internet protocol ecs 152a xin liu ref: slides by j. kurose and k. ross

46
Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Post on 21-Dec-2015

227 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Internet Protocol

ECS 152A

Xin Liu

Ref: slides by J. Kurose and K. Ross

Page 2: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Goals

• Principles of network layer services

• Internet Protocol

– Addressing

– Routing

– ICMP

Page 3: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Overview

HTTPUser

process SNMP

TCP UDP

ICMPICMP IPIP

ARP RARPHardwareinterface

applicationmessage

transportsegment

networknetworkdatagramdatagram

linkframe

Userprocess

Encapsulation

Demultiplexing

Page 4: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Network layer functions

• transport packet from sending to receiving hosts

• network layer protocols in every host, router

networkdata linkphysical

networkdata linkphysical

networkdata linkphysical

networkdata linkphysical

networkdata linkphysical

networkdata linkphysical

networkdata linkphysical

networkdata linkphysical

application

transportnetworkdata linkphysical

application

transportnetworkdata linkphysical

Page 5: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Functions

• path determination: route taken by packets from source to dest. Routing algorithms

• forwarding: move packets from router’s input to appropriate router output

• call setup: some network architectures require router call setup along path before data flows (not Internet)

Page 6: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Network service model

Q: What service model for transporting packets from sender to receiver?

• guaranteed bandwidth?• preservation of inter-packet

timing (no jitter)?• loss-free delivery?• in-order delivery?• congestion feedback to

sender?

? ??virtual circuit

or datagram?

The most important abstraction provided

by network layer:

serv

ice a

bst

ract

ion

Page 7: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Virtual circuits

• call setup, teardown for each call before data can flow• each packet carries VC identifier (not destination host ID)• every router on source-dest path maintains “state” for each

passing connection• link, router resources (bandwidth, buffers) may be allocated to VC

– to get circuit-like perf.

“source-to-dest path behaves much like telephone circuit”

Page 8: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Virtual circuits: signaling protocols

• used to setup, maintain teardown VC• used in ATM, frame-relay, X.25• not used in today’s Internet

application

transportnetworkdata linkphysical

application

transportnetworkdata linkphysical

1. Initiate call 2. incoming call

3. Accept call4. Call connected5. Data flow begins 6. Receive data

Page 9: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Datagram networks: the Internet model

• no call setup at network layer• routers: no state about end-to-end connections

– no network-level concept of “connection”

• packets forwarded using destination host address– packets between same source-dest pair may take different

paths

application

transportnetworkdata linkphysical

application

transportnetworkdata linkphysical

1. Send data 2. Receive data

Page 10: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

VC vs. Datagram

• VC– Guaranteed service– Complexity

• Datagram– Simple– Best effort

Page 11: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Internet Protocol

• Functionality:– Determine how to route packets from source to

destination– Hide the details of the physical network– Unreliable, connectionless, datagram delivery

• To be mentioned:– Addressing– Routing– ICMP

Page 12: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Encapsulation

source destinationoriginal message

Transport

Network

Link

Application

Transport

Network

Link

Application

Page 13: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

IP header

ver length

32 bits

data (variable length,typically a TCP

or UDP segment)

16-bit identifier

header checksum

time tolive

32 bit source IP address

IP protocol versionnumber

header length (bytes)

max numberremaining hops

(decremented at each router)

forfragmentation/reassembly

total datagramlength (bytes)

upper layer protocolto deliver payload to

head.len

type ofservice

“type” of data flgsfragment

offsetupper layer

32 bit destination IP address

Options (if any) E.g. timestamp,record routetaken, specifylist of routers to visit.

20 bytes overhead

Page 14: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

IP Header

• Version: 4

• Header length: 4 bits, max 15x4=60 bytes

• TOS: 0 for normal service,

• Total length: 16 bits, max 65535 bytes

• TTL: 32/64, decrease by one in each hop

• Protocol field: TCP,UCP,ICMP,IGMP,etc.

• Checksum: header only

Page 15: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

IP Address

0network host

10 network host

110 network host

1110 multicast address

A

B

C

D

class1.0.0.0 to127.255.255.255

128.0.0.0 to191.255.255.255

192.0.0.0 to223.255.255.255

224.0.0.0 to239.255.255.255

32 bits

7 bits

14 bits

21 bits

28 bits

Class-based address:

Page 16: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

IP addressing: CIDR• Classful addressing:

– inefficient use of address space, address space exhaustion– e.g., class B net allocated enough addresses for 65K hosts,

even if only 500 hosts in that network

• CIDR: Classless InterDomain Routing– network portion of address of arbitrary length– address format: a.b.c.d/x, where x is # bits in network portion

of address

11001000 00010111 00010000 00000000

networkpart

hostpart

200.23.16.0/23

Page 17: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

CIDR

• Network address: 200.23.16.0/23– /23 : network mask

• More efficient use of address– Consider a network with 500 hosts– Classful address: a class B address, wasting over 64K

addresses– CIDR: a network with /23– One class B address can be used for 128 such networks using

CIDR• Routing difficulty

– Classful: only need the IP address to determine the network add– CIDR: also need network mask information to determine the

network address– Longest match first

Page 18: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

IP routing• IP address: 32-bit

identifier for host, router interface

• interface: connection between host/router and physical link– router’s typically have

multiple interfaces– host may have multiple

interfaces– IP addresses

associated with each interface

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11

Network address: 223.1.1.0/24

Page 19: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

IP Routing• IP address:

– network part (high order bits) is used for routing

– host part (low order bits) not used for routing

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

network consisting of 3 IP networks(for IP addresses starting with 223, first 24 bits are network address)

LAN

Page 20: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Getting a datagram from source to dest.

IP datagram:

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

A

BE

miscfields

sourceIP addr

destIP addr data

• datagram remains unchanged, as it travels source to destination

• addr fields of interest here• Default router for all other networks

Dest. Net. next router Nhops

223.1.1 1223.1.2 223.1.1.4 2223.1.3 223.1.1.4 2Others 223.1.1.4 x

forwarding table in A

Page 21: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Getting a datagram from source to dest.

Starting at A, send IP datagram addressed to B:

• look up net. address of B in forwarding table

• find B is on same net. as A• link layer will send datagram directly

to B inside link-layer frame– B and A are directly connected

Dest. Net. next router Nhops

223.1.1 1223.1.2 223.1.1.4 2223.1.3 223.1.1.4 2

miscfields223.1.1.1223.1.1.3data

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

A

BE

forwarding table in A

Page 22: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Getting a datagram from source to dest.

Dest. Net. next router Nhops

223.1.1 1223.1.2 223.1.1.4 2223.1.3 223.1.1.4 2Starting at A, dest. E:

• look up network address of E in forwarding table

• E on different network

– A, E not directly attached

• routing table: next hop router to E is 223.1.1.4

• link layer sends datagram to router 223.1.1.4 inside link-layer frame

• datagram arrives at 223.1.1.4

• continued…..

miscfields223.1.1.1223.1.2.3 data

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

A

BE

forwarding table in A

Page 23: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Getting a datagram from source to dest.

Arriving at 223.1.4, destined for 223.1.2.2

• look up network address of E in router’s forwarding table

• E on same network as router’s

interface 223.1.2.9 – router, E directly attached

• link layer sends datagram to 223.1.2.2 inside link-layer frame

via interface 223.1.2.9 • datagram arrives at 223.1.2.2!!!

(hooray!)

miscfields223.1.1.1223.1.2.3 data Dest. Net router Nhops interface

223.1.1 - 1 223.1.1.4 223.1.2 - 1 223.1.2.9

223.1.3 - 1 223.1.3.27

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

A

BE

forwarding table in router

Page 24: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

CIDR Routing

11001000 00010111 00010000 00000000

networkpart

hostpart

200.23.16.0/23

11001000 00010111 00000000 00000000

networkpart

hostpart

200.23.0.0/17

CIDR routing: longest match first

Page 25: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

IP Fragmentation & Reassembly• network links have MTU

(max.transfer size) - largest possible link-level frame.– different link types,

different MTUs • large IP datagram divided

(“fragmented”) within net– one datagram becomes

several datagrams– “reassembled” only at

final destination– IP header bits used to

identify, order related fragments

fragmentation: in: one large datagramout: 3 smaller datagrams

reassembly

Page 26: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

IP Fragmentation and Reassembly

ID=x

offset=0

fragflag=0

length=4000

ID=x

offset=0

fragflag=1

length=1500

ID=x

offset=1480

fragflag=1

length=1500

ID=x

offset=2960

fragflag=0

length=1040

One large datagram becomesseveral smaller datagrams

Example• 4000 byte

datagram• MTU = 1500 bytes

Page 27: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

IPv6• Initial motivation: 32-bit address space

completely allocated by 2008. • Additional motivation:

– header format helps speed processing/forwarding– header changes to facilitate QoS – new “anycast” address: route to “best” of several

replicated servers

• IPv6 datagram format: – fixed-length 40 byte header– no fragmentation allowed

Page 28: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

IPv6 Header (Cont)Priority: identify priority among datagrams in flowFlow Label: identify datagrams in same “flow.” (concept of“flow” not well defined).Next header: identify upper layer protocol for data

Page 29: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Other Changes from IPv4

• Checksum: removed entirely to reduce processing time at each hop

• Options: allowed, but outside of header, indicated by “Next Header” field

• ICMPv6: new version of ICMP– additional message types, e.g. “Packet Too

Big”– multicast group management functions

Page 30: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Transition From IPv4 To IPv6

• Not all routers can be upgraded simultaneous– no “flag days”– How will the network operate with mixed IPv4 and

IPv6 routers?

• Two proposed approaches:– Dual Stack: some routers with dual stack (v6, v4) can

“translate” between formats– Tunneling: IPv6 carried as payload in IPv4 datagram

among IPv4 routers

Page 31: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Dual Stack Approach

A B E F

IPv6 IPv6 IPv6 IPv6

C D

IPv4 IPv4

Flow: XSrc: ADest: F

data

Flow: ??Src: ADest: F

data

Src:ADest: F

data

A-to-B:IPv6

Src:ADest: F

data

B-to-C:IPv4

B-to-C:IPv4

B-to-C:IPv6

Page 32: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

TunnelingA B E F

IPv6 IPv6 IPv6 IPv6

tunnelLogical view:

Physical view:A B E F

IPv6 IPv6 IPv6 IPv6

C D

IPv4 IPv4

Flow: XSrc: ADest: F

data

Flow: XSrc: ADest: F

data

Flow: XSrc: ADest: F

data

Src:BDest: E

Flow: XSrc: ADest: F

data

Src:BDest: E

A-to-B:IPv6

E-to-F:IPv6

B-to-C:IPv6 inside

IPv4

B-to-C:IPv6 inside

IPv4

Page 33: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

ICMP (Internet Control Message Protocol)

Type Code description Query Error0 0 echo reply (ping) x3 0 dest. network unreachable x3 1 dest host unreachable x3 2 dest protocol unreachable x3 3 dest port unreachable x3 6 dest network unknown x3 7 dest host unknown x4 0 source quench (congestion x control - not used)8 0 echo request (ping) x9 0 route advertisement x10 0 router discovery x11 0 TTL expired x12 0 bad IP header x

Page 34: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

ICMP

IP header ICMP message

IP datagram

8-bit type 8-bit code 16-bit checksum

Contents depends on type and code

Page 35: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Error message

• ICMP error message: – ICMP header:

• type, code, checksum,– ICMP message

• IP header plus first 8 bytes of IP datagram causing error

• To prevent broadcast storm: NOT generate ICMP in response to– ICMP error message– Dest=IP broadcast address– Link layer broadcast– A fragment other than the first– Source address not defined as a single host

Page 36: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Ping

• Basic connectivity test

• uses ICMP eco request/reply messages instead of UDP/TCP.

• Client/server paradigm

• Usually implemented in the kernel.

• “man ping”

Page 37: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Format

type (0) code(0) 16-bit checksum

Optional data

identifier sequence no.

Page 38: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Pingbread% ping -s shannon.cs.ucdavis.eduPING shannon.cs.ucdavis.edu: 56 data bytes64 bytes from shannon.cs.ucdavis.edu (169.237.6.199): icmp_seq=0. time=0. ms64 bytes from shannon.cs.ucdavis.edu (169.237.6.199): icmp_seq=1. time=0. ms64 bytes from shannon.cs.ucdavis.edu (169.237.6.199): icmp_seq=2. time=0. ms64 bytes from shannon.cs.ucdavis.edu (169.237.6.199): icmp_seq=3. time=0. ms64 bytes from shannon.cs.ucdavis.edu (169.237.6.199): icmp_seq=4. time=0. ms64 bytes from shannon.cs.ucdavis.edu (169.237.6.199): icmp_seq=5. time=0. ms64 bytes from shannon.cs.ucdavis.edu (169.237.6.199): icmp_seq=6. time=0. ms64 bytes from shannon.cs.ucdavis.edu (169.237.6.199): icmp_seq=7. time=0. ms64 bytes from shannon.cs.ucdavis.edu (169.237.6.199): icmp_seq=8. time=0. ms64 bytes from shannon.cs.ucdavis.edu (169.237.6.199): icmp_seq=9. time=0. ms…----shannon.cs.ucdavis.edu PING Statistics----30 packets transmitted, 30 packets received, 0% packet lossround-trip (ms) min/avg/max = 0/0/0

Page 39: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Pingbread% ping -s mark.ecn.purdue.eduPING mark.ecn.purdue.edu: 56 data bytes64 bytes from mark.ecn.purdue.edu (128.46.209.167): icmp_seq=0. time=66. ms64 bytes from mark.ecn.purdue.edu (128.46.209.167): icmp_seq=1. time=64. ms64 bytes from mark.ecn.purdue.edu (128.46.209.167): icmp_seq=3. time=64. ms64 bytes from mark.ecn.purdue.edu (128.46.209.167): icmp_seq=4. time=65. ms64 bytes from mark.ecn.purdue.edu (128.46.209.167): icmp_seq=5. time=64. ms64 bytes from mark.ecn.purdue.edu (128.46.209.167): icmp_seq=8. time=65. ms64 bytes from mark.ecn.purdue.edu (128.46.209.167): icmp_seq=10. time=65. ms64 bytes from mark.ecn.purdue.edu (128.46.209.167): icmp_seq=11. time=65. ms64 bytes from mark.ecn.purdue.edu (128.46.209.167): icmp_seq=12. time=65. ms64 bytes from mark.ecn.purdue.edu (128.46.209.167): icmp_seq=15. time=64. ms^C----mark.ecn.purdue.edu PING Statistics----18 packets transmitted, 10 packets received, 44% packet lossround-trip (ms) min/avg/max = 64/65/66

Page 40: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Traceroute

• By Van Jacobson• See route that IP datagram follow• Use ICMP and TTL

– A router gets an IP datagram with TTL 0/1, discards the packet and sends back an ICMP to the source “time exceeded”.

– Source sends UDP fragment with 1,2,3, TTL values– IP packet contains an UDP with unused post #. dest.

Replies “port unreachable” ICMP message.

Page 41: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

Traceroutebread% traceroute ector.cs.purdue.edutraceroute: Warning: Multiple interfaces found; using 169.237.6.16 @ qfe0traceroute to ector.cs.purdue.edu (128.10.2.10), 30 hops max, 40 byte packets 1 169.237.5.254 (169.237.5.254) 0.594 ms 0.337 ms 0.298 ms 2 169.237.246.238 (169.237.246.238) 0.533 ms 0.479 ms 0.474 ms 3 128.120.2.49 (128.120.2.49) 0.547 ms 0.475 ms 0.475 ms 4 core0.ucdavis.edu (128.120.0.30) 0.616 ms 0.671 ms 0.642 ms 5 area0-area14p.ucdavis.edu (128.120.0.222) 0.570 ms 0.468 ms 0.821 ms 6 area14p-border20.ucdavis.edu (128.120.0.250) 1.149 ms 0.691 ms 3.132 ms 7 dc-oak-dc2--ucd-ge.cenic.net (137.164.24.225) 4.751 ms 2.434 ms 4.521 ms 8 dc-oak-dc1--oak-dc2-ge.cenic.net (137.164.22.36) 2.394 ms 4.217 ms 2.452 ms 9 dc-svl-dc1--oak-dc1-10ge.cenic.net (137.164.22.30) 201.245 ms 5.091 ms 183.393 ms10 dc-sol-dc1--svl-dc1-pos.cenic.net (137.164.22.28) 13.421 ms 11.258 ms 11.155 ms11 hpr-lax-hrp1--dc-lax-dc1-ge.cenic.net (137.164.22.13) 11.571 ms 14.390 ms 11.809 ms12 abilene-LA--hpr-lax-gsr1-10ge.cenic.net (137.164.25.3) 13.431 ms 11.417 ms 11.289 ms13 snvang-losang.abilene.ucaid.edu (198.32.8.95) 19.141 ms 20.516 ms 19.117 ms14 kscyng-snvang.abilene.ucaid.edu (198.32.8.103) 54.300 ms 53.943 ms 53.998 ms15 iplsng-kscyng.abilene.ucaid.edu (198.32.8.80) 64.783 ms 68.220 ms 63.659 ms16 ul-abilene.indiana.gigapop.net (192.12.206.250) 63.567 ms 63.381 ms 63.025 ms17 tel-210-m10-01-gp.tcom.purdue.edu (192.5.40.9) 65.017 ms * 64.982 ms18 cs-2u01-c3550-01-242.tcom.purdue.edu (128.210.242.51) 65.527 ms 65.282 ms 65.083 ms19 * ector.cs.purdue.edu (128.10.2.10) 65.528 ms *

Page 42: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

NAT: Network Address Translation

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

138.76.29.7

local network(e.g., home network)

10.0.0/24

rest ofInternet

Datagrams with source or destination in this networkhave 10.0.0/24 address for

source, destination (as usual)

All datagrams leaving localnetwork have same single source

NAT IP address: 138.76.29.7,different source port numbers

Page 43: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

NAT: Network Address Translation

• Motivation: local network uses just one IP address as far as outside word is concerned:– no need to be allocated range of addresses from ISP: -

just one IP address is used for all devices– can change addresses of devices in local network

without notifying outside world– can change ISP without changing addresses of devices

in local network– devices inside local net not explicitly addressable, visible

by outside world (a security plus).

Page 44: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

NAT: Network Address Translation

Implementation: NAT router must:

– outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)

. . . remote clients/servers will respond using (NAT IP address, new port #) as destination addr.

– remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair

– incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

Page 45: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

NAT: Network Address Translation

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345D: 128.119.40.186, 80

1

10.0.0.4

138.76.29.7

1: host 10.0.0.1 sends datagram to 128.119.40, 80

NAT translation tableWAN side addr LAN side addr

138.76.29.7, 5001 10.0.0.1, 3345…… ……

S: 128.119.40.186, 80 D: 10.0.0.1, 3345

4

S: 138.76.29.7, 5001D: 128.119.40.186, 80

2

2: NAT routerchanges datagramsource addr from10.0.0.1, 3345 to138.76.29.7, 5001,updates table

S: 128.119.40.186, 80 D: 138.76.29.7, 5001

3

3: Reply arrives dest. address: 138.76.29.7, 5001

4: NAT routerchanges datagramdest addr from138.76.29.7, 5001 to 10.0.0.1, 3345

Page 46: Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross

NAT: Network Address Translation

• 16-bit port-number field: – 60,000 simultaneous connections with a single

LAN-side address!

• NAT is controversial:– routers should only process up to layer 3– violates end-to-end argument

• NAT possibility must be taken into account by app designers, eg, P2P applications

– address shortage should instead be solved by IPv6