integrative physiology

101
Integrative Physiology Volume disorders Circulation disorders Kidney disorders Electrolyte disorders Osmolarity disorders Respiratory disorders O2/CO2 transport disorders Gastrointestinal disorders Acid-Base disorders

Upload: emele

Post on 23-Feb-2016

66 views

Category:

Documents


0 download

DESCRIPTION

Integrative Physiology. O2/CO2 transport disorders. Respiratory disorders. Circulation disorders. Acid -Base disorders. Acid -Base disorders. Osmolarity disorders. Electrolyte disorders. Volume disorders. Gastrointestinal disorders. Kidney disorders. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Integrative Physiology

Integrative Physiology

Volume disorders

Circulation disorders

Kidney disorders

Electrolyte disorders

Osmolarity disorders Acid-Base disorders

Respiratory disorders

O2/CO2 transport disorders

Gastrointestinal disorders

Acid-Base disorders

Page 2: Integrative Physiology

Homeostasis of internal enviroment

Disorders of the acid-base chemistry, influence of

respiration, lungs and altered metabolism

Page 3: Integrative Physiology

Outputs

Inputs

StorageBalance between input and output flow

depletion

retention?

?

Page 4: Integrative Physiology

extracellular fluid - ECF

intracellular fluid - ICF

Metabolism

ConcentrationsBalance estimation

External environment of organism

Page 5: Integrative Physiology

plasma

interstitial fluid - ISF

intracellular fluid - ICF

Metabolism

Concentrations

extracellular fluid -ECF

capillaries

Lymph

External environment of organism

Balance estimation

Page 6: Integrative Physiology

intravascular

fluid

intracellular fluid - ICF

Metabolism

plasma blood cells(part of ICF)

extracellular fluid -ECF

capillaries capillaries

Lymph

External environment of organism

interstitial fluid - ISF

Page 7: Integrative Physiology

intravascular

fluid

intracellular fluid - ICF

Metabolism

plasma

capillaries

transcellular fluid

extracellular fluid -ECFcapillaries

Lymph

External environment of organism

blood cells(part of ICF)

interstitial fluid - ISF

Page 8: Integrative Physiology

intravascular

fluid

intracellular fluid - ICF

Metabolism

plasma

capillaries

Lymph

extracellular fluid -ECF

LungsGIT

Kidney

„exc

hang

ers“

blood cells(part of ICF)

interstitial fluid - ISF transcellular fluid

External environment of organism

Page 9: Integrative Physiology

intravascular

fluid

intracellular fluid - ICF

Metabolism

plasma

capillaries

Lymph

extracellular fluid -ECF

LungsGIT

Kidney

„exc

hang

ers“

Circulation„mixing“

blood cells(part of ICF)

interstitial fluid - ISF transcellular fluid

External environment of organism

Page 10: Integrative Physiology

intravascular

fluid

intracellular fluid - ICF

Metabolism

plasma

capillaries

Lymph

extracellular fluid -ECF

LungsGIT

Kidney

„exc

hang

ers“

Circulation„mixing“

blood cells(part of ICF)

interstitial fluid - ISF transcellular fluid

External environment of organism

Page 11: Integrative Physiology

intravascular

fluid

intracellular fluid - ICF

Metabolism

plasma

capillaries

Lymph

extracellular fluid -ECF

LungsGIT

Kidney

„exc

hang

ers“

Circulation„mixing“

blood cells(part of ICF)

interstitial fluid - ISF transcellular fluid

External environment of organism

CO2 H +

ACID-BASE BALANCE

Page 12: Integrative Physiology

CO2

H2O

H2CO3

HCO3-

H+

A-

TA+NH4+

20 000 mmol/24 hod 60 mmol/24 hod

60 mmol/24 hH+ excretion

Practically complete reabsorbtion of HCO3-

Metabolic production od strong acidsMetabolic production of CO2

Acid-Base Balance

Page 13: Integrative Physiology

Buffering systems of the blood

H2CO3

HCO3-H+CO2

HBufBuf-

Hb- HHbAlb-

HAlbHPO4

2- H2PO4-

H2O

H+

H+

H+

H+

++

+

+

++

non-bicarbonate buffersBuf = Hb + Alb + PO4

-

Page 14: Integrative Physiology

Buffering reactions

H2CO3

HCO3-

H+

CO2

HBuf

Buf-

H2O

Page 15: Integrative Physiology
Page 16: Integrative Physiology

Acid-Base Balance

Acid Balance Base Balance

Diet -> 2H++SO42-

Diet ->H+ + HPO4-

Diet -> 3K++ 3 HCO3-

2H++2HCO3- -> 2CO2+2H2O Glucose -> 3H++Citrate-

2NH4++SO4

-

H2PO42-

3K++Citrate-

Production of H+

Removal of H+

Add „new“ HCO3-

Removal of HCO3-

Production of HCO3-

Excrete organic anions

Urine

Page 17: Integrative Physiology

H+ formation/removalGlucose -> Lactate- + H+

C16 fatty acids -> 4 ketoacids anions- + 4 H+

Cysteine -> urea + CO2+H2O+SO42- + 2 H+

Lysine+ -> urea + CO2 + H+

Lactate- + H+ -> GlucoseGlutamate- + H+ -> urea + CO2+H2O

Citrate- + 3 H+ -> CO2+H2O

Glucose -> Glycogen or + CO2+H2O

Triglyceride -> CO2+H2O

Alanine -> urea + glucose or CO2+H2O

Reactions that yields H+ (more negative charge in products than in substrates)

Reactions that removes H+ (more net positive charge in products than in substrates)

H+ are neither produced nor removed (neutrals to neutrals)

Page 18: Integrative Physiology

Diet

Sulfur-AA

SO42-

2 H+

2 HCO3-

2CO2+2H2O

Glutamine

2NH4+2NH4

+

SO42-

urine

kidney

ECF

Diet

RNA-P-

HPO42-

H+

HCO3-

CO2+H2O

CO2+H2O

H+HPO4-

urine

kidney

ECF

Page 19: Integrative Physiology

Diet

K+

H+

urine kidney

ECFOA-

CO2+H2O

HCO3-

OA utilisation Glucose

OA- H+

CO2+H2O

liver

OA-

K+

OA-

Page 20: Integrative Physiology

CO2

H2O

H2CO3

HCO3

H+

Buf -

HBuf

-

TA + NH4+

CO2 balance

H+ balance1. Buffer systems (msec)2. Respiration control (12 hours)3. Kidney control (3-5 days)

Acid-base regulation

Exchange H+/K+ H+/Na+ between cells and ECFRole of liver in AB regulation

Page 21: Integrative Physiology

CO2

H2O

H2CO3

HCO3

H+

Buf -

HBuf

-

TA + NH4+

CO2 balance

H+ balance

Buffer system acid-base disturbances

Balance acid-base disturbances:

- respiration acidosis/alkalosis

- metabolic acidosis/alkalosis

Acid-base disturbances:

Page 22: Integrative Physiology

CO2

H2O

H2CO3

HCO3

H+

Buf -

HBuf

-

TA + NH4+

Buffers system acid-base disturbances:Dilutional acidemiaContractional alkalemiaHypoproteinemic alkalemia

CO2 balance

H+ balance

Page 23: Integrative Physiology

CO2

H2O

H2CO3

HCO3

H+

Buf -

HBuf

-

TA + NH4+

Buffers system acid-base disturbances:Dilutional acidemia

Dilution

CO2 balance

H+ balance

Page 24: Integrative Physiology

CO2

H2O

H2CO3

HCO3

H+

Buf -

HBuf

-

TA + NH4+

equilibrium shift

CO2 balance

H+ balance

Buffers system acid-base disturbances:Dilutional acidemia

Dilution

Page 25: Integrative Physiology

CO2

H2O

H2CO3

HCO3

H+

Buf -

HBuf

-

TA + NH4+

Hemoconcentration

CO2 balance

H+ balance

Buffers system acid-base disturbances:Contractional alkalemia

Page 26: Integrative Physiology

CO2

H2O

H2CO3

HCO3

H+

Buf -

HBuf

-

TA + NH4+

CO2 balance

H+ balance

Hemoconcentration

Buffers system acid-base disturbances:Contractional alkalemia

Page 27: Integrative Physiology

CO2

H2O

H2CO3

HCO3

H+

Buf -

HBuf

-

TA + NH4+

equilibrium shift

CO2 balance

H+ balance

Hemoconcentration

Buffers system acid-base disturbances:Contractional alkalemia

Page 28: Integrative Physiology

CO2

H2O

H2CO3

HCO3

H+

Buf -

HBuf

-

TA + NH4+

Acute hypoproteinemia

CO2 balance

H+ balance

Buffers system acid-base disturbances: Hypoproteinemic alkalemia

Page 29: Integrative Physiology

CO2

H2O

H2CO3

HCO3

H+

Buf -

HBuf

-

TA + NH4+

Acute hypoproteinemia

equilibrium shift CO2 balance

H+ balance

Buffers system acid-base disturbances: Hypoproteinemic alkalemia

Page 30: Integrative Physiology

CO2

H2O

H2CO3

HCO3

H+

Buf -

HBuf

-

TA + NH4+

CO2 balance

H+ balance

Buffer system acid-base disturbances

Balance acid-base disturbances:

- respiration acidosis/alkalosis

- metabolic acidosis/alkalosis

Acid-base disturbances:

Page 31: Integrative Physiology

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

10

20

30

40

50

60

70

80

90PCO2 torr

Base Excess mmol/l

pH=7

,1

pH=7

,2

pH=7

,3

pH=7,37

pH=7,43

pH=7,5

pH=7,6

Acute metabolic acidosis Akute metabolic alkalosis

Acut

e re

spira

tory

aci

dosi

Acute respiratory acidosis

Sustained metabolic alkalosis

Sustained metabolic acidosis

Sustained re

spiratory alkalosis

Susta

ined

resp

irato

ry ac

idos

is

Page 32: Integrative Physiology

CO2

H2O

H2CO3

HCO3-

Buf -

HBuf

H+

A-

H+ retentionH+ depletion

TA+NH4+

Bicarbonate reabsorbtion

(3) losses of

HCO3-

(4) diarhoea H+excretion

(1) Increased metabolic production of strong acids

(2) Disorder of H+ excretion

Page 33: Integrative Physiology

Na+

Cl-

HCO3-

Na+

Cl-

HCO3-

Na+

Cl-

Anion gap

HCO3-

Accumulation of anions of strong acids(laktate acidosis

ketoacidosisuremic acidosis)

A- HCO3-

Cl-

H+

NH4+Cl-

NH3

H+

NH4+

NH3Cl-Relative accumulation of chlorides

Decreased acidification(tubular acidosis, hypoaldosteronisms, decreases glomer. filtration)

Normal aniongap

Increasedanion gap

Gastrointestinal losses of bicarbonate

HCO3-

Cl-

Na+

K+ Cl-

Na+

K+

Cl-

In urine:[K+]+[Na+]-[Cl-] < 0

in urine:[K+]+[Na+]-[Cl-] >= 0

Overdosis of NH4Cl

H+

Urea

HCO3-

HCO3-

Metabolic acidosis with:-increased anion gap-normal anion gap

Page 34: Integrative Physiology

Diarrhoea

Page 35: Integrative Physiology

H2O H2O

H2O

Na+

Cl-

H20 + CO2

Colon

HCO3-

HCO3-

Cl-

Cl-

AE

HCO3-

HCO3-

H20 + CO2

Na+

Na+

H+

H+

NHE

Page 36: Integrative Physiology

Cl-

Na+

H2O

Cl-

H2O

H2O

H2O

Alkalic diarrhoea

Hypertonic dehydratation

Hyperchloremic acidosis

Na+

ColonAE

HCO3-

HCO3-

Cl-

Cl- HCO3-

H20 + CO2

HCO3-

HCO3-

Hypotonic fluid lossHCO3

-

H20 + CO2

NHE

Na+H+

H+

Na+

Page 37: Integrative Physiology

Cl-

NHE AE

Cl-

Na+

H2O

Na+

Na+

H+

H+

HCO3-

HCO3-

Cl-

H20 + CO2

Cl-

H2O

H2O

HCO3-

HCO3-

HCO3-

H2O

Severe alkalic diarrhoea

Hypotonic fluid loss

Hypertonic dehydratation

Hyperchloremic acidosis

K+

Potassium loss

Na+

Cl-

Colon

HCO3-

H20 + CO2

Page 38: Integrative Physiology

Cl-

Na+

H2O

Cl-

H2O

H2O

H2O

Hypertonic dehydratation

Hypochloremic alkalosis

Na+

Colon

Histidine

HCO3-

Hypotonic fluid lossHCO3

-

H20 + CO2

H.Histidine+Cl-

NHE

Na+H+

H+

Na+

HCO3-

HCO3-

Cl-

Cl- HCO3-

H20 + CO2

AE

Acidic diarrhoea in DRA, down-regulated adenoma

Page 39: Integrative Physiology

10 15 20 25

Rate

of b

icar

bona

te re

abso

rbtio

n

Plasma level of HCO3-

Complete reabsorbtion

norm

proximal tubular renal acidosis

norm

normpH=5,5

Decreased acidification(tubular acidosis, hypoaldosteronisms, decreases glomer. filtration)

Cl-

H+

NH4+

NH3Cl-

HCO3-

Cl-

Na+

K+

Cl-

HCO3-

HCO3-

Positive urine aniongap

In urine:[K+]+[Na+]-[Cl-] > 0

Cl-

Normal urine aniongap

Na+

K+Cl-

In urine:[K+]+[Na+]-[Cl-] < 0

H+HCO3

-

Cl- NH4+

NH4+

Normal acidification

a

pH=7,8

a

b

pH=6,5

b

c

c

pH=5,5

Na+

Cl-

HCO3-

Anion gap

Na+

HCO3-

normalanion gap

Cl-

Hyperchloremic acidosis with normal anion gap

Page 40: Integrative Physiology

CO2

H2O

H2CO3

HCO3-

Buf -

HBuf

H+

A-

Retence H+

Retence H

TA+NH4+

Bicarbonate reabsorbtion

(6) vomiting

H+excretion

(7) K+

depletion

hyperaldosteronism katabolism

K+H+

Overdosis HCO3- infusion

Metabolic alkalosis

Page 41: Integrative Physiology

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

10

20

30

40

50

60

70

80

90PCO2 torr

Base Excess mmol/l

pH=7

,1

pH=7

,2

pH=7

,3

pH=7,37

pH=7,43

pH=7,5

pH=7,6

Acute metabolic acidosis Akute metabolic alkalosis

Acut

e re

spira

tory

aci

dosi

Acute respiratory acidosis

Sustained metabolic alkalosis

Sustained metabolic acidosis

Sustained re

spiratory alkalosis

Susta

ined

resp

irato

ry ac

idos

is

Page 42: Integrative Physiology

Vomiting

Page 43: Integrative Physiology

CO2 H2O

H2CO3

HCO3-

H+

Cl-

Cl-

Stomach

Duodenum and pancreas

CO2 H2O

H2CO3

H+ +HCO3- H+

Cl-

H2CO3

CO2

H2O

Balanced

CO2

Page 44: Integrative Physiology

hypochloremia

CO2 H2O

H2CO3

HCO3-

H+

Cl-

Cl-

Stomach

Duodenum and pancreas

CO2 H2O

H2CO3

H++HCO3- H+

Cl-

H2CO3

CO2

H2O

Unbalanced, HCO3- retension

Cl-

H+

Hypotonic fluid loss

Hypertonic dehydratation

Hypochloremic alkalosis

CO2

Page 45: Integrative Physiology

H+Cl-

H+K+

K+

H+

K+

H+

Paradoxal urine acidification

Potassium depletion

Increases lossse ofn

Intracellular fluid

Primary cause: Losses of Cl- a H+ by

vomiting

Metabolic alkalosis

H+

Cl-

K+

K+

H+

Na+Glomerulal filtration

(hypochloremic alkalosis)

Increased exchange Na+ with K+ and Na+ with H+

Excretion of potassium increases,acidification of urine regardless of alkalosis

Na+Glomerular filtraton

(norm)

Readsorbtion of sodium and chlorides

Depletion of chlorides

Cl-

Cl-

Na+

Na+

Remnant of sodium is exchanged with and H+

K+

K+

H+

H+

NH4+

Na+/Cl- reabsorbtion is diminished

Cl-

Na+

Na+

Page 46: Integrative Physiology

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

10

20

30

40

50

60

70

80

90PCO2 torr

Base Excess mmol/l

pH=7

,1

pH=7

,2

pH=7

,3

pH=7,37

pH=7,43

pH=7,5

pH=7,6

Acute metabolic acidosis Akute metabolic alkalosis

Acut

e re

spira

tory

aci

dosi

Acute respiratory acidosis

Sustained metabolic alkalosis

Sustained metabolic acidosis

Sustained re

spiratory alkalosis

Susta

ined

resp

irato

ry ac

idos

is

Page 47: Integrative Physiology

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

10

20

30

40

50

60

70

80

90PCO2 torr

Base Excess mmol/l

pH=7

,1

pH=7

,2

pH=7

,3

pH=7,37

pH=7,43

pH=7,5

pH=7,6

Acute metabolic acidosis Akute metabolic alkalosis

Acut

e re

spira

tory

aci

dosi

Acute respiratory acidosis

Sustained metabolic alkalosis

Sustained metabolic acidosis

Sustained re

spiratory alkalosis

Susta

ined

resp

irato

ry ac

idos

is

Page 48: Integrative Physiology

PO2

Concentration of O2

PaO2PvO2

Arterial blood at pH=7,4

Venose blood at pH=7,2

Oxygen released due to shift

of dissotiacion curve(Bohr effect)

Oxygen released due drop

PO2

Page 49: Integrative Physiology

PO2

Concentration of O2

High PaO2 during hyperventilation

at respiratory alkalosis

PvO2

Arterial blood at pH=7,4(normal conditions)

Venous blood at pH=7,2(normal conditions)

normal PaO2

Venous blood at pH=7,36(alkalemia)

Arterial blood at pH=7,6

(alkalemia)

Release of oxygen at normal condition

Release of oxygen at respiratory alkalosis

Decrease of oxygen delivery

to tissues at acute

respiratory alkalosis

Page 50: Integrative Physiology

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

10

20

30

40

50

60

70

80

90PCO2 torr

Base Excess mmol/l

pH=7

,1

pH=7

,2

pH=7

,3

pH=7,37

pH=7,43

pH=7,5

pH=7,6

Acute metabolic acidosis Akute metabolic alkalosis

Acut

e re

spira

tory

aci

dosi

Acute respiratory acidosis

Sustained metabolic alkalosis

Sustained metabolic acidosis

Sustained re

spiratory alkalosis

Susta

ined

resp

irato

ry ac

idos

is

Mixed acid-base disturbances - examples

Metabolic acidosis + respiratory acidosis

Metabolic acidosis + respiratory alkalosis

Diarrhoea -> metabolic acidosis + vomiting -> metabolic alkalosis+ catabolism, ->lactate metabolic acidosis

Page 51: Integrative Physiology

Potassium, Acid-Base and volume

Page 52: Integrative Physiology

1

K+mmol/l

6,9

2

3

4

5

6

7

8

7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 pH

Normal kalemia rangeA

K+

H+ H+

K+

A: Norm

B

K+

H+ H+

K+

B: Acidemia - exchange K+ / H+

K+

C

K+

H+ H+

K+

C: long lasting acidemia - K+ depletion

K+

D

K+

H+ H+

K+

D: Rapid alkalinization - H+/K+ - dangerous hypokalemia

K+

Page 53: Integrative Physiology

Potassium depletionFrom 10% to 50%

Normal or increased intake of potassium

from 5% to 30%

K+

Page 54: Integrative Physiology

Intracellular acidosis in proximal tubule

Enhanced resorption HCO3

-

K+

H+

H+

Enhanced resorption Cl-

Enhanced resorption Cl-

Effect of hypokalemia on

ECF volume

Page 55: Integrative Physiology

K+K+

Diuretics (Furosemid)

Large delivery of sodium in CCD (e.g. in osmotic diuresis) Low chloride in CCS

Hypealdosteronism

Potassium depletion

Catabolism

Long lasting acidemia

Page 56: Integrative Physiology

K+K+

Oliguric phase of acute renal failure

Hypoaldosteronism(m. Addisoni)

Potassium retention

Tubular damage(e.g. interstitial nephritis, diabetic nephropathy)

Page 57: Integrative Physiology
Page 58: Integrative Physiology

ACID-BASE BALANCE

Danish School of acid-base balance

"Modern" approach to acid-base balance by Stewart and Fencl

?

Page 59: Integrative Physiology

Classical approach of "Danish School"

Problem:

How to measure PCO2?

Page 60: Integrative Physiology

Measurement of Acid-Base parameterspH, pCO2, [HCO3

-]

HCO3-

H+

Buf-

HBuf

CO2

H2O

H2CO3

Page 61: Integrative Physiology

pH, pCO2, [HCO3-]

HCO3-

H+

Buf-

HBuf

CO2

H2O

H2CO3

Measurement of Acid-Base parameters

Page 62: Integrative Physiology

pH, pCO2, [HCO3-]

HCO3-

H+

Buf-

HBuf

CO2

H2O

H2CO3

Alkaline reserve

Measurement of Acid-Base parameters

Page 63: Integrative Physiology

pH, pCO2, [HCO3-]

HCO3-

H+

Buf-

HBuf

CO2

H2O

H2CO3

Measurement of Acid-Base parametersP. Astrup 1956

Page 64: Integrative Physiology

Equilibration method for pCO2 measurement by Astruplog PCO

2

pH

Titration curve

pH In blood sample (before equilibrationí

pH after equilibration with low pCO2

Low level pCO2 In mixture

O2/CO2

pH after equilibrationwith high pCO2

High level pCO2 in mixture

O2/CO2

pCO2 in measered sample

Page 65: Integrative Physiology

CO2

H2O

H2CO3

HCO3

H+

Buf -

HBuf

-

Buffer Base (BB)BB = [HCO3

- ]+ [Buf - ]

depends on cHb

Normal buffer base:NBB=41.7+0.42*cHB [g/100ml]

Base Excess:BE=BB-NBB

Page 66: Integrative Physiology

CO2

H2O

H2CO3

HCO3

H+

Buf -

HBuf

-

+ 1 mmol H+ added to 1 litre of blood

Page 67: Integrative Physiology

CO2

H2O

H2CO3

HCO3

H+

Buf -

HBuf

-

1 mmol/l drop of [HCO3-] + [Buf-]

BE=-1mmol/l

+ 1 mmol H+ added to 1 litre of blood

Page 68: Integrative Physiology

CO2

H2O

H2CO3

HCO3

H+

Buf -

HBuf

-

+ 1 mmol OH- added to 1 litre of blood

Page 69: Integrative Physiology

CO2

H2O

H2CO3

HCO3

H+

Buf -

HBuf

-

1 mmol/l increase of [HCO3-] + [Buf-]

BE= 1mmol/l

+ 1 mmol OH- added to 1 litre of blood

Page 70: Integrative Physiology

log pCO2

pH

Plasma and blood with different hematocrit

BE=0

7.4

40 torr BE=-5

BE=-10

BE=5

BEcurve

Page 71: Integrative Physiology

reading of BE

Odečet BB

NBB=41,7 + 0,42 * cHB

Page 72: Integrative Physiology

Buffer reactions

H2CO3

HCO3-H+CO2

HBufBuf-

Hb- HHbAlb-

HAlbHPO4

2- H2PO4-

H2O

H+

H+

H+

H+

++

+

+

++

Page 73: Integrative Physiology

Buffer reactions

H2CO3

HCO3-H+CO2

HBufBuf-

Hb- HHbAlb-

HAlbHPO4

2- H2PO4-

H2O

H+

H+

H+

H+

++

+

+

++

Nebikarbonátové pufryBuf = Hb + Alb + PO4

-

Page 74: Integrative Physiology

H2CO3

HCO3-

H+

CO2

HBuf

Buf-

H2O

Buffer reactions

Page 75: Integrative Physiology

HCO3-

H+

Buf-

HBuf

CO2

H2O

H2CO3

BB=[HCO3-] +[Buf-] = const

Siggaard-Andersen

Siggaard-Andersen

Page 76: Integrative Physiology

BE=0 mEq/l

BE=-15 mEq/l

Page 77: Integrative Physiology

Siggaard-Andersen (1960-1962)

Definition only for standard conditions not included hypo/hyperalbuminemia hyper/hypophosphatemia SA nomogram initialy was defined at 38°C

Definition (for blood in vitro)- Buffer Base: [BB]=[HCO3

-]+[Buf-] (independent on pCO2) -Normal Buffer Base: [NBB]

[BB] při pH=7.4 při pCO=40 torr at givenHb(SA nomogram - at normal albumins, phophates)

-Base Excess: [BE]=[BB]-[NBB]

Page 78: Integrative Physiology

Siggaard-Andersen (1974-1995)

Definition (for blood in vitro)- Buffer Base: [BB]=[HCO3

-]+[Buf-] (independent on pCO2) -Normal Buffer Base: [NBB]

[BB] při pH=7.4 při pCO=40 torr at givenHb(SA nomogram - at normal albumins, phophates)

-Base Excess: [BE]=[BB]-[NBB]

Definition NBB dependent on Hb, albumin and phosphates

Page 79: Integrative Physiology

Problems of Danish school

• Problems: In patients with acute disturbances of nonbikarbonate buffers :

e.g. altered plasma concentrations

( if the original SA nomogram is used)

Page 80: Integrative Physiology

Stewart theory (1983)

Ca+ Mg+

HCO3-

Buf-

XA-

Cl-

Na+

K+

SID[H+] [OH-] = K'w[Buf-]+[HBuf] = [BufTOT]

[Buf-] [H+] = KBuf [HBuf]

[H+] [HCO3-] = M × pCO2

[H+] [CO32-] = N × [HCO3

-]

SID+ [H+]– [HCO3-] – [Buf-]– [CO3

2-]– [OH-] = 0

Peter Stewart

Page 81: Integrative Physiology

Stewart theory – solution of equations

[H+]4 + (SID + KBUF) [H+]3 + +(KBUF (SID - [BufTOT])- K'w-M×pCO2)[H+]2

- (KBUF(K'w2 + M × pCO2)-N×M×pCO2)[H+] - K'w×N×M×pCO2 = 0

pH = f (pCO2, SID, BufTOT)

Page 82: Integrative Physiology

Mathematical wizardry

dependency of variables = causality

pH = f (pCO2, SID, BufTOT)

Vladimír Fencl

H2O/Na+/Cl-/K+ balance

CO2 balance

Plasma protein balance

pCO2

SID

[BufTot]

pH

[HCO3-]H2O/Na+/Cl-/K+ balance

CO2 balance

Plasma protein balance

pCO2

SID

[BufTot]

pH

[HCO3-]

Page 83: Integrative Physiology

Stewart‘s „modern approachLungsVentilationPerfusion

TissuesPerfusionMetabolismTransport

CO2

STRONG IONS

CO2

KIDNEYSFiltrationResorptionSecretion

STRONG IONS

GITAbsorbtionSecretion

STRONG IONS

KREV

Independent variables

PCO2

SID

[BufTOT]

Dependent variables

[HCO3-]

[Buf-]

[CO32-]

[OH-]

[H+] (pH)

LIVERSynthesisDegradation

PROTEINS

Page 84: Integrative Physiology

BALANCE THEORYExcretion of CO2 in

the lungs

The excretion of strong acids in the kidney

Metabolic production of strong acids

CO2 production

Page 85: Integrative Physiology
Page 86: Integrative Physiology

Blood Volume

Extracellular fluid volume Arterial Pressure

Page 87: Integrative Physiology
Page 88: Integrative Physiology

return

Page 89: Integrative Physiology

Starling curve and venous return curve

Page 90: Integrative Physiology
Page 91: Integrative Physiology
Page 92: Integrative Physiology
Page 93: Integrative Physiology
Page 94: Integrative Physiology
Page 95: Integrative Physiology
Page 96: Integrative Physiology
Page 97: Integrative Physiology

Strenous excercise

Rest

Page 98: Integrative Physiology
Page 99: Integrative Physiology

Decompensated cardiac failure

Page 100: Integrative Physiology

Treatment od decompensated cardiac failure

Page 101: Integrative Physiology

High-output cardiac failure

return