,"_'/_I'__.,d',._oL/o7/25 _ _.

0,,I OJe,,I _ 0

S " g

s s _0 0

i

51840.5 51880,5

//

/// _',470.

0 0 0

_RUNCH D_TE

5t920.5 51960.5L_UNCH J0-2400000.0

I

0 0

52000.5

- 524"75.5

524 35.5

52395.5

52355.5

0

52315.5000

522?5.5

J

>.52235.5

52195,5

52155.5

52115,5

52075.5

ORIGINAL PAGE |9

OF POOR QUALITY

02107120

02106110

02105101

02/03122

02102110I,I

(EQ

d 02101101

>

01111122

01110113

01109103

01107125

OtlOblt5

EARTH

,0 U_ ¢"04 _ 0

0

i v

51935,5 51975.5

- MARSBALL [ ST [ C

20OO/TRANSFER

1 , C3L ,TRAJECTORY

6 c; _ ,;u'3 '_ r,) C'a

0 0 0

LAUNCH DATE, v

52015.5LAUNCH JD-2400000,O

ETSP

5 J

3 3 F-0 0 0

v

"52055 • 5 52095,5

52495.5

52435.5

,52395.5

•52355,5

0

052315.5 0

000

o4I

522'75,5 Oi-j

d(I

52235,5 -'n-n-(I

52195,5

52155.5

52115.5

,52075.5

11.

ETEP

d200011 EARTH - HARS

BALLISTIC

ORIGINAL PAGE IS

OF POOR QUALITY

20001 i . C3L ,TRflNSI_R TRAJECTORY

ETEP

02107120

02106/10

0210510L

02103122

02/02/10

UJI--CIZQ

J 02101101

>

nr

01111122

Ot/tO/t3 !

i

! /!-- ..q

o_io91o3 _ _,l\ I/_I

]",._k\_lt

o_ .-- 0

i

51840.5 51880.5

I!

! I, I

r i

i

I

ii

!i ;

[

! .I"8.I! :

! ,

F" r

... //

', i�

Lf ! _.-i

!

LAUNCH

i

i

i

i

;,rl. i

:07x_

_ _

.... : _,C2

f- /-

r-

175.

Zo o

LAUNCH DATE

!

51920.5JD-2400000.O

/ ./ ./

• /

m=

=:C:_

//

; I"'_ ¸"

/ /

i// ..i_ .//-/�lily/�. /

".."5-.;:..i7- "/11.'//

w J I (

J / . -

// .. ,.'/.-;/ -

>.-..,: :.>:;-/.'"/. ;,_>-/

;C'; """"/ //

rf i -

.4 ..( ,Jlr*'..-_

"_ '_--'__

_.Z4F /

o

o

( ..

_ I* //

_ 1 _'

o

!

51960.5

4__,.

7=

29.

2'4.

20.i8.

14.

',2.

10.

IO:

12.

!!:45.

0

!

52000.5

- 52475.5

.52435.5

' 52395.5

52355.5

0

'52315.50o0

'52275.5

>'52235.5 --

.52L95.5

'52155.5

'52115.5

52075.5

ORIGINAL PAC-E ;_

OF POOR QUALITY

02/07/20

EARTH - HAASBALLISTIC

2000/ 1 , C3L , ETEPTRANSFER TRAJECTORY

52475

02106110

0210510t

02/03122

021021t0bJ

E[a

_02/Ot/Ot

011[1122

Ol110113

0t109/03

01107125

OtlO6115

I

51935.5

0

0 ¢'_ "

0 0 0 0 0

LAUNCH DAlE

f r ' r

519'75.5 52015.5 52055.5LAUNCH JD-2400000.0

0

F.0

• w

52095.5

52435

52395

52355

52315

52275

52235

52195

52155

52115 5

52075.5

0

05o

000

I5 D

__1

5--n,

131

Earth to Mars

2002/3

Opportunity

ENERGY MINIMA

DEPARTURE ARRIVALVALUE TYPE (YEAR/MONTH/DAY) (YEAR/MONTH/DAY)

C 3 L 8.8102 I 2003/06/07 2003/12/25

C3L 12.564 II 2003/05/10 2003/12/29

VHP 2.6975 I 2003/06/13 2003/12/31

VH P 2.7652 II 2003/05/10 2003/12/30

PRECEDING PAGE BLANK NOT FTLM_D

,

C3L

c/2002/3 EARTH

)t

- MARSBALL IST [ C

ORIGINAL pAGE. I_OF pOOR QUALtTY

2002/3 , C3L , TFLTRANSFER TRAJECTORY

04109112 - 532<>0. ,5

04108103

0410GI24

O&lO_115

031t2107

03110128

03109118

!

52620.5

S _ £ 0 0 : S

0 0 0 0 0 0 _ 0

LAUNCH DATE

' "527"0 ' '52860.5 0.5 52?40.5 52?80.5LAUNCH JD-2400000.O

53220.5

53180.5

53140.5

0

53100.5000,,q.

53060.5 _

._1

•53020.5rY

52980.5

52940.5

52900.5

52860. ,5

134

ORIGINAL PAGE iSl

OF POOR QUALITY

04109112

04100103

04106124

EARTH - HAAS 2002/3 , C3L , TFL)(' BALLISTIC TRANSFER TRAJECTORY

031t2107

LIMB_

.I

lrl0

0

03110128

i")o

0

, ! •

52780.5

0 0 0 0 0 0LAUNCH DATE

5_B_o.5 _8_0.5 5_60.LAUNCH JD-2400000.O

031091 Ill

03105109

o

o

!

52"/40.5

- 53260.5

,53220.5

,53180.5

,53140.5

O

0,53100.5 0

000

OdI

,53060.5

.-I(3:>

530_0.5 ,-el,el,

52980.5

52940.5

52900,5

52860.5

135

,

DLA

d2002/3 EARTH - MARS

* BALLISTIC

ORIGINAL PAGE IS

OF POOR QUALITY

2002/3 , C3L , DLATRANSFER TRI_ECTORY

04109/t2

04/08/03

04106/24

04/05/t5

04104105

I,I

C[0

_IZ 04102125

>

(3Cp/C£

04/Ot/tb

031t2/07

03110/28

03109118

03/08109

0

t

52620.5

\

-20,

/

-11"!

\\

o

o

k

\

K,....

' \ I P/',,:" . /

\ ,/ /" _ .

/ /' / /\ .,/j",, //

/ / ./ //d/ //,/

/ / / .

. ._._, .d'A /,_- i / / f

//" •

G _ o o o o

0 0 0 0 0 0 0

LAUNCH DATE

52660.5 52700.5 52740.5LAUNCH 3D-2400000.0

i

52"780.5

- 53260.5

53220.5

53180.5

53140.5

53 i00

53060

53020

52980

52940 5

52900 5

52860.5

C

CCC

('x.

>5-

crcr

136

ORIGINAL PAGE I_1

OF POOR QUALITY

04/09112

04108/03

04106124

04105115

04104103

I--Q:tn

Q:0410tit6

03112107

03110128

03109118

03108109

o

o

EARTH - MARS 200213 , C3L , DLABALL IST IC TRANSFER TRAJECTORY

.

i.

i,

/ I 1

o o

I,")

o o

i

52740.5 "52780.5

-,..-15.

o

0 0 0 0 0 0

LAUNCH DATE

5 io.5LAUNCH :0-2400000.0

- 53260.5

• 53220.5

53180,5

53140.5

0

053100.5 o

000

O4I

• 53060.5

..J(Z

53020.5 --

(Z

52980.5

52940.5

52900.5

52860.5

137

,

RLA

d2002/3 EARTH

ORIGINAL PAGe" IS

OF POOR QUALITY:

- HAAS 2002/3 , C3L , RLABALL IST IC TI:_:INSFERTRAJECTORY

04109112 53260.5

04108103

04106124

041051t5

04/04105

WF--

O

04/02/25

cr

0410[/16

03112107

03110128

03109118

03108109.

o

i

52620.5

/

/,/

//

g

0

{,0\_ \_\ \ \k \

O_

_o

\\

_" ,L%

\_0

/

\ \ ' /-

kP. \

\ \,.\\ /

\ ,_7

' / / _,_// /

./.'///_ "/

o °_ _ - ;

O O O O O

0 0 0 0 0 0 0

LAUNCH DATE

• 1 6 ! i52660,5 527 0.5 52740,5 52780,5LAUNCH JD-2400000,O

53220.5

.53180.5

'53140.5

0

53100.50oo

53060.5 _

53020.5 --

52980.5

52940.5

52900,5

52860.5

1311

ORIG;NAL PA_E i;S

OF POOR QUALITY

04/09/t2

04108103

04106124

04/051t5

04104105I,iI--££0

-04/02/25

el,

04/0[/ L6

031t2107

031t0128

03109/t8

03/08109

EARTH

S20. \

\ \,\

\ /LU. _ t

- HAAS 2002/3 , C3L , RLRBALL [ST [C TRANSFEI:t TRAJECTORY

_,__;_ 7,_ri _ ---,l l 1I11/'111i11,7k, ,o

0 O

0 0

i

527,10.5

% ..._,,.._ ._w,

',,_341 ).

0 0 0 0 0

0 0 0 0 0

LAUNCH D_,TE' v , ! • !

52780.5 52820 5 52860.5LAUNCH JD-2_O0000.O

0,

0

o

i

52900.5

53260.5

53220.5

53180.5

53140.5

0

053100.5 0

o00

c_I

•530O0.5 £3

_J

•53020.5 --n-C_(3:

•52980.5

•52940.5

•52900,5

52860.5

139

4.

ZALS

2002/3 - MARSBALL [ST [C

ORIGINAL PAGE IS

OF POOR QUALITY

2002/,..3, C3L , ZIqLSTRANSFER TRAJECTORY

04109112 53260,5

04/08/03

04106124

04105115

04104105

bJI.--

o

(_L-04/02/25>

n,n,(Z

0410t/16

0311210?

03110128

03109118

03108109

0

I

52620.5

_U. //

/ /

0 0 0 0 0

0 0 0 0 0 0 0

LAUNCH DATE

v v , i, "7 w52660.5 52700.5 52 40.5 52780.5

LAUNCH JD-2400000.0

0

53220.5

53180.5

53140.5

0

53100.5

000

'53060.5

J

>53020.5 --

52980.5

52940.5

52900.5

52860.5

140

ORIGINAL PAGE _OF POOR QUALITY

EARTH

041091 t2

04108/03

04106124

04/051t5

04104105

b.It--C_O

d04102125

>

n"n"(I:

0410tit6

c

:" A

- - - -

/40/

_N .1 = _

-- -" //.2

r_ ....

/J

: I _'

:- -

/L

/I/w/

:A/ #///

/:/

03112107

031091 [8 _--_--_'l_-

_=u. I

03108109 •

o o

0 0

I

52740.5

- MARS 2002 / 3 , C3LBALL IST IC TRANSFER TRAJECTORY

/ '//]

/ - . / / /.,

1 A //

S/A._ _

-- 22 /

!

2.

-- I

,

,

o

o

• !

52780.5

, ZI::ILS

////

////,

/ /

//4 ,

it�

#

¢

!

.4

/_/ ' "/ ,f

/# /

7Z///

•//,

_ J

• i/

I ! •

:2

J = .

- II

!!f I

¢%1

7/

/ #

/

-!• .%-

g//

_t

tt.i

/,

/ J'J

///

/J

"iI//III,

,,t_o.trxzlox." Z :C C Z

Z -":." ZC.'."

•=- -'-;....n

"///_/.

Tf Jlf//,]#,'///'///;//

""//h

. " " .'" : ,

//i/':"I ly.

i!

d & .d<:g_

I _IAII IIII

"///I".... H. .

' '_Z'_

q _

,-iy//

"/a_..2 -"

/)__-

i ?p.

o _ 8 0

3 3 " "0 0 0 0

0 0 0 0

LAUNCH DATE• I

"52820.5 52860.5LAUNCH JD-2400000.O

o

o

_0

o

i!

52900.5

53260.5

53220.5

53180.5

53140.5

0

053100.5 0

000-¢ICUl

53060.5 E3

,-j

_J(3:>

53020.5 "-n"n,(_

52980.5

52940.5

52900.5

52860,5

141

2002/3 EIqRTH

ORIGINAL PAGE; Ig"Of pOOR QUALIW

- MARS 2002/5 , C3L[}ALL I ST ! C TRANSFER TI:_IJECTC_Y

VHP

04109112

04108103

04106124

04105115

04104105t.dF--

0

04/02/25

Q_G;

04101116

03/12107

03/10/28

03109118

03108109

/

,/i./Jr,,,

.¢,p,,p,"

,//_,,'/,'//'

/

//,",/ / /,/V /,/ / _

,0"/// _,/

_/'/ /

2 S _ 2 g _ :

_ _ 0 0 0 0 0

0 0 0 0 0 0 0 0

LAUNCH DATE

I • ! v ' I

52620.5 52660 5 52700.5 52740.5LAUNCH JD-2400000.O

32,o

o

, !

52780.5

53260.5

53220.5

53180.5

53140 5

C

53100 5CCC

53060 5

>53020 5 --

52980 5

52940 5

52900 5

52860 5

142

ORIGINAL PAGE IS

OF POOR QL!P4.1T_-

04109112

04108103

04106124

04105115

04104105

I,ni--

Q

04/02/25

>

n,

0410Ili6

03112107

O3110128

03109118

03/08/09

o

o

i

%2740.5

MARSBALLISTIC TRANSFER TI_JECTORY

2002/3, C3L , VHP

_ d 4 d & & dda_

,,.,o._,.,,.,./_y////'//,'/ /'/__ _,///,/ ×",'//S'///'//,"/__ _ _,

• "/ F " 4 ",,/ // ///,/////_/--//_ _ @, , _ ,_//>'/_y/___ _:_

'_/ / / i" ,"_.,/ / _,_J>'O /,?,*_ .7__ /

/ ,_ ,/;,,',2r/J//A_r, _'-"_--KI//

/_ //////,'///,'//;/ /

/{<.k _ (,o , _LY_/ /// _/// / /

0 0 0 0 0 0 0

0 0 0 0 0 0 0

LAUNCH OATE

' v • i , v

52780.5 52820.5 52860,5LAUNCH JO-2400000.O

o

o

I

52900.5

53260.5

53220.5

53180.5

53140.5

0

0•53100.5 0

000

I53060.5 o

_J

>53020.5 --

rrn,

52980.5

52940.5

52900.5

52860,5

143

2002/3

ORIGINAL PAGE I_OF POOR QUALITY

EARTH - MARS 2002/3 , C3L , DAP* BALL I ST IC TRANSFER TRAJECTORY

041091t2 - 53260.5

04/08/03

0410bl24

04105/t5

04104105

L_I--G2a

d 04/02/25CE>

E

0410tltb

03112107

031L0128

031091t8

03108/09

IN

/

-- _ _ 0 0 0 0

0 0 0 O 0 0 0

LAUNCH DATE

52620.5 52660.5 52700.5 527_0.5LAUNCH JO-2400000,0

o

o

o

roo

52780.5

• 53220.5

53180.5

53140.5

53100

53060

53020

52980

52940

52900

52860

0

5g000

('W

5&

_.1

5--

ORIGINAL PAGE i_l

OF POOR QUALITY

04/09/t2

04108103

04106/24

041051 t5

04104105

ILlh.-(Z0

04/02/25CK>

CYn"£E

04/Ot/t6

031t2107

031t0/28

03109/18

03108109

EARTH

o o o

r,3 r,3 _3o o o

i • v

52740.5 52780.5

- HAASBALL IST IC

2002/3 , CSL , DlqPTRANSFER TRAJECTORY

_ =_ 4 6 _ _ 66 a6

o o o

3 3 _0 0 0 0

0 0 0 0

LAUNCH DATE• i • !

52820,5 52860.5LAUNCH JD-2aO0000.O

o o

52900,5

-53260.5

' 53220.5

'53180.5

53140.5

0

053100.5 0

000

04I

53060.5 C]

_.1(I>

•53020.5 --n,cr(I

'52980.5

•52940.5

52900.5

52860.5

145

.

RAP

d200213 EARTH - MARS

* BRLLISTIC

ORIGINAL PAGE Ig

OF POOR QUALITY

200213 , C3L , RAPTRRNSF'ER TRAJECTORY

04109112

04/08/03

04106124

04105115

0410410_i,ip.-

O

_04/02/25>

el:ne

0410[llb

03112107

03/10/28

03109118

03108109

im /

_7_./ 45

/ ;/

t/jr

g0 0 0 0 0

LAUNCH OATE

52660.5 52700.5 52740.5 52780.5LAUNCH

i

52620.5JO-2400000.0

- 53260.5

'53220.5

53180.5

'53140.5

C

'53100.5 CC

C

•53060.5 r_i.,i.

' 53020.5 -¢rEZ(Z

' 5298,0.5

52940.5

52900.5

52860.5

146

ORIGINAL PAGE |_tlOF POOR QUALITY

041091t2

04/08/03

04t06124

04/05/15

04104105

LI.I

Q

_04102125

>

n"

<3:04/Otlt6

03/t2/07

03110/28

031091t8

03108/09

EARTH - MARS 2002/3 , C3L , RAP, BALL I ST I C TI:_INSFER TRI=IJECTOItY

o,

o

o

0 0 0 0 0 0 0

0 0 0 0 0 0 0

LAUNCH DATE

i , v , ! • i

527_0.5 52780.5 52820.5 52860.5LAUNCH JD-2_O0000.O

aO

go

"3o

"52900.5

-53280.5

53220.5

53180.5

53140.5

0

053100.5 0

000

I53060.5

.J<3:>

,53020.5 --¢Yn-

,52980,5

.52940.5

'52900.5

52860.5

147

,

ZAPS

cf2002/3 EARTH

ORIGINAL PAGE 19OF POOR QUALITY

- MARS 2002/3, C3L , ZAPSBALL IST IC TRANSFER TRAJECTORY

04109112 - 53260.5

04/08103

04106124

04105115

04104105

b..lI-.-CKE3

#1:04/02/25

eY_e

041011 l_

0311210?

03110/28

03109118

03108109

O

/

!

52820.5

0 0 0 0

0 0 0 0 0 0 0

LAUNCH DATE' v _ • v

52660.5 52700.5 52740.5LAUNCH J0-2400000.0

o

0

v

52780,5

•53220.5

'53180.5

53140.5

0

53100.5000

53060 5

J

53020 5-

52980 5

52940 5

52900 5

52860 5

148

ORIGINAL PAGE Ig

OF POOR QUALITY

041091t2

04108103

04106124

04105115

04104105

i,m

£E613

_04/02/25

cr

0410[I 16

03/t2107

03110/28

03/09118

03108109

o

o

i

52740.5

EARTH

Xi /

/J

/ " V/

o

o

- HAAS 2002/3 , C3L , ZRPSBALL IST [C TRANSFER TRAJECTORY

4

J ." ." ; / . / 3 " • - . . _, _

ri/ /

./,,_/ / / /

•, • . ., :, : : __..__';.

7_ " ,Z._

/,

v

__...---

o

o

!

52780.5

/

/

i ."

r /" ."

/ /I I/

///

I_f

• ;. ; !!

: : ; ;.':'.: s/:iii_ _'_"

.... /ILIA "_

/ ,,, -;::.., .'1"_,.._

!;,;,'/ ,'.'.'-

-c_j..4_., ..._

£ R _ 83 3 #0 0 O O

0 0 0 0

LAUNCH DATE!

'52820,5 52860.5LAUNCH JD-2400000.O

=-,,,,,._._

"-.-._I_.

"tO.

/.'l.

).

___k.

• ).

=, I. J

'll.

i_mi.

_.',.

-110.

----I O.

I

...13(

_0

o o

52900.5

- 53260.5

' 53220.5

53180.5

53140.5

0

053100.5 0

000_t04I

53060.5 O

J(I>

53020.5 --rr

(I

52980.5

52940.5

52900.5

52860.5

149

ZAPE

d2002/3 EARTH - MARS

* BALLISTIC

ORIGINAL PAGE II

OF POOR QUALITY

200213 , C3L , ZRPETRRNSFER TRPJECTORY

041091t2 - 53260.5

04/08103

04106124

04105115

04104/05bJ

0

(f1_04/02/25

0410II16

031L2107

03/t0/28

03/091t8

03108109

I

52620.5

J.lO, __4 I.

/

/f"

•" 0 0 0 0 0

0 0 0 0 0 0 0 0 0LAUNCH DATE

ii , i • ! !

52660.5 52700.5 52740.5 52780.5LAUNCH JD-2400000.0

.53220.5

53180.5

53140.5

0

53100.5

000

53060.5

>53020.5 --

52980.5

'52940.5

'52900.5

52860.5

150

ORIG!NAL PAGE !_i

OF POOR QUALITY

04109112

04/08/03

04/06124

041051 [5

04104/05

bJt--(KO

_i04/02/25

E02

041011 16

03112107

03/10128

03109/t8

03108109

EARTH

ii'l

S,ll,..,.,

/

I

/

/ /

- MARS 2002/,_7, , C3L , ZRPEBALLISTIC TRANSFER TRAJECTORY

d _ d 4 d d _ dd _4

7__?_'// ,___ _,,.

,.

__ _ p" __ .-.__ .__ ___ 0.

I I III/_, I /N,W//i /IIl i '"""

, l,i!l,i_!!i//i

"<'-" ,' I ' I/,, lID_',_j'14Z__:_ f I l l lkilii, __

_ r-

O 0 0 0 O

0 0 0 0 0

LAUNCH DATE! • ! • !

52780.5 52820.5 52860.5LAUNCH J0-2400000.0

50

"_ u_0 0

_') r,,10 0

i

527ao. 5

100.

110.

1.10.

1 ,'li').

? 40.

150.

_--I?(:.

O

rOO

_0

O

r_O

, i

52900.5

- 53260.5

• 53220.5

'53180.5

'53140.5

0

53100.5

0o0

I53060.5

53020.5 --

52980.5

52940.5

52900.5

52860.5

151

10.

ETSP

d2002/3 EARTH - HAAS

BP__L [ ST I C

ORIGINAL PAGE 19

OF" POOR QUALITY

2002 / 3 , C3L , ETSPTRANSFER TRAJECTORY

04109112

04108103

0410b/24

041051t5

0410410_

WI--

("1

.04/02/_:_5

Cr

04101116

03112107

031t0128

031091[8

03108109

o

I

52620.5

8

o

0 _ _

o o o

o o o o o

LnUNCH ORTE

' ' 527452660.5 52?00.5 0.5LAUNCH JD-2400000.O

ff-io

o

o

o

I

52780.5

53260.5

53220.5

53180.5

53140.5

C

53100.5 cC

GGC

53060.5 _

53020.5 -r_

G

52980.5

•52940.5

52900.5

52860.5

152

ORIGINAL PAGE |$OF. POOR QUALITy

04109112

04/08/03

04106124

041051 [5

04104105

L.IJt.--(I:0

d04/02/25

cr02

0410II16

03112107

03110128

0310qlt8

03108/09

o

o

EARTH - MARS 2002/3 , C3L , ETSPBALL I ST [ C TRRNSFER TRR,.TECTORY

i

52740.5

o o o

o o o

LnUNCH DRTEi

52780.5 52820.5LAUNCH JD-2_O0000.O

6 6 _ 4 6tO (xj (kl Ckl

a./, '9_ ./lg_i" ;Z'O_.._4.

. . .

.. :.. ".�ill I1.1 ,< I

,.. ,"/_ "///..... g A ,/., .."

, I,, /_f_z ." ." ."." ?." .

v "41' ///_//2 /_.__

I/I I ._..-,.\I i///i'_ .. _-/...7///11/

o o

g _o o

g W 66 66

/ //// ///I

"///_,, .

i ,

"" I

_r_ 14.

..._pg.

X

o

re) _.)o o

• i i

52860.5 52900.5

53260 5

53220 5

53180 5

53140 5

0

053100 5 o

000

CMI

53060 5 rn

J

>53020.5 --

<3:

52980.5

52940.5

.52900.5

' 52860.5

153

11.

ETEP

2002/3 EARTH - MARS* BALLISTIC

ORIGINAL PAGE IS

OF POOR QUALITY

2002/3 , C3L , ETEPTRt::INSFEI_ TRAJECTORY

041091L2

04108/03

04106/24

04105115

04t04105

LdI.--(3:0

_E04/02/25

0410I/t6

031t2/07

031t0128

03/09/18

03108109

/I

/

0 0 0 0 0

o o o o o o o o o

L_UNCH D_TE

i • l ! i i

52620.5 52660.5 52700.5 ,52740. ,5 52780.5LI:::IUNCH JD-2,iO0000.0

53260.5

53220.5

53180.5

53140.5

C

53100.5C

(_

53060.5p.,.

>•53020.5 --

crer(I

.52980.5

52940.5

52900.5

52860.5

154

ORIGINAL PAGE iS

3F POOR QUALITY

EARTH

04109/t2

04108/03

0410bl24

04/05/t5

04/04/05Wt--(3;0

_. 04/02/_5

n-

(I

04101116 _'t____

179

!

!

P

I I A I.

_5Gff.

03/09/t8

03108109

-.---___._

•---.---._. _

40. I

o o

o o

I

52740.5

- MARSBALLISTIC

• 2. 18_.

\,)7

• / /

//. /

//_i',. /'/

/ /,/,./z r / ?

,/ /// / /

/ /

,?/

/

J

' ".3' /I//

i

o

_3

o

, v

52780.5

200213 , C3L , ETEPTI:I_INSF'ERTRAJECTORY

• _ _

/// 2. 2" / . /

/ / .- -

//_

/

_/_ 11

==Ii==_=_..

/

=== .v.._ _-/.../..

I I

.:.: ; " . .-

//• $ $ / "

¢

o o o

3 3 ;

LAUNCH DATE!

52820,5L_UNCH JO-2aO0000.O

/ / ,*'/

. _ /////2

"////• I

r--...

<,Lo/._1-

/ I

_...._po.

i ,

L ,

. i

0 _

0 0

r,30 0 0

52860.5 52900,5

53260.5

53220.5

53180.5

53140.5

0

53100.5000

I53060.5

53020.5 --

52980.5

52940.5

52900.5

52860,5

155

Earth to Mars

2005

Opportunity

ENERGY MINIMA

DEPARTUREVALUE TYPE (YEAR/MONTH/DAY)

C3L 15.883 I 2005/08/10

C3L 15.445 II 2005/09/02

ARRIVAL

(YEAR/MONTH/DAY)

2006/02/22

2006/10/08

VHP 2.3602 I 2005/09/08 2006/04/20

VHP 2.4668 II 2005/06/21 2006/04/04

_,RECEDING PAGE BLANK NOT FILMED" 157

,

C3L

2005 EARTH

ORIGINAL PAGE Ig

OF POOR QUALITY

- MARS 2005 , C3L , TFLBALL [ST [C TRANSFER TRAJECTORY

061111t1

06110102

06103116

06102104

0_t 12126

53490.5"

o i ' ° i iLAUNCH DATE

"_35._o.5" "535"_o._" " ' "536io.5 _3_,_,o.sLAUNCH JD-2400000.O

- 540_0.5

,54050.5

.54010.5

5393'0.5

O

•53930.5000

53890.5 _

,_38_o._,-_Q_rY

53810.5

53"7"70.5

,53"730.5

,53690.5

158

ORIGINAL PAGe. IgOF POOR QUALI'FY

06112121

06111111

06110102

06108123

06107114I,II,--(EO

U 06106104(£>

Crn"

06104125

06103116

06102104

05/I2/26

051t1116

EARTH - HAAS 2005 , C3L , DLA- BILL I ST I C TRRNSFER TRAJECTORY

\5.

\

0rO

_t

o

IF)0

i

53490.5

._ _:> -,.

0 _ _ _ _ _0 _ _ 0 _

0 0 0 0 0 0 0

0 0 0 0 0 0 0

LAUNCH DATE

53530.5 535?0.5 53610.5LAUNCH JD-2400000.O

4

#0.

fl.,._5.'t

'-I/'/I,./

$.

22.

26.

30.

50.

0

S

o

, !

53650.5

- 54090.5

.

d2005

54050.5

' 54010.5

53970.5

o

o• 53930.5 0

000

' 53890.5

d

>.53850.5

oror(E

•53810.5

53770.5

53730.5

53690.5

159

q

RLA

d2005

00# t212t

06/iii11

0bt10102

06/08/23

06/07/14bJp.-Q:D

06/06/04(I_>

¢-y

06104125

06/03116

06/02/04

051L212b

0511111b

ORIGINAL PAGE IS

OF POOR QUALITY

EARTH

\

- MARS 2005 , C3L , RLRBALL [ST [C TRANSFER TRAJECTORY

>_M_/s_ ._,,>.//,4..

' #////I 'I1

0 0 _ _ _ _ _ __ 0 _ _ 0 _ _ 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

LAUNCH DATE

, i • ! i v534 0,5 53530.5 53570.5 53610.5 53650.5LAUNCH JD-2400000.O

54090.5

54050.5

,54010.5

'53970.5

o

53930.5o0o_tod

• 53890.5

(_

53850.5 --r_r_(_

53810.5

53770.5

53730.5

53690.5

160

06112/21

0611lit[

06110102

06108123

06107/14

t-.-

a

.06106104

>

O:(r

06104125

06103116

06102104

05112126

051LLIL@

ORIGINAL PAGE: 19

OF POOR QUALITY

o

o

It')o

!

53490.5

HAAS 2005 , C3L , ZRLS

//

BALLISTIC TRANSFER TRAJECTORY

Y,4//# :::///_./,"/,,',_/I///,'//L/I_/_ _8,_"/// _ '///#, '# //_,_,_ _

, ////i/ __ ._,/,0.//, '// /# ///¢/y._ _ "_//_..,_ _,/////'//_ Y/ _ _ V ../_ _ "//////////. _ _ ___/ "! //

//

/

0 _ _ _ _ _0 _ _ 0 _

0 0 0 0 0 0 0

0 0 0 0 0 0 0

LAUNCH DATE, !

53530.5 "53570.5 53610.5LAUNCH JD-2400000.O

p.o

0

• !

53650.5

=

ZALS

2005

54090.5

54050.5

54010.5

53970 5

o

o53930 5 0

000

OdI

53890 5 C3

J(_>

53850 5-rrrr(I

53810 5

53770 5

53730.5

53690.5

161

2005

06112/21

061111LL

06110102

06108123

06107114

L_I-.-(IO

(_0610_104>

n,n,

06104/25

06103116

06102104

05112126

05111116

ORIGINAL PAGE !_

OF POOR QUALITY

EARTH - MARS 2005 , C3L , VHP* BRLL I ST I C TRANSFER TRRJECTORY

,,-; ,.4 _ _ 8 =:; d

"Y,K/",," __ // y//j"_I_ _ .I/A

A _1"1" ,///A_Y_/, /" I ,J//.,*'/_/ll// / / I//__ _

/ //;'/'///////'/ _:/Y/__i # // , /

..if,,'/.// _F///_Y/)7_--.,/._'_._-"/i / / ./// / / //, /d"l (_._ _ ,,_ _ .

," //'l/ /,i'/l l ! i i l_'," ///li'//ll. __ ill/i�' I1/ /" />¢,' ZJ_c_7"," _it__1)I I

0 _ _ #4 _ 0

_ ; _ ; o0 0 0 0 _ 0 --

0 0 0 0 0 0

LAUNCH DATE

5s5_o.5 _5_o.5 5_io.5 _go.5LAUNCH _0-2400000.0

o o1,3 e4

!

53490.5

- 54090.5

'54050.5

,54010.5

53970.5

0

53930.5 o°

000

_J

53890.5 _

_J

>53850.5 '-

rrrrC£

538 I0.5

53770.5

53730.5

53690.5

162

EARTH

06112121

061[Llll

061[0102

06108123

06107114Ld

CZ0

#.-06/06/04

06104125

06103116

06102104

05112126

0511[I16

/

/

i I

0 0t,3

0 0

3 ;0 0

f

/

.-/!

I

53,490.5

ORIGINAL PAGE i:_

OF POOR QUALITY'

- MARSBALL IST IC

• I

53530.5

v;i//

1/I /I

2005TRAN,C_'ER

, C3L ,TRRJECTORY

. . . /.

///

.- .--/I

II/ /I..... - /

, /_i _,PF/ /I

///A_

I _///A_/_

.4-

DAP

LAUNCH

::26.

_-,// 30.F, ////

7,

aD _0, t"- r'-o _ "' o

0 o 0 ..w

o o o o

JO-2400000.0

• !

53610.5• i

53650.5

6,

DAP

d2005

- 54090.5

,54050.5

,54010.5

.53970.5

0

053930.5 0

000

(XlI

53890.5 a

.J

>53850.5 "-

rrrr

53810.5

53770.5

,53730.5

• 53690.5

163

m

RAP

d2005

06112/21

06111111

06110102

061081E3

06107114WI--q:C:]

(_.06106104>,

r,'nr"

0610&125

06/03116

0610El04

05112126

05111116

oRIGINAL PAG£ IS

OF poOR QUALI"T'Y

0r,')

_t0

If10

i

53490.5

- MARSBALL IST IC

O _ _ _ _ _O _ _ O _

O O O O O O O

O O O O O O O

LAUNCH DATE, i 1 1

53530.5 53570.5 53610.5LAUNCH JO-2400000.0

O

O

O

• i

53650.5

-54090.5

,54050.5

,54010.5

53970.5

0

53930.5OOO

53890.5 _

53850.5 --

,53810.5

53770.5

'53730.5

'53690.5

ORIGINAL PAGE I_1OF POOR QUALITY

06112/2[

061LLItl

06110/02

06108123

06107114

Wl--(IQ

06106t04

c'r'or'

0610412"3

06103116

06102104

05112126

051111t6

v

g

o

irlo

!

53490.5

EARTH - HARS 2005 , C3L , ZAPS

/, ?//,'/k'/,' /) '°i

0 0 0 0 0

O O O O O O

LAUNCH DATE, !

53_o._ 535_o.5 5_io.5LAUNCH_o-_oooooo

#-o

8

o

• !

53650.5

1

ZAPS

d2005

- 54090.5

54050.5

54010.5

53970.5

0

053930.5 0

000

(%1I

53890.5

J(E>

53850.5

Q:

53810.5

53770.5

' 53730.5

' 53690.5

165

1

/.APE

dOF POOR QUALITY

2005 EA H - MARS 2005 , C3L , ZAPEBiLL I ST [ C TRI::INSFER TRROECTORY

,4 ,4 ,d 4 6 ,d

a2.

- / " t ( 30.

oo,,<,,o_ 4" ' '_- / / *'--_ _ ,_

00/08/23 / i , _r/_ • • 50.

.,o.,,.__ _-///__7_( ___"/_ -_

(I: 06/06/04 _ I--

_ 7_ _ _ _ _ _ I _

_" " 10.

__,, ,__7 _ _,.

_--_-_ _ _,_ _"o

05111116

0 0 0 0 0 0 0

0 0 0 0 0 0 0

LAUNCH DATE

53490.5 53530.5 535 0.5 53610.5LAUNCH J0-2400000.0

L"-- 0

t

53650.5

- 54090.5

54050.5

54010.5

53970.5

0

53930.5000

53890.5

>53850.5 --

53810.5

53770.5

53730.5

53690.5

1B6

EARTH

061t2121

06111111

06110102

O6108123

06107114

bJI-.-q:tm

_.06106104>

rY

CE06/04/25

06103116

06102104

05112126

05111116

o

ut_0

o

o

53440.5

ORtGtNA.L P,_C-E 18OF POOR QUALITY

- MARS 2005 , C3L , ETSPBALLISTIC TRRNSF'ER TI:_JECTOI_Y

, !

53530.5

: .- .- .

I /J ,"

VX . 1.

• / --

II t111

/ 22 : -

/// I IIiIliA. :: ",._:_

! ¢fl I :-'"

LAUNCH JD-2400000.0

y/y,- ... i// -'-" .-

///

I!//I// "/'//; ;/

/

NN

3N

!

o

o

536i0.5

-- . .-: :

/ " _ii

/_ _//

.__/_

//

ri.i

-"p4.!

i ry,

NI/'_ r4.

I¢1

-__:

t'-

o

o

22.

26.

30.

50.

p,.0

0

0

536,50.5

- 54090.5

10.

ETSP

d2005

54050.5

.54010.5

•53970.5

0

.53930.5000

O_I

•53890.5 a_3

-JC£>

53850.5 --r_r_

.53810.5

•53770.5

'53730.5

•53690.5

187

11.

ETEP

2005

Ob/L2/2t

061tlltt

ObllOl02

0b108/23

Ob/O3/t_bJ

(T.Q

(_06106104>

el"

0b/04/2"3

06103116

0b102104

051t2126

05111lib

ORIGINAL PAGE _SOF POOR QUALITY

EARTH - MARS 2005 , C3L , ETEP, BRLLISTIC TRANSFER TRI:_ECTORY

I ___,._,._,._._//_'_/,_///,,.

,._\ \ /b///'/__/I'AS,_Y

4"

0

0

If')0

#

53490.5

0

0

0

0 _ _ 0 _ _ 0

0 0 0 0 0

0 0 0 0 0 0 0

LAUNCH DATE

• ! • T " v !

53530.5 53570.5 53610.5 53650.5LAUNCH JO-2400000.O

54090,5

,54050,5

54010.5

' 53970.5

0

,53930.5

_t

' 53890.5

._1C_>

.53850.5 --e_e_

'53810.5

• 53770.5

•53730.5

•53690.5

168 N__., kJk. Ca_W.