in the suppression of fusarium wilt disease in tomato (solanum lycopersicum)...

29
Evaluating the role of cerium oxide nanoparticles in the suppression of fusarium wilt disease in tomato (Solanum lycopersicum) plant By Ishaq O. Adisa Environmental Science and Engineering, PhD Candidate Dr. Jorge Gardea-Torresdey’s Research Group Chemistry Department, The University of Texas at El Paso November 6 th , 2017 1

Upload: others

Post on 27-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Evaluating the role of cerium oxide nanoparticles in the suppression of fusarium wilt disease in

    tomato (Solanum lycopersicum) plantBy

    Ishaq O. Adisa

    Environmental Science and Engineering, PhD Candidate

    Dr. Jorge Gardea-Torresdey’s Research Group

    Chemistry Department, The University of Texas at El Paso

    November 6th, 2017

    1

  • Outline

    oBackground

    oObjectives

    oExperimental design

    oResults

    oConclusion

    2

  • Economic importance of tomato

    oTomato is the second most consumed

    vegetable in the US

    oUS is second only to China in tomato

    production in the world

    oGenerates over $2 billion annual revenue

    Tomato fruits

    3

    http://venturesafrica.com/this-is-the-real-reason-why-you-are-paying-more-for-tomatoes-in-nigeria/

    (USDA ERS., 2016)

  • Fusarium wilt in tomato

    oFusarium wilt is the most

    destructive pathogenic disease

    affecting tomato

    oReduces plant productivity and

    causes economic loss (USDA)

    4

    Plant infected by fusarium oxysporum Source: http://pnwhandbooks.org/plantdisease/sites/default/files/images/TomatoFusariumWilt.jpg

    http://mrmitchellsbiology.weebly.com/uploads/1/0/4/2/10422385/857360245.jpg

  • Conventional control of plant pathogenic diseases

    5

    oGenetic breeding

    oCultural schemes with sanitation

    oHost indexing

    oEnhanced eradication protocols

    oNew pesticide products

    oIntegrated pest management (IPM)

    https://www.sciencedaily.com/images/2016/03/160331082500_1_900x600.jpg

    (Servin et al., 2015)

  • Potential applications of nanotechnology in agriculture

    Fraceto et al., (2016) 6

  • Positive impact of nanoparticles in plantsNPs Size Concentration Application Plant type Effects Reference

    CeO2 10-30 nm 100 mg/kg Root Soybean Stimulates plant growth. Cao et al. (2017)

    ZnO 30±10 nm 0.1-0.5 mg/ml Root Tomato Inhibit fusarium spore

    germination

    Wani and Shah

    (2012)

    CuO 30 nm 1 mg/l Foliar Eggplant Verticillium wilt disease

    estimates, increase fresh weight

    Elmer and White

    (2016)

    MnO 0.5 ppm Seed

    germination

    Lettuce Stimulates the plant growth Liu et al., (2016)

    MnO 20 nm 0.05-1 mg/l Root Mung bean Increase root and shoot length,

    fresh and dry biomass; enhance

    chlorophyll, carotene

    photophosphorylation and

    oxygen evolution

    Pradhan et al.

    (2014)

    7

  • Why CeO2 nanoparticle

    8

    o Hong et al., 2016

    o Barrios et al., 2016

    o Rico et al., 2014

  • Objective

    9

    oTo evaluate the impact of the nanoparticles on the nutritional value/yield of the tomato plant in suppressing the disease

    oTo demonstrate the CeO2 NP potential of inhibiting the fungal pathogen growth in tomato via root or foliar application

  • Materials and methods

    Natural Soil Location 10

    oBonny Best cv. organic seeds

    oFusarium oxysporumlycopersicum inoculum

    oCeO2 NP and ionic salt, cerium acetate (CeAc)

  • Experimental design

    11

    • Triplicates were analyzed using one-way ANOVA and Tukey’s HSD test (p ≤ 0.05) SPSS 22

    Control Root Application Foliar Application

    0 mg/kg 50 mg/kg 250 mg/Kg 50 mg/l 250 mg/l

    Infested 3 3 3 3 3

    Non-infested 3 3 3 3 3

    For CeO2 NP or CeAc

  • 12Inoculation with fusarium 7 days after transplant

    Root application

    Plant growth

    Seedlings grown in vermiculite

    Foliar application

    7 days after transplant

  • Experimental analysis

    oDisease Severity (using estimates of area under disease progress curve)

    oCerium accumulation (ICP-OES)

    oAgronomical parameterso Shoot length

    o Total fruit weight

    oBiochemical parametersoChlorophyll content (SPAD)

    oCatalase activity (CAT) (UV-Vis)

    oPolyphenol oxidase activity (PPO) (UV-Vis)

    13

  • A B CA = Control Infested

    B = 250 mg/kg Soil-Root, Infested

    C = 250 mg/kg Soil-Root, Non-Infested 14

    A = Control Infested

    B = 250 mg/l foliar, Infested

    C = 250 mg/l foliar, Non-Infested

    A BC

    Soil appliedFoliar applied

    Results

  • 15

    aa

    b

    a

    b

    0

    500

    1000

    1500

    2000

    2500

    AU

    DP

    C(d

    ise

    ase

    *day

    s

    Treatment

    Disease Severity CeO2 NP

    Control Root50 Root250 Foliar50 Foliar250

    aa

    ba

    b

    0

    500

    1000

    1500

    2000

    2500

    AU

    DP

    C(d

    isea

    se *

    day

    s

    Treatment

    Disease Severity CeAc

    Control Root50 Root250 Foliar50 Foliar250

    o Root and foliar exposure of CeO2 NP at

    250 mg/l reduced the AUDPC

    Results

    Disease severity

    53 %

    o Root and foliar applications CeAc at 250

    mg/l , also reduced the AUDPC

  • Cerium accumulation

    16

    Root Stem Leaf

    Element Treatment Infested Non-Infested Infested Non-Infested Infested Non-Infested

    Ce

    (mg/kg)

    Control 1.81±0.84 0.93±0.52 0.03±0.04 0.00±0.02 0.38±0.09 0.001±0.04

    Root CeO250 5.77±0.84 3.41±0.52 0.00±0.04 0.02±0.02 0.37±0.09 0.24±0.04*

    Root CeAc

    50 1.08±0.84 0.82±0.52 0.06±0.04 0.03±0.02 0.29±0.09 0.23±0.04*

    Root CeO2250 3.15±0.84 3.88±0.52* 0.05±0.04 0.01±0.02 0.37±0.09 0.32±0.04*

    Root CeAc

    250 3.92±0.84 10.77±0.52* 0.06±0.04 0.01±0.02 0.27±0.09 0.13±0.04

    Foliar CeO250 2.18±0.84 0.62±0.52 0.05±0.04 0.01±0.02 0.13±0.09 0.14±0.04

    Foliar CeAc

    50 0.87±0.84 3.06±0.52 0.00±0.04 6.94E-18±0.02 0.02±0.09 0.19±0.04

    Foliar CeO2250 0.6±0.84 1.45±0.52 0.05±0.04 0.11±0.02a 0.29±0.09 0.002±0.04

    Foliar CeAc

    250 1.41±0.84 1.53±0.52 0.00±0.04 6.94E-18±0.02 0.17±0.09 0.04±0.04

  • Effect of Cerium compounds on shoot length of infested tomato

    17

    *

    *

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    Sho

    ot

    len

    gth

    (cm

    )

    TreatmentControl CeO2 Root 50 CeAc Root 50CeO2 Root 250 CeAc Root 250 CeO2 Foliar 50CeAc Foliar 50 CeO2 Foliar 250 CeAc Foliar 250

    o Root exposure to 50 mg/kg of

    CeO2 NP reduces shoot length by

    28 %

    o Foliar exposure to CeAc at 50 mg/l

    increases by 32 %

  • Effect of Cerium compounds on total fruit wt of infested tomato plant

    18

    o Foliar exposure to 250 mg/l CeO2 NP,

    increases total fruit weight by 37 %

    *

    *

    0

    50

    100

    150

    200

    250

    300

    Tota

    l fru

    it w

    t(g

    )

    Treatment

    CTRL/INF R50/INF R50/INF2 R250/INF R250/IN2

    F50/INF F50/INF2 F250/INF F250/IN2o CeAc at 250 mg/l reduced by 59 %

  • Effect of CeO2 NP on chlorophyll content

    19

    o CeO2 NP at 250 mg/l foliar

    exposure (infested) increases

    the chlorophyll content by 28 %

    *

    0

    10

    20

    30

    40

    50

    60

    Wk5 Wk18C

    hlo

    rop

    hyl

    l Co

    nte

    nt

    (SPA

    D)

    Week

    CTRL/Infested CTRL/Non-Infested Root50/Infested Root50/Non-Infested

    Root250/Infested Root250/Non-Infested Foliar50/Infested Foliar50/Non-Infested

    Foliar250/Infested Foliar250/Non-Infested

  • Effect of CeAc on chlorophyll content

    20

    *

    0

    10

    20

    30

    40

    50

    60

    Wk5 Wk18

    Ch

    loro

    ph

    yll C

    on

    ten

    t (S

    PAD

    )

    Week

    CTRL/Infested CTRL/Non-Infested Root50/InfestedRoot50/Non-Infested Root250/Infested Root250/Non-InfestedFoliar50/Infested Foliar50/Non-Infested Foliar250/InfestedFoliar250/Non-Infested

    o At harvest, 50 mg/l CeAc

    exposure increased the

    chlorophyll content by 49 %

  • Catalase activity in the roots of infested tomato

    21

    *

    0

    5

    10

    15

    20

    25

    30

    CA

    T A

    ctiv

    ity

    (mm

    olm

    in-1

    mg-

    1)

    Treatment

    CTRL/Infested RootCeO2,50/Inf RootCeAc,50/Inf

    RootCeO2,250/Inf RootCeAc,250/Inf FoliarCeO2,50/Inf

    FoliarCeAc,50/Inf FoliarCeO2,250/Inf FoliarCeAc,250/Inf

    o Foliage exposure to 50 mg/l of

    CeO2 NP, increased the CAT by

    137 %

  • Catalase activity in the roots of non-infested tomato

    22

    *

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    CA

    T A

    ctiv

    ity

    (mm

    olm

    in-1

    mg-

    1)

    Treatment

    CTRL/Non-Inf RootCeO2,50/Non-Inf RootCeAc,50/Non-Inf

    RootCeO2,250/Non-Inf RootCeAc,250/Non-Inf FoliarCeO2,50/Non-Inf

    FoliarCeAc,50/Non-Inf FoliarCeO2,250/Non-Inf FoliarCeAc,250/Non-Inf

    o Root exposure to 50 mg/kg

    CeO2 NP increased the CAT by

    283 %

  • Polyphenol oxidase activity in root of infested tomato

    23

    o Root and foliar exposure to

    50 mg/l CeO2 NP decreased

    the PPO activity by 53% and

    57%, respectively

    *

    *

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    PP

    O A

    ctiv

    ity

    (un

    it/m

    L)

    Treatment

    CTRL/Infested RootCeO2,50/Inf RootCeAc,50/Inf

    RootCeO2,250/Inf RootCeAc,250/Inf FoliarCeO2,50/Inf

    FoliarCeAc,50/Inf FoliarCeO2,250/Inf FoliarCeAc,250/Inf

  • Polyphenol oxidase activity in the roots of non-infested tomato

    24

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    PP

    O A

    ctiv

    ity

    (un

    it/m

    L)Treatment

    CTRL/Non-Inf RootCeO2,50/Non-Inf RootCeAc,50/Non-Inf

    RootCeO2,250/Non-Inf RootCeAc,250/Non-Inf FoliarCeO2,50/Non-Inf

    FoliarCeAc,50/Non-Inf FoliarCeO2,250/Non-Inf FoliarCeAc,250/Non-Inf

    o No significant difference in

    PPO activities

  • Conclusion

    o The results from this study suggests that root and foliar applications of CeO2 NP at 250 mg/L has potential to suppress fusarium wilt disease in tomato

    o CeO2 NP has potential to increase the productivity of tomato plant

    o CeO2 NP impacts the stress enzyme (CAT) and defense enzyme (PPO) at 50 mg/L concentration

    o No Ce accumulation across the tissues of infested plants; suggests no toxicity result from the tested concentrations

    o Further biochemical studies need to be conducted to fully understand the mechanism

    25

  • References• Agrios, G. N. (2005). Plant diseases caused by fungi. Plant pathology, 4.

    • Barrios, A. C., Rico, C. M., Trujillo-Reyes, J., Medina-Velo, I. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2016). Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Science of The Total Environment, 563, 956-964.

    • Cao, Z., Stowers, C., Rossi, L., Zhang, W., Lombardini, L., & Ma, X. (2017). Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr.). Environmental Science: Nano, 4(5), 1086-1094.

    • Elmer, W. H., & White, J. C. (2016). The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environmental Science: Nano, 3(5), 1072-1079.

    • Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., Rea, G., & Bartolucci, C. (2016). Nanotechnology in agriculture: which innovation potential does it have?. Frontiers in Environmental Science, 4, 20.

    • https://www.ers.usda.gov/topics/crops/vegetables-pulses/tomatoes.aspx

    • Keller, A. A., McFerran, S., Lazareva, A., & Suh, S. (2013). Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 15(6), 1692.

    • Liu, R., Zhang, H., & Lal, R. (2016). Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients?. Water, Air, & Soil Pollution, 227(1), 42.

    • Pradhan, S., Patra, P., Mitra, S., Dey, K. K., Jain, S., Sarkar, S., ... & Goswami, A. (2014). Manganese nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. Journal of agricultural and food chemistry, 62(35), 8777-8785.

    • Rico, C. M., Lee, S. C., Rubenecia, R., Mukherjee, A., Hong, J., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2014). Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). Journal of agricultural and food chemistry, 62(40), 9669-9675.

    • Servin, A., Elmer, W., Mukherjee, A., De la Torre-Roche, R., Hamdi, H., White, J. C., ... & Dimkpa, C. (2015). A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 17(2), 1-21.

    • Hong, J., Wang, L., Sun, Y., Zhao, L., Niu, G., Tan, W., ... & Gardea-Torresdey, J. L. (2016). Foliar applied nanoscale and microscale CeO 2 and CuO alter cucumber (Cucumis sativus) fruit quality. Science of the Total Environment, 563, 904-911.

    • Wani, A. H., & Shah, M. A. (2012). A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. 26

  • Acknowledgment

    27

    • USDA, Center for nanoscale elements suppress plant disease, enhance macronutrient use efficiency, and increase crop yield

    • Dr. Jorge Gardea-Torresdey• Dr. Wade H. Elmer (CAES)• Dr. Jason C. White (CAES)• Dr. Jose R. Peralta-Videa• Dr. Hernandez• Dr. Jorge Gardea-Torresdey’s research group

    members

  • THANK YOU28

  • 29

    Questions