integrative network modeling of cognitive resilience to ...alzh_pfc 310 alzh_cr 263 alzh_vc 190...

19
Integrative Network Modeling of Cognitive Resilience to Alzheimer's Disease (R01AG057907) Bin Zhang, PhD Professor Department of Genetics & Genomic Sciences Icahn Institute of Genomics and Multiscale Biology Icahn School of Medicine at Mount Sinai, New York, USA Email: [email protected]

Upload: others

Post on 12-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Integrative Network Modeling of Cognitive Resilience to Alzheimer's Disease

    (R01AG057907)

    Bin Zhang, PhD

    Professor Department of Genetics & Genomic Sciences

    Icahn Institute of Genomics and Multiscale Biology Icahn School of Medicine at Mount Sinai, New York, USA

    Email: [email protected]

    mailto:[email protected]

  • Rationale

    No effective method is available for preventing and/or treating this devastating disease.

    However, certain individuals of the elder population (≥ 85 years) remain cognitively intact, including some with substantial plaques and neurofibrillary tangle burdens, the two pathological hallmarks for fully symptomatic AD.

    The mechanisms of cognitive resilience and protection against AD in these elderly persons remain elusive.

  • Overall Goals This grant aims to systematically develop and validate molecular network models underlying cognitive resilience to AD risk. Generate and analyze an AD-resilient dataset comprised of matched genetic,

    transcriptomic and proteomic data from a large number of very old and AD-resilient human brains

    Build network models of cognitive resilience to AD

    Extensively validate network drivers using C. elegans and mouse models.

  • subset samplesAlzh_PFC 310Alzh_CR 263Alzh_VC 190Norm_PFC 153Norm_CR 128Norm_VC 121

    Zhang B et al. (2013). Cell 153(3)

    Overview of HBBAD Cohort and Analysis Flow

    hbtrc_subset_genes_overlap

    overlapAlzh_PFCAlzh_CRAlzh_VCNorm_PFCNorm_CRNorm_VCHunt_PFCHunt_CRHunt_VC

    Alzh_PFC131931054211022108311029710586113231008211023

    Alzh_CR0.8131931045198951133010152103141110010398

    Alzh_VC0.840.7913193101071019710693108751011611206

    Norm_PFC0.820.750.771319399401049310496951110214

    Norm_CR0.780.860.770.751319310253100751064910200

    Norm_VC0.80.770.810.80.781319310456968710654

    Hunt_PFC0.860.780.820.80.760.79131931018211171

    Hunt_CR0.760.840.770.720.810.730.771319310285

    Hunt_VC0.840.790.850.770.770.810.850.7813193

    subsetsamples

    Alzh_PFC310

    Alzh_CR263

    Alzh_VC190

    Norm_PFC153

    Norm_CR128

    Norm_VC121

    Hunt_PFC157

    Hunt_CR141

    Hunt_VC122

  • Gene Modules Associated with AD Pathology

    Zhang B et al. (2013). Cell 153(3)

  • Brain regions rank-ordered by the relevance to AD pathology

    Region Full NmaeBM10-FP Frontal PoleBM17-OVC Occipital Visual CortexBM20-ITG Inferior Temporal GyrusBM21-MTG Middle Temporal GyrusBM22-STG Superior Temporal GyrusBM23-PCC Posterior Cingulate CortexBM32-AC Anterior CingulateBM36-PHG Parahippocampal GyrusBM38-TP Temporal PoleBM4-PCG Precentral GyrusBM44-IFG Inferior Frontal GyrusBM46-PFC Dorsolateral Prefrontal CortexBM7-SPL Superior Parietal LobuleBM8-FC Prefrontal CortexBMa-AMYG AmygdalaBMb-CD Caudate NucleusBMc-HIPP HippocampusBMd-NAc Nucleus AccumbensBme-PT Putamen

    Wang MH, et al. Genome Medicine 8:104

    AD-Hary2-Sample-module_infor

    RegionFull Nmae# of arrays# of module genesmax module sizemin module size

    BM10-FPFrontal Pole6329172519220

    BM17-OVCOccipital Visual Cortex5331915480220

    BM20-ITGInferior Temporal Gyrus5830033383720

    BM21-MTGMiddle Temporal Gyrus5831703836820

    BM22-STGSuperior Temporal Gyrus6027981646921

    BM23-PCCPosterior Cingulate Cortex5823657403220

    BM32-ACAnterior Cingulate5928640463220

    BM36-PHGParahippocampal Gyrus6027616471720

    BM38-TPTemporal Pole5826245330420

    BM4-PCGPrecentral Gyrus4926208362820

    BM44-IFGInferior Frontal Gyrus5329125395820

    BM46-PFCDorsolateral Prefrontal Cortex5727060517020

    BM7-SPLSuperior Parietal Lobule5029658647620

    BM8-FCPrefrontal Cortex5629288587822

    BMa-AMYGAmygdala5124431581622

    BMb-CDCaudate Nucleus5232189438822

    BMc-HIPPHippocampus55292681268820

    BMd-NAcNucleus Accumbens5125713328520

    Bme-PTPutamen5230618566620

    Total1053540520102306387

  • Selective Myelination Vulnerability of 19 Brain Regions to AD

    Wang MH, et al. (2016) Genome Medicine 8:104;

  • * *

    *

    *

    BM44-IFG (Inferior Frontal Gyrus)

    BM22-STG (Superior Temporal Gyrus)

    BM36-PHG (Parahippocampal Gyrus)

    Transcriptomics (RNA-seq) – 4 brain regions Proteomics (BM10, BM36 ongoing) Whole Exome Sequencing Whole Genome Sequencing

    Demographic characteristics of MSBB AD samples

    The Mount Sinai Cohort of Large-scale Genomic, Transcriptomic and Proteomic Data in Alzheimer's Disease

    Wang MH et al. Nature Scientific Data (in press)

  • Approaches

  • Subgroups of Interest

    OONL (oldest/old normal): Very old (age of death (AoD) ≥ 85) AD-resilient YONL (young/old normal): Young (AoD < 85)

    healthy OOAD (oldest/old AD): (AoD ≥85) AD YOAD (young/old AD): Young (AoD < 85) AD.

  • Data Generation (Prefrontal Cortex)

    New

    113

    137

    Total

    227

    250 192

    107

  • Differential Analysis of the MSBB-AD Data

    A) Trend analysis identified HLA-DPA1 with the most significant up-regulation trend.

    B) Expression of HLA-DPA1 protein in the temporal cortex of young-old and oldest-old persons with and without dementia.

  • Differential Analysis of the ROSMAP Data

  • Differential Analysis of the ROSMAP Data

  • Summary & Future Work The framework of multiscale network modeling of AD has been

    extensively validated. Preliminary analysis of three large transcriptomic datasets identified

    novel subnetworks and key regulators of resilience to AD. RNA-sequencing and proteomic profiling of a large number of AD-

    resilient and contrast groups are undergoing. Future work Integrate multi-Omics data into high-resolution network models

    of resilience to AD Screen a large number of candidate drivers in vivo

  • Genomics, Informatics, Networks o Bin Zhang, Eric Schadt, Jun Zhu, Minghui

    Wang, Zhidong Tu, Joel Dudley, Won-min Song

    Tissue collection and profiling o Vahram Haroutunian

    Clinical, experimental validation o Sam Gandy, Michelle Ehrlich, Joe Buxbaum,

    Stephen Salton, Mary Sano, Charles Mobbs (C. elegans), Kristen Brennand and Aiqun Li (stem cells)

    High throughput stem cell production and differentiation o Scott Noggle o Valentina Fossati

    Fly models o Koichi Iijima

    Data hosting, sharing, competitions o Lara Mangravite o Mette Peters o Ben Logsdon

    Team for the AMP-AD U01 Grant

  • Team for the Resilience R01 Grant Data Integration o Bin Zhang

    (contact PI) o Minghui Wang o Ali Sharma o Erming Wang o Chen Ming o Ryan Neff o Shuyu Dan Li o Rong Chen o Zhidong Tu o Li Chen o Lei Guo

    Data Generation o Vahram Haroutunian (M-PI) o Pavel Katsel

    in vivo Validations o Michelle Ehrlich (M-PI) o Sam Gandy o Charles Mobbs o Mickael Audrain o Tomas Fanytza o Ben Shackleton

    Proteomics o Junmin Peng o Kaiwen Yu o Boer Xie

    Sample Preparation & Data QC o Chris Gaiteri o David A Bennett o Ryan Johnson o Gregory Klein

    Genetics of Resilience o John Kauwe

  • Acknowledgements

    R01 AG046170

    R01AG057907

    AMP-AD Consortium

    M2OVE-AD Consortium

    Dr. Suzana Petanceska

    Integrative Network Modeling of Cognitive Resilience to Alzheimer's Disease�(R01AG057907)RationaleOverall GoalsSlide Number 4Gene Modules Associated with AD PathologySlide Number 6Slide Number 7Slide Number 8Slide Number 9ApproachesSubgroups of InterestData Generation (Prefrontal Cortex)Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Team for the Resilience R01 GrantAcknowledgements