interband transitions in semiconductors - uni · pdf fileinterband transitions in...

30
interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Upload: tranthu

Post on 18-Mar-2018

241 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors

M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Page 2: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in quantum wells

Atomic wavefunction of carriers in the conduction and valence band haveparity differing by 1, hence only transitions with ∆n = 0 are dipole-allowed

for a rectangular potential with infinite wallsonly transitions with ∆n = 0 are possible.

This selection rule is weakened for „real“ quantumwells with finite barrier heights but still the transitionswith ∆n = 0 dominate the spectra

J. H. Davies, The Physics of Low-Dimensional Semiconductors, Cambridge University Press (1998)

Page 3: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

quantum well photoluminescence

Page 4: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

exciton binding energy and Bohr radius

M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Page 5: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

2D: quantum well excitons

J. H. Davies, The Physics of Low-Dimensional Semiconductors, Cambridge University Press (1998)

Page 6: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

exciton correction to the absorption continuum: Sommerfeld factor

J. H. Davies, The Physics of Low-Dimensional Semiconductors, Cambridge University Press (1998)

Page 7: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

laser applications of semiconductor heterostructures

Z. I. Alferov, Nobel Lecture (2000)

Page 8: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

quantum well applications: quantum cascade laser (QCL)

Unlike typical interband semiconductor lasers that emit electromagnetic radiation through the recombination of electron–hole pairs across the material band gap, QCLs are unipolar and laser emission is achieved through the use of intersubband transitions in a repeated stack of semiconductor multiple quantum well heterostructures

QCL emission wavelength 2.75 – 250 µm (~ 500 – 5 meV)

3

2

1

3221 Γ>>Γ=LOω

Quantum Cascade Laser invented by Bell Labs physicists; Cover illustration for Science,

April 22,1994.

http://en.wikipedia.org/wiki/Quantum_cascade_laser

Page 9: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions

J. H. Davies, The Physics of Low-Dimensional Semiconductors, Cambridge University Press (1998)

Page 10: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

QCL: principle and experimental realization

E32 = 291 meV = 2347 cm-1 ~ 4.26 µm

Page 11: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions:double heterojunction laser

http://britneyspears.ac/physics/fplasers/fplasers.htm

Page 12: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

laser applications of semiconductor heterostructures: quantum well LED and laser

Z. I. Alferov, Nobel Lecture (2000)

Page 13: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

quantum well LED and laser

Z. I. Alferov, Nobel Lecture (2000)

J. H. Davies, The Physics of Low-Dimensional Semiconductors, Cambridge University Press (1998)

Page 14: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

quantum well LED and laser

Z. I. Alferov, Nobel Lecture (2000)

J. H. Davies, The Physics of Low-Dimensional Semiconductors, Cambridge University Press (1998)

Page 15: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

quantum well laser

Z. I. Alferov, Nobel Lecture (2000)

Page 16: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

quantum well laser

Z. I. Alferov, Nobel Lecture (2000)

Page 17: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

quantum well laser

Z. I. Alferov, Nobel Lecture (2000)

Page 18: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Confinement in heterostructures

system dimension:

0D

yx

z

Ly

Lx

Lz

3D

Lx,Ly,Lz>>λF

dz

2D dy1D dx

dz ≈ λF dy,dz ≈ λF dx,dy,dz ≈ λF

density of states:

E

D(E) 3D

E

D(E)

const.

E1 Ei

2D

E

D(E) 1D

E

D(E) 0D~ E

1

EijkE111

~δ(E-Eijk)

~ E

E11 Eij

Page 19: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Quantum dots

Stranski-Krastanow QDs

1.28 1.29 1.30 1.31 1.32 1.330

500

1000

1500

Energy (eV) P

L (c

ount

s in

150

s)

monolayer fluctuations QDs

0D dx

dx,dy,dz ≈ λF

E

D(E) 0D

EijkE111

~δ(E-Eijk)

Page 20: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Self-assembly of quantum dotsInAs

< 1.5 ML • Filmmolecular beam epitaxy film growth (InAs on GaAs)mismatch between lattice parameter ⇒ stressed film

GaAs

~ 1.5 ML • Quantum DotsStranski-Krastanov growth of InAs dots is a result from equilibrium between mechanical stressand surface energy~ 2 ML

dots: "rings":

0 50100 150

200nm

0 50100 150

200nm

0 50100 150

200nm

0 50100 150

200nm

height ~ 2 - 6 nmdiameter ~ 20 – 50 nm10% size variation

0 50100 150

200nm

> 2.5 ML

dislocations

• DislocationsFurther growth relaxes excess energy through creation ofdislocations

Page 21: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

0D excitons: quantum dots

0 50100 150

200nm

0 50100 150

200nm

0 50100 150

200nm

• InAs quantum dots~ 6 nm high~ 20nm diameter, 10% size variation

0 50100 150

200nm

0 50100 150

200nm

• Quantum rings (Partially Covered InAs Islands) ~ 1 to 2 nm high~ 50nm diameter, 30% size variation

• Vertical coherent growth: double layer of dots

Page 22: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Electron and hole confinement in quantum dots

r (nm)-100 -50 0 50 100

~ 300 meV

~ 150 meV

1445 m e Vs

pd

spd

CB

VB

p

p

d

d

s

s

• Confinement energies:electron ~ 50 meV, holes ~ 25 meV

GaAs

InAsGaAs

Energy Ec

Evx, y

z

Energy

• Capping with GaAs: electronic barrier material

• Quasi-parabolic confinement

Page 23: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Localized states in a self-assembled quantum dot

axial confinement:rectangular quantum well

lateral confinement:parabolic quantum well

GaAs InAs GaAs GaAs InAs GaAs

InAsCBE

z1E

=enE +InAs

CBE +z1E

GaAsCBE

xynE

0xyn ω)1n(E h+=

1st energy levelof a quantum well

energy spectrum of a 2D harmonic oscillatorwith degeneracy m=2(n+1) (2 because of spin)

n=2

-1 +10m= -2 +2

d

pn=1

n=0 s

Page 24: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Localized states in a self-assembled quantum dot

-40 -20 20 40

0.2

0.4

0.6

0.8

1.0

-40 -20 20 40

0.2

0.4

0.6

0.8

1.0

solutions of a 2D harmonic problem:(e.g. Cohen-Tannoudji, Quantum mechanics)

χ |χ|2

n=0m=0

-40 -20 20 40

0.05

0.10

0.15

0.20

0.25

0.30

0.35

-40 -20 20 40

-0.6

-0.4

-0.2

0.2

0.4

0.6

n=1m=+/- 1

-40 -20 20 40

0.2

0.4

0.6

0.8

1.0

-40 -20 20 40

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

0.4

n=2m=0

-40 -20 20 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-40 -20 20 40

0.1

0.2

0.3

0.4

0.5

n=2m=+/-2

Page 25: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Shell structure of quantum dots in spectroscopy

shell structure of artificial atoms:

p

p

d

d

s

s

Abs

orpt

ion

0

1e-4

2e-4

3e-4

Energy (eV)0.9 1.0 1.1 1.2 1.3 1.4

Abs

optio

n

0

1e-4

2e-4

3e-4

Rings(4.2K)

Dots(4.2K)

Absorption measured on ~ 107 quantum dots

s-s

p-p d-d

R.J. Warburton et al. PRL 79, 5282 (1997)

Energy (eV)1.30 1.35 1.40

PL in

tens

ity

0

1

2s-s

p-p

d-d

Emissionmeasured on ~ 107 quantum rings

p

p

d

d

s

s

inhomogeneous broadening ~ 30 meV

Page 26: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Energy scales

Exciton binding energy meV20E h,es,s ≈

Quantization energies meV25meV50

h

e

<ω<ω

h

h

Inhomogeneous broadening meV30≈Ensemblespectroscopy

Page 27: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Excitons in bulk semiconductors

M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

compare with in quantum dots

quantum confinement enhances Coulomb correlations (e.g. exciton binding energy)

meV22Eehss =

Page 28: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

0

2000

4000

6000confocal

PL

(cou

nts

in 3

0 s)

1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.350

500

1000

1500

Energy (eV)

300 nm aperture

PL

(cou

nts

in 1

50 s

)

Ensemble and single dot photoluminescence

~ 100 -1000 dots

5 – 10 dots

Al

Page 29: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Quantum dot biexciton cascade: source of entangled photons

Page 30: interband transitions in semiconductors - uni · PDF fileinterband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Electrical source of entangled photons

Toshiba Research Europe Ltd., Cambridge Research Laboratory

Salter et al, Nature 465, 594–597 (03 June 2010)