integration of geochemistry & reservoir fluid properties pttc workshop june 25, 2003 kevin...

51
Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc.

Upload: tracy-holland

Post on 11-Jan-2016

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Integration of Geochemistry &Reservoir Fluid Properties

PTTC WorkshopJune 25, 2003

Kevin Ferworn, John Zumberge, Stephen BrownGeoMark Research, Inc.

Page 2: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

• GeoMark has undertaken a number of projects integrating geochemistry and reservoir fluid properties.

• Presentation separated into two parts.

• Part I. John Zumberge Introduction to oil and gas geochemistry Petroleum Systems studies

• Part II. Kevin Ferworn Results from interpretive studies (models, correlations and charts)

used to predict Reservoir Fluid and Flow Assurance properties .

Introduction

Page 3: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

• Source Rock Type Marine Shales Marine Carbonates Lacustrine Shales

• Thermal History of Source Rock Depth of Burial Timing of Generation

• Post Generative Alteration Biodegradation

• Reservoir Mixing

Oil Quality Controlled by 4 Elements

Page 4: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

#S

#S#S

#S

#S#S#S

#S#S

#S

#S

#S#S

#S#S#S#S #S

#S

#S#S#S#S#S#S

#S

#S#S#S

#S#S#S

#S#S

#S

#S#S#S

#S#S

#S

#S#S#S#S#S

#S

#S

#S

#S #S

#S#S

#S

#S#S

#S #S#S#S#S#S#S#S

#S#S

#S#S#S #S

#S

#S#S#S#S#S#S

#S #S#S#S#S

#S#S#S#S#S

#S#S#S#S

#S#S#S#S#S#S#S

#S#S

#S#S#S#S#S#S

#S#S#S#S

#S #S#S#S #S

#S#S#S

#S#S#S#S#S #S#S#S

#S#S#S

#S

#S #S#S#S#S#S #S

#S

#S#S

#S#S#S#S#S#S

#S

#S#S#S#S#S

#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S

#S

#S

#S

#S#S #S

#S

#S

#S#S#S #S

#S

#S

#S#S

#S#S

#S #S#S

#S#S#S #S#S#S#S#S#S#S#S#S#S#S#S

#S#S#S

#S

#S#S

#S#S

#S#S#S

#S#S#S

#S#S#S#S#S#S

#S#S#S#S#S#S

#S#S#S#S#S#S#S#S

#S

#S#S#S#S#S

#S#S#S#S#S#S #S#S#S

#S #S#S#S

#S

#S#S #S#S #S#S

#S

#S

#S

#S

#S

#S

#S #S#S #S

#S#S #S#S#S #S#S#S#S#S#S#S#S #S#S#S#S#S#S#S

#S

#S

#S

#S#S#S

#S

#S

#S

#S#S#S

#S#S

#S

#S#S#S#S#S

#S#S#S

#S#S

#S

#S#S#S

#S#S#S

#S

#S#S#S#S#S

#S#S#S

#S

#S #S

#S#S

#S#S

#S#S

#S#S#S#S

#S#S#S

#S#S

#S#S#S

#S#S

#S

#S#S#S

#S#S #S

#S

#S#S#S

#S#S

#S#S#S

#S#S

#S#S

#S

#S

#S#S#S

#S #S

#S#S

#S

#S

#S

#S

#S

#S

#S

#S#S#S#S#S

#S#S #S#S#S#S#S#S#S#S

#S#S#S

#S

#S

#S

#S

#S

#S

#S#S

#S#S

#S

#S #S

#S#S#S

#S#S#S

#S#S

#S#S#S

#S#S#S#S

#S

#S#S #S#S#S#S

#S

#S#S#S#S#S

#S#S#S#S#S

#S#S#S#S

#S#S#S#S

#S #S

#S#S

#S

#S

#S#S

#S

#S

#S

#S

#S

#S

#S

#S#S

#S

#S

#S

#S#S

#S #S

#S

#S#S#S

#S#S#S #S#S

#S

#S#S#S#S

#S#S

#S#S#S#S

#S#S#S

#S#S

#S#S

#S#S#S

#S

#S#S

#S#S

#S

#S

#S

#S#S#S

#S#S#S

#S

#S

#S#S#S#S #S#S#S#S

#S

#S#S#S#S#S

#S#S

#S#S#S#S

#S#S

#S#S

#S

#S

#S

#S#S

#S

#S #S#S#S#S#S#S

#S

#S#S#S#S

#S#S#S#S

#S#S#S#S#S#S#S

#S#S#S#S#S#S #S#S#S

#S#S#S#S

#S#S

#S#S#S#S#S#S

#S

#S#S

#S #S#S #S#S#S#S#S#S

#S

#S#S

#S#S

#S#S#S

#S#S#S#S #S#S#S#S#S#S#S#S#S#S

#S#S

#S#S#S#S#S

#S

#S#S#S

#S

#S

#S#S#S#S

#S#S#S

#S

#S#S

#S

#S#S#S#S #S#S

0.4 - 11 - 2

0 - 0.4

> 2

% Sulfur

Page 5: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

• Predict depositional environments, thermal maturity, and geological ages of petroleum source rocks from corresponding crude oils

• Why use crude oils and not source rock extracts? Oils are widely available, accessible, abundant, and carry the

same kind of evolutionary & environmental information that is buried in source rocks

• Molecular Fossils – a.k.a Biomarkers

• Oils reflect the natural ‘average’ in source rock variation

• The source rock type and age for many of the oils in GeoMark’s database are known based on extensive integration of geology and geochemistry

Geochemistry Fundamentals

Page 6: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Geochemical Approach

• Petroleum Systems Geochemistry – GOM Example Crude Oil Geochemistry - Few Source Rocks Available in GOM Unparalleled Oil Sample Collection Comparison with Known Petroleum Systems Onshore Homogeneous Data Set Multivariate Statistics

• Production Geochemistry Detailed comparison of samples from multiple formations or

wells to evaluate continuity Often called “Fingerprinting”

Page 7: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Whole Crude Gas Chromatogram

min5 10 15 20 25 30 35

0

100000

200000

300000

400000

FID1 A, (LA271.D)

C7

PrC27

C17

Sterane & TerpaneBiomarkers

time

ab

undance

Page 8: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Sterane Biomarkers m/z = 218

50 55 60 65 70

50 55 60 65 70

C27

C28

C29

GC/MS Mass Chromatograms

R

Page 9: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

GC/MS Mass Chromatograms

25 30 35 40 45 50

C19C20 C21

C22

C23

C24

C25

Tet

C26

25 30 35 40 45 50

C19C20 C21

C22

C23

C24

C25

Tet

C26

Tricyclic Terpane Biomarkers m/z = 191

C23

Page 10: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Tricyclic Terpane Biomarker Ratios

0.1

0.3

0.5

0.7

0.9

1.1

1.3

0.1 0.3 0.5 0.7 0.9 1.1 1.3

C24/C23

C22

/C21

carbonatemarlshalelacustrine

Carbonate Source Rocks

Shale Source Rocks

Page 11: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Terpane Biomarker Ratios

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1

C26/C25

C31

R/H

carbonatemarlshalelacustrine

Carbonate Source Rocks

Shale Source Rocks

Lacustrine Source Rocks

Page 12: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

60 65 70 75 80

Ts

Tm

27TC28

C29H

C29DC30X

OL

C30H

C30M

C31S

C31RGA

C32S

C32R C33SC33R

C34SC34R

C35SC35R

60 65 70 75 80

Ts

Tm

27TC28

C29H

C29DC30X

OL

C30H

C30M

C31S

C31RGA

C32S

C32R C33SC33R

C34SC34R

C35SC35R

Pentacyclic Terpane Biomarkers m/z = 191(a.k.a. Hopanes)

GC/MS Mass ChromatogramsOLEANANE

Page 13: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 100 200 300 400 500 600

Source Rock Age mybp

OL

/H

carbonate

marl

shale

Permian Ext

Cretaceous Ext

Oleanane vs Source Rock Age

Page 14: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

1.0 0.8 0.6 0.4 0.2

Family A - Tertiary Paralic

Family C2 - Wilcox Distal

Family B-Tertiary Coaly-Resinous

Family C1 - L. Cretaceous Shales

Family D - U. Cretaceous ShalesFamily SE1 ?????????

Family SE2 - Tithonian Marls/Family SE2 - Tithonian Marls/CarbonatesCarbonates

Family F -Oxfordian SmackoverFamily F -Oxfordian Smackover

La Luna/Napo - Cretaceous

Marls/Carbonates

Cognac, Tahoe, GeminiPetronius, Pompano,

Shasta, Popeye, Snapper

East Texas FieldAustin Chalk Trend

Mahogany, Agate, Teak, Mars, Bullwinkle, Jolliet,

Baldpate, Auger, Tick

Europa, Lobster, Fuji, Tampico, Salina,

Campeche (Cantarell)

Shales

Carbonates/Marls

0.63

Cluster AnalysisDendrogram

Page 15: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Pr/Ph

OL/H

C19/C23

C29/HC22/C21

C35/C34C31/H

C24/C23

Ster/Hop

%C29

%C27

%C28

13Cs13Ca

Principal Component Analysis

Factor 2

Factor 3 Factor 1

Page 16: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Tertiary ParalicShales

Wilcox DistalWilcox DistalShalesShales

Cretaceous Shales

TithonianTithonianCarbonatesCarbonates

/Marls/Marls

Oxfordian SmackoverOxfordian Smackover

La Luna/NapoCarbonates/Marls

MIXEDMIXED

Principal Component AnalysisFactor 2

Factor 3 Factor 1

Page 17: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

13Cs13Ca

Factor 2

Factor 3

Factor 1

Principal Component Analysis

SmackoverSmackover

Page 18: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

GB GC AT

MC

EB

AC WRKC LD

Family A: Tertiary ShalesFamily C1: LK Shales

Family SE1: MixedFamily SE2: UJ Marls

UJ

LKTERT

MIX

Gulf of Mexico Oil Source Rock Families

Page 19: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Factors Affecting Oil Quality

Oil Quality is affected by four elements.

1. Source Rock Depositional Environment and Age

2. Thermal Maturity

3. Biodegradation

4. In-situ Mixing

Page 20: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Biodegradation and Mixing in Oils

min5 10 15 20 25 30 35

0

5000

10000

15000

20000

25000

30000

FID1 A, (LA993.D)

min5 10 15 20 25 30 35

0

20000

40000

60000

80000

100000

120000

140000

FID1 A, (LA1034.D)

nC7

min5 10 15 20 25 30 35

0

100000

200000

300000

400000

500000

FID1 A, (LA919.D)

nC7

Non degraded

Heavy biodegradation

‘Polyhistory’ Oil

Page 21: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

#S#S

#S#S#S

#S#S#S

#S#S #S

#S

#S

#S

#S#S

#S#S

#S#S#S

#S

#S

#S

#S

#S

#S#S #S

#S

#S

#S

#S

#S#S

#S #S

#S

#S

#S

#S#S#S

#S #S

#S

#S

#S#S#S

$ $

$$$

$

$

#S

#S

#S

#S#S

#S#S

#S

#S

#S

#S

#S

#S#S

#S

#S#S

#S

#S#S

#S#S

#S

#S#S

#S#S

#S

#S

#S#S#S#S#S#S

#S

%U%U

%U

%U

%U

%U%U

%U %U

%U%U

%U%U%U

%U%U%U%U%U

%U

%U

%U

%U

%U%U

%U%U

%U

%U

%U%U

%U%U

%U%U %U

%U%U%U

%U

%U

%U%U

%U

%U%U%U%U%U%U

%U%U

%U%U%U

%U

%U

%U%U%U

%U

%U

%U

%U

%U%U

%U

%U%U%U%U%U%U%U%U%U

#S

#S

#S

#S#S#S#S #S#S

#S#S #S #S#S#S

#S

#S

#S#S#S

#S#S#S

#S

#S#S#S#S

#S#S #S#S

#S#S#S

#S#S#S#S#S#S

#S#S#S#S

#S#S#S#S

#S

#S#S

#S#S#S#S#S#S#S

%U

%U%U

%U

%U

%U%U %U

%U

%U%U

%U

%U

%U%U

%U

100 0 100 Miles

“Polyhistory” Oils

GCGB AT

MC

AC KC WR LD

EB

Page 22: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Gas Geochemistry

• No biomarkers present in Gases, therefore different markers used for classification.

• Composition & Stable Isotopes C1 - C4 13C vs. 12C 2H vs. 1H

• Origin of Gas: Thermogenic vs. Biogenic

• Gas samples used for geochemical analyses may come from flashed PVT lab samples or from Mud Gases (i.e., Isotubes)

• Geochemical analyses also offer insight on quality of Deep Shelf gas

Page 23: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

#S#S#S

#S#S

#S

#S#S#S#S#S

#S#S#S#S

#S

#S#S

#S

#S

#S#S

#S

#S#S

#S#S

#S#S

#S

#S

#S

#S#S#S #S

#S#S

#S

#S

#S#S

#S#S #S#S

#S

#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S

#S#S

#S#S

#S

#S#S#S

#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S

#S#S#S#S#S

#S#S#S#S#S#S

#S#S#S#S#S#S#S#S#S

#S#S

#S

#S#S

#S#S

#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S#S#S#S#S#S#S

#S#S#S#S

#S

#S#S#S#S

#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S

#S#S#S#S#S

#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S

#S#S#S#S#S#S#S#S#S#S#S#S#S#S #S

#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S

#S#S

#S#S#S

#S#S#S#S#S #S#S

#S#S#S#S#S

#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S

#S #S#S#S #S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S

#S#S

#S#S#S#S#S#S#S#S#S

#S#S#S#S

#S#S

#S

#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S

#S#S

#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S

#S#S

#S#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S

#S#S#S#S#S#S#S #S#S#S#S#S#S#S#S #S#S

#S#S

#S#S #S#S#S#S #S#S#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S

#S #S#S

#S

#S#S

#S#S #S#S#S#S#S

#S#S #S#S

#S#S#S#S#S

#S#S#S

#S

#S#S#S#S

#S#S

#S#S#S#S

#S#S

#S#S#S#S

#S#S#S#S

#S

#S

#S#S

#S#S #S

#S#S

#S#S#S#S#S#S#S#S

#S

#S

#S

#S#S

#S #S #S#S

#S

#S

#S#S

#S#S

#S

#S

#S

#S #S#S#S#S

#S#S#S

#S Seep Gas#S Well Gas

50 0 50 Miles

Location Map of Offshore Gas Samples

Page 24: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

(after Schoell, 1983)

100 20 30 40

-20

-50

-40

-30

-70

-60

13C

met

han

e

Gas Wetness (%C2+)

Mixed

Oil Associated

Post MatureDry Gas

Conde

nsat

e

Biogenic

100 20 30 40

-20

-50

-40

-30

-70

-60

Gas Wetness (%C2+)

/

-75.0

-70.0

-65.0

-60.0

-55.0

-50.0

-45.0

-40.0

-35.0

-30.0

-25.0

-20.0

0.0 10.0 20.0 30.0 40.0

TEDSE

TEDSW

TEMS

LKMSE

LKMSE

UKMS

THMC

THLKM

SMMC

Piston Cores + Seeps

Genetic Classification of GOM Gases

GeoMark Research, Inc.Houston, Texas

Page 25: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

-70

-60

-50

-40

-30

-20

-10

-42 -38 -34 -30 -26 -22 -18

13C Ethane (per mil)

13

C M

etha

ne/

13C

Pro

pane

(pe

r m

il)

TEDSE

TEDSW

TEMS

LKMSE

LKMSW

UKMS

THMC

THLKM

SEEPS

13C Ethane ‰

13

C M

eth

ane

‰ a

nd

13

C P

rop

ane

B

A

3.0 Ro1.5

2.0

0.7 Ro

1.0

Isotopic Cross Plots for GOM Gases

Thermogenic

Biogenic

Mixed

Page 26: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

#########

#######

##

###

###

#####################################################################################################

#####

######

#########

###

##

##

######################

####

#

#############################################################################################

#######

##########################

##########

############################################

############## #

#########

#########

##########

#####

#######################################################################

######################################

#### #####

####

#########

################

##################

####

##

#

#############################

########################

###############

#######

##

#########################

##################

##

##########

######

####### ######## ##

##

## #### ########### ######

# ##

#

##

#######

####

########

#

######

####

##

####

#####

#

#### #

##

########

#

#

########

#

##

##

#

#

#

# ####

###

## #

##

#

#####

#####

##

#

## ##

##

##

#

#

##

#

### # ##

#

#

##

####

#

Methane Carbon Isotope# < -80# -80 - -70# -70 - -60# -60 - -50# -50 - -40# -40 - -30

#

50 0 50 Miles

Biogenic Methane Trends

Page 27: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

-60.0

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

20.0

0 1 2 3 4 5 6 7 8 9 10

Normalized Percent CO2 (%CO2)

13

C/1

2C C

O2

(Sta

ble

Car

bon

Isot

ope

Rat

ios

For

CO

2)

TEDSE

TEDSW

TEMS

UKMS

LKMSE

LKMSW

SMMC

THMC

THLKM

SEEPS

Inorganic CO2

Organic CO2

13

C C

O2

Normalized Percent CO2

Inorganic vs. Organic Origin of Carbon Dioxide

Page 28: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

% Carbon Dioxide vs. Reservoir Depth0

.01

.02

.03

.04

.05

.0

0 5,000 10,000 15,000 20,000 25,000

MD ft

% C

O2

13CO2 > -12 per mil

13CO2 < -12 per mil

Page 29: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

#########

#S#S#S#S#S#S#S

#S#S

#S#S#S

#S#S#S

#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S######S#S#S#S#S#S###S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S######S#S#S#S#S#S#S#S#S#S

#S#S#S#S#S

#S#S#S#S#S#S

#S#S#S#S#S#S#S#S#S

#S#S#S

#S#S

#S#S

#S#S#S#S#S##S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S

#S#S#S#S

#S

#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#####S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S####S#S#S#S#S#S#####S#S####S###S######S#S#S####S#S#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S

#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S#S#S#S#########################S############

#S#S#S#S#S#S#S

#S#S#S#S####S#S#S#S#S#S#S #S

#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S#S#S#S

#S#S##S#

#S#S###########S##S#########S#S#S#S#S#S#S#S#S####S#S#S#S#S#S#S##S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S##

###S#S#S#####S#S##S##S#S#########S#############

#S ###S #####

####

#S#S#S#S#S#S#S#S#

#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S

#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S#S

#S#S#S#S

#S#S

#S

#######S##S#S#####S##S#S##S##S#S###S##S#

#####S#S#S#S#S#S#S##S#S#S#S#S#S#S#S#S##S#S

###############

#######

##

#S####S##S#S##S##S#S##S#S####S##S#S##S

#S#S#S#S#S#####S#S####S#S#S#S

##

####

######

##

####

#

############## ##

##

## #### ###########

####

##

###

#

##

#####

##

## ##

###

##

###

#

##

##

##

####

##

##

##

## ##

#

#

##

## #

##

#S#S#S#S#S###

#

#

#

#

##

# ##

#

#

##

##

#

#

#S

# #

###

#S#S#S

## #S

#S#S

#

#S#S#S##

###S#S#

#

#

#

#

#

#

#

##

#

#

#

#

#

#

#

#S#S##

##S

#

#S

#S#S##

#S#S

#S

Ethane Carbon Isotope#S -51 - -34#S -34 - -31#S -31 - -28#S -28 - -26#S -26 - -17

#

50 0 50 Miles

Maturity Trends

Page 30: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

gEngineering Studies

• gPVT study completed in Gulf of Mexico in 2000.

• 12 member companies contributed PVT reports and matching stock tank oil samples for full geochemical analyses and interpretation.

• Traditional PVT correlations were tested against the data set and then improve by tuning against main Geochemical Parameters:

Source rock type / family Thermal maturity Level of biodegradation.

• Importance of associated gas was discovered. In particular, the influence of Biogenic Methane.

Page 31: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

GB GC AT

MC

EB

AC WRKC LD

Family A: Tertiary ShalesFamily C1: LK Shales

Family SE1: MixedFamily SE2: UJ Marls

UJ

LKTERT

MIX

Gulf of Mexico Oil Source Rock Families

Page 32: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Sulfur Oil Quality Matrix

Degree of BiodegradationB0 NondegradedB1 MildB2 HeavyB2* Polyhistory Oils

Level of Thermal MaturityM1 Low to ModerateM2 ModerateM3 Moderate to High

Family Source Rock Age/Character

A Tertiary Paralic/Deltaic Shales

B Tertiary Coaly/Resinous Shales

C2 Tertiary Distal Wilcox Shales

D UK Distal Eagle Ford/Tuscaloosa Shales

C1 LK Distal Shales

Family Source Rock Age/Character

SE1 Mix Mixture of C1 and SE2

SE2 Tithonian Carbonates/Marls

F1 Oxfordian Smackover Carbonates

F3 Oxfordian Smackover Marls/Shales

F2 LK Sunniland Carbonates

T2/AJB Tithonian Carbonates

M1B0 M2B0 M3B0 M1B1 M1B2 M2B1 M2B2 M1B2* M2B2*A 0.09 0.08 0.06 0.12 0.22 0.16

0.07 46 0.06 8 0.04 9 0.09 6 0.12 4 2

B 0.07 0.21 0.03 0.18 0.09 0.210.04 9 0.19 5 1 0.12 15 0.04 4 3

C2 0.15 0.16 0.17 0.28 0.220.10 25 0.11 4 0.08 6 1 0.09 4

D 0.38 0.140.17 11 0.12 27

C1 0.29 0.27 0.25 0.30 0.44 0.39 0.55 0.58 0.210.20 57 0.15 60 0.18 21 0.13 14 1 0.16 7 0.19 6 0.17 4 3

SE1 Mix 0.99 0.77 0.69 1.60 1.19 1.19 0.940.51 62 0.38 21 2 0.68 7 0.33 6 0.69 20 3

SE2 2.30 2.22 2.50 2.661.11 17 0.58 4 0.44 4 1

F1 2.31 0.48 0.631.06 8 0.56 4 0.52 7

F3 2.12 0.48 0.461.52 6 3 0.37 6

F2 3.180.53 6 AVE

T2/AJB 1.92 0.92 1 n

0.13 8 0.37 17

0.3

2.31.0 1.6

Page 33: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Vasquez-Beggs Sat. Pressure Correlation

Vasquez-Beggs: Psat = f(GOR, Gas Gravity, Oil Gravity, Temperature)

Oil FamilyRegression

Coefficient (R2)

Entire Data Set(original constants) 0.6032

Entire Data Set(updated constants) 0.8429

C1 0.9097

SE1 0.9194

SE2 0.8779

C1-Biodegraded 0.9969

SE1-Biodegraded 0.9248

SE2-Biodegraded 0.9816

Page 34: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

GOR / Res. Fluid MW Relationship

Reservoir Fluid MW vs. Single Stage GOR

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250

Reservoir Fluid MW (lb/lbmole)

Sin

gle

Sta

ge

GO

R (

scf/

stb

)

C1 - Distal Lower Cretaceous Shales

SE1 - Mixture of C1 and SE2

SE2 - Tithonian Carbonates/Marls

C1-B - Biodegraded C1

SE1-B - Biodegraded SE1

Curve Fit: R2 = 0.9959

GOR-1 = -9.715E-5 + 1.2464E-6 MW1.5

OilsGases

Page 35: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Gas Wetness vs. Res. Fluid MW

Reservoir Fluid MW vs. Reservoir Fluid % Wetness

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160 180 200

Reservoir Fluid MW (lb/lbmole)

Re

serv

oir

Flu

id %

We

tne

ss

C1 - Distal Lower Cretaceous Shales

SE1 - Mixture of C1 and SE2

SE2 - Tithonian Carbonates/Marls

C1-B - Biodegraded C1

SE1-B - Biodegraded SE1

Biodegraded Samples

Page 36: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Psat / Composition Relationship

Reservoir Fluid C1 / C5 Ratio vs. Adjusted Saturation Pressure

0

2000

4000

6000

8000

10000

12000

14000

10 20 30 40 50 60 70 80 90 100

Reservoir Fluid C1 / C5 Ratio (mole%/mole%)

Ad

just

ed

Psa

t (p

sia

@ 1

90

°F)

C1 - Distal Lower Cretaceous Shales

SE1 - Mixture of C1 and SE2

SE2 - Tithonian Carbonates/Marls

C1-B - Biodegraded C1

SE1-B - Biodegraded SE1

SE2-B - Biodegraded SE2

Page 37: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Predicting PVT from FT Gradients• Pressure Gradients from Wireline Formation Test Tools (e.g. RCI, MDT,

RDT) can be directly converted to Reservoir Fluid Densities: i.e., Pressure Gradient P/z = res . g

• Pressure Gradient Densities are unaffected by Oil-Based Drilling Fluid.

• Correlations have been developed to predict Downhole Petroleum Fluid PVT Properties from Reservoir Fluid Densities and Geochemical Parameters derived from GeoMark’s global database of oils and seeps.

• Input requirements: Pressure Gradient Reservoir Pressure/Temperature Three Geochemical Parameters: Source Rock, Maturity, Biodegradation Mud Logging Dryness Factor: C1 / (C1 + C2 + C3)

• Algorithms are used to predict PVT parameters real-time, prior to the availability of physical samples.

Page 38: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

GeoMark Research, Inc.PVTMod Application

Pedigree Info Input ParametersCountry USA Reservoir Pressure 4000 psiaState/Province Louisiana Reservoir Temperature 125 °FBasin GOM Pressure Gradient 0.320 psi/ftBlock/County Reservoir Fluid Density 0.739 g/ccField Name 0.92Well/ST Number Source Rock Aromaticity 0.23 (0 - 1)Formation Name Thermal Maturity 0.24 (0 - 1)MD Biodegradation 0 (0 or 1)

Notes

Variable Units Measured Field Tuned Basin TunedReservoir Fluid MW g/mole 102.9 103.7 105.4Single Stage GOR scf/stb 639 677 672Reservoir Fluid Density g/cc 0.739Reservoir SS FVF vol/std vol 1.329 1.325 1.292Reservoir Fluid Viscosity cP 0.87 0.81 0.75Saturation Pressure psia 3140 3387 3435Saturated Fluid Density g/cc 0.729 0.732 0.735Saturated SS FVF vol/std vol 1.310 1.314 1.357Saturated Fluid Viscosity cP 0.72 0.73 0.65API Gravity °API 35.2 35.9 32.9STO Sulfur Content wt% 0.20 0.21 0.27Reservoir Fluid N2 mole% 0.40 0.30 0.22Reservoir Fluid CO2 mole% 0.68 1.69 0.48Reservoir Fluid C1 mole% 47.10 45.06 44.59Reservoir Fluid C2 mole% 2.25 4.30 2.68Reservoir Fluid C3 mole% 1.67 3.07 2.85Reservoir Fluid iC4 mole% 0.41 1.05 1.07Reservoir Fluid nC4 mole% 1.63 1.92 1.74Reservoir Fluid iC5 mole% 1.95 1.50 1.10Reservoir Fluid nC5 mole% 0.86 1.31 1.73Reservoir Fluid C6 mole% 1.59 2.12 2.40Reservoir Fluid C7+ mole% 41.46 37.68 41.14Reservoir Fluid C7+ MW g/mole 197.6 202.2 239.4Reservoir Fluid C7+ SG 0.854 0.857 0.868Flash Gas Gravity (Air = 1.0) 0.760 0.801 0.744

*Probable Range: 2/3rd of the data points used to develop the correlation fall within the probable range.

Calculated from Gradient

Mud Logging Dryness Factor

Example is from the Deepwater Gulf of Mexico. Measured PVT data is compared to PVTMod Predictionsfrom a general GOM basin model and a further refined field model with additional weight given to previously analyzed samples from the same field.

GOMExample

Reservoir Fluid MW

102.9 103.7Reservoir Fluid

GOR639

677

Reservoir Fluid Viscosity

.87 .81

Saturated FVF 1.310 1.314

Reservoir Fluid C1

47.10 45.06

Input Parameters

Saturation Pressure

3140 3387

Page 39: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Flow Assurance Studies

• In 2001 a study was undertaken to compare stock tank oil geochemical analyses to wax and asphaltene stability measurements

Extended Compositions by HTGC Cloud Points by CPM Asphaltene stabilities by n-Heptane Titration

• It was found that source rock type, thermal maturity and level of biodegradation each had an influence on solids stability.

• “Live oil” flow assurance data is beginning to appear in the Reservoir Fluid Database.

• Future work includes a new study to collect and interpret Live Oil flow assurance data with geochemical analyses.

Page 40: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

High Temperature GC Example

6 9 12 15 18 21 24 27

3000

6000

9000

12000

15000

LA271

nC35

6 9 12 15 18 21 24 27

3000

6000

9000

12000

15000

LA271

nC35

UCM

Expanded Scale

retention time (min)

C40

C50

FID response

Page 41: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Example Cloud Point Trial (CPM)

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90

Temperature (°F)

Cry

sta

l Sa

tura

tio

n (

CP

M %

Wh

ite

spa

ce

)

Calculated Crystal Growth Slope = -0.210 %/°FCalculated Intercept = 9.7%

Visual Cloud Point = 47°F

Cooling Experiment

CPM Crystal Growth Plot

CPM Micrograph

Page 42: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

20

40

60

80

100

120

140

160

180

200

500 1000 5000 10000 50000 100000 200000

LA952

RU115

Cloud Point vs. HTGC nC30+

nC30+ (ppm)

Clo

ud P

oint

(°F

)

Marine Distal ShalesMarine Paralic ShalesMarine CarbonatesMarine MarlsHypersalineCoaly/ResinousLacustrine FreshLacustrine Saline

20

40

60

80

100

120

140

160

180

200

500 1000 5000 10000 50000 100000 200000

LA952

RU115

Cloud Point vs. HTGC nC30+

nC30+ (ppm)

Clo

ud P

oint

(°F

)

Marine Distal ShalesMarine Paralic ShalesMarine CarbonatesMarine MarlsHypersalineCoaly/ResinousLacustrine FreshLacustrine Saline

Marine Distal ShalesMarine Paralic ShalesMarine CarbonatesMarine MarlsHypersalineCoaly/ResinousLacustrine FreshLacustrine Saline

Cloud Point vs. nC30+

Page 43: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Distal Shale Sample Cloud Points

RU115: nParaffin and non n-Paraffin Distributions

10

100

1000

10000

100000

1000000

1 6 11 16 21 26 31 36 41 46Component

Co

nc

en

tra

tio

n (

pp

m)

n-Paraffin

non n-Paraffin

C15 C60

LA952: nParaffin and non n-Paraffin Distributions

10

100

1000

10000

100000

1000000

1 6 11 16 21 26 31 36 41 46Component

Co

nc

en

tra

tio

n (

pp

m)

n-Paraffin

non n-Paraffin

C15 C60

Sample RU115 Sample LA952

Cloud Point = 49°F Cloud Point = 115°F

Page 44: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Cloud Point Histogram

CP < 40°F 40 < CP < 80°F 80 < CP < 120°F CP > 120°F

50

100

150

58

154

58

34

CPM Cloud Point Histogram

CPM Cloud Point Ranges

Num

ber o

f Sam

ples

Marine Distal ShalesMarine Paralic ShalesMarine CarbonatesMarine MarlsHypersalineCoaly/ResinousLacustrine FreshLacustrine Saline

CP < 40°F 40 < CP < 80°F 80 < CP < 120°F CP > 120°F

50

100

150

58

154

58

34

CPM Cloud Point Histogram

CPM Cloud Point Ranges

Num

ber o

f Sam

ples

Marine Distal ShalesMarine Paralic ShalesMarine CarbonatesMarine MarlsHypersalineCoaly/ResinousLacustrine FreshLacustrine Saline

Marine Distal ShalesMarine Paralic ShalesMarine CarbonatesMarine MarlsHypersalineCoaly/ResinousLacustrine FreshLacustrine Saline

Page 45: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Regional Cloud Point Maps

'W 'W'W'W

'W'W'W'W'W'W'W

'W

'W

'W 'W

'W'W

'W 'W'W

'W

'W

'W'W

'W

'W'W

'W

%U 8. Lacustrine Saline%U 7. Lacustrine Fresh%U 6. Coaly / Resinouse%U 5. Hypersaline%U 4. Marine Marl%U 3. Marine Carbonate%U 2. Marine Paralic Shale%U 1. Marine Distal Shale

'W 'W'W'W

'W'W'W'W'W'W'W

'W

'W

'W 'W

'W'W

'W 'W'W

'W

'W

'W'W

'W

'W'W

'W

%U 8. Lacustrine Saline%U 7. Lacustrine Fresh%U 6. Coaly / Resinouse%U 5. Hypersaline%U 4. Marine Marl%U 3. Marine Carbonate%U 2. Marine Paralic Shale%U 1. Marine Distal Shale

%U 8. Lacustrine Saline%U 7. Lacustrine Fresh%U 6. Coaly / Resinouse%U 5. Hypersaline%U 4. Marine Marl%U 3. Marine Carbonate%U 2. Marine Paralic Shale%U 1. Marine Distal Shale

Southeast Asia Middle East

Symbol Colors by Source Rock Oil TypeSymbol Sizes by Paraffin Cloud Point Range

Larger Symbols IndicateHigher Cloud Points

'W

'W'W

'W

'W

'W

'W

'W

'W'W

'W'W'W'W'W'W

'W'W'W'W

'W'W

'W'W'W

'W

'W'W'W

'W

'W 'W'W

'W'W

'W'W

'W

'W

Wax Cloud Point Symbols'W CP < 40°F

'W 40°F < CP < 80°F

'W 80°F < CP < 120°F

'WCP > 120°F

Page 46: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Example Asphaltene STO Onset Test

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Dilution Ratio (mL nC7 / g oil)

Tra

nsm

itted

Las

er P

ower

(W)

Calculated Initial Slope = 2.21E-04 W / mL/g

Calculated Initial Power = 3.98E-04 W

Calculated Precipitation Onset = 0.9 mL/g"Effective" Angle Between Initial and

Precipitation Slopes = 99.2°

Calculated Precipitation Slope = -1.99 W / mL/g

Final Power = 8.40E-06 W

Page 47: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Asphaltene Stability Histogram

Stable Asphaltenes Moderately Stable Asphaltenes Unstable Asphaltenes

50

100

150

200202

24

80

Asphaltene Stability Histogram

Asphaltene Onset Classes

Num

ber o

f Sam

ples

Marine Distal ShalesMarine Paralic ShalesMarine CarbonatesMarine MarlsHypersalineCoaly/ResinousLacustrine FreshLacustrine Saline

Stable Asphaltenes Moderately Stable Asphaltenes Unstable Asphaltenes

50

100

150

200202

24

80

Asphaltene Stability Histogram

Asphaltene Onset Classes

Num

ber o

f Sam

ples

Marine Distal ShalesMarine Paralic ShalesMarine CarbonatesMarine MarlsHypersalineCoaly/ResinousLacustrine FreshLacustrine Saline

Marine Distal ShalesMarine Paralic ShalesMarine CarbonatesMarine MarlsHypersalineCoaly/ResinousLacustrine FreshLacustrine Saline

Page 48: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Asphaltene Stability HistogramHigh Thermal Maturity Samples

Stable Asphaltenes Moderately Stable Asphaltenes Unstable Asphaltenes

50

100

150

200

106

11

60

Asphaltene Stability Histogram(High Thermal Maturity Samples)

Asphaltene Onset Classes

Num

ber o

f Sam

ples

Marine Distal ShalesMarine Paralic ShalesMarine CarbonatesMarine MarlsHypersalineCoaly/ResinousLacustrine FreshLacustrine Saline

Stable Asphaltenes Moderately Stable Asphaltenes Unstable Asphaltenes

50

100

150

200

106

11

60

Asphaltene Stability Histogram(High Thermal Maturity Samples)

Asphaltene Onset Classes

Num

ber o

f Sam

ples

Marine Distal ShalesMarine Paralic ShalesMarine CarbonatesMarine MarlsHypersalineCoaly/ResinousLacustrine FreshLacustrine Saline

Marine Distal ShalesMarine Paralic ShalesMarine CarbonatesMarine MarlsHypersalineCoaly/ResinousLacustrine FreshLacustrine Saline

Page 49: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Regional Asphaltene Stability Maps

'W 'W 'W'W

'W'W'W'W'W'W

'W

'W

'W

'W'W

'W'W

'W 'W

'W

'W

'W

'W'W

'W

'W'W

%U 8. Lacustrine Saline%U 7. Lacustrine Fresh%U 6. Coaly / Resinouse%U 5. Hypersaline%U 4. Marine Marl%U 3. Marine Carbonate%U 2. Marine Paralic Shale%U 1. Marine Distal Shale

'W 'W 'W'W

'W'W'W'W'W'W

'W

'W

'W

'W'W

'W'W

'W 'W

'W

'W

'W

'W'W

'W

'W'W

%U 8. Lacustrine Saline%U 7. Lacustrine Fresh%U 6. Coaly / Resinouse%U 5. Hypersaline%U 4. Marine Marl%U 3. Marine Carbonate%U 2. Marine Paralic Shale%U 1. Marine Distal Shale

%U 8. Lacustrine Saline%U 7. Lacustrine Fresh%U 6. Coaly / Resinouse%U 5. Hypersaline%U 4. Marine Marl%U 3. Marine Carbonate%U 2. Marine Paralic Shale%U 1. Marine Distal Shale

Southeast Asia Middle East

Symbol Colors by Source Rock Oil TypeSymbol Sizes by Asphaltene Onset Titration Ratio

Larger Symbols Indicate MoreUnstable Asphaltenes

'W

'W'W

'W

'W

'W

'W

'W

'W

'W'W'W'W'W

'W

'W'W'W'W

'W'W'W'W'W

'W

'W'W'W

'W

'W 'W'W'W'W

'W'W

'W

'W

Asphaltene Onset Symbols'W A.O. > 5 mL/g

'W A.O. > 3 mL/g

'W 2 < A.O. < 3 mL/g

'W A.O. < 2 mL/g

Page 50: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

“de Boer” Asphaltene Stability Plot

0

2000

4000

6000

8000

10000

12000

0.5 0.6 0.7 0.8 0.9 1

Asphaltene Stability Plot(De Boer Diagram)

Reservoir Fluid Density (g/cc)

Res

ervo

ir –

Sat

urat

ion

Pre

ssur

e (

psia

)

No Problems

SevereProblems

SlightProblems

Marine Distal ShalesMarine Paralic ShalesMarine CarbonatesMarine MarlsHypersalineCoaly/ResinousLacustrine FreshLacustrine Saline

Fuji Samples

MagnoliaSamples

Saudi Arabian Samples0

2000

4000

6000

8000

10000

12000

0.5 0.6 0.7 0.8 0.9 1

Asphaltene Stability Plot(De Boer Diagram)

Reservoir Fluid Density (g/cc)

Res

ervo

ir –

Sat

urat

ion

Pre

ssur

e (

psia

)

No Problems

SevereProblems

SlightProblems

Marine Distal ShalesMarine Paralic ShalesMarine CarbonatesMarine MarlsHypersalineCoaly/ResinousLacustrine FreshLacustrine Saline

Marine Distal ShalesMarine Paralic ShalesMarine CarbonatesMarine MarlsHypersalineCoaly/ResinousLacustrine FreshLacustrine Saline

Fuji Samples

MagnoliaSamples

Saudi Arabian Samples

Page 51: Integration of Geochemistry & Reservoir Fluid Properties PTTC Workshop June 25, 2003 Kevin Ferworn, John Zumberge, Stephen Brown GeoMark Research, Inc

Conclusions

• Oil Geochemical analyses are used to determine… Source Rock Depositional environment and age Thermal Maturity Biodegradation In-situ Mixing Reservoir Continuity (i.e., Production Geochemistry)

• Gas Geochemical analyses further provide estimations of Biogenic vs. Thermogenic gas concentrations in Reservoir Fluids.

• Oil and Gas PVT correlations are improved by introducing geochemical factors.

• Flow Assurance issues may be Forward Modeled with Geochemical representations.