improving productivities in fermentation processes · case: bioplastics from waste streams »...

15
26/04/2013 Improving productivities in fermentation processes Heleen De Wever Köln, 2325 April 2013

Upload: others

Post on 31-May-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Improving productivities in fermentation processes · Case: Bioplastics from waste streams » Renewable resource: » Organic waste stream » Offgases » Target compound: » Fully

26/04/2013

Improving productivities in fermentation processes

Heleen De WeverKöln, 23‐25 April 2013

Page 2: Improving productivities in fermentation processes · Case: Bioplastics from waste streams » Renewable resource: » Organic waste stream » Offgases » Target compound: » Fully

26/04/2013 2© 2012, VITO NV

Bio‐based production chemicals

Aspect Current practice

Substrate Single

Microorganisms Pure culture

Operation mode Batch

Sterilization equipment Yes

Product titre High

Product recovery Separate/downstream

Product separation Low amount of impurities

Page 3: Improving productivities in fermentation processes · Case: Bioplastics from waste streams » Renewable resource: » Organic waste stream » Offgases » Target compound: » Fully

26/04/2013 3© 2012, VITO NV

Case: Bioplastics from waste streams

» Renewable resource:» Organic waste stream» Offgases

» Target compound: » Fully biobased biodegradable group of bioplastics selected» Polyhydroxyalkanoates (PHA) ‐ general» Polyhydroxybutyrate (PHB)

» Biocatalyst: pure bacterial culture» Concept: fed‐batch process

Page 4: Improving productivities in fermentation processes · Case: Bioplastics from waste streams » Renewable resource: » Organic waste stream » Offgases » Target compound: » Fully

26/04/2013 4© 2012, VITO NV

Case: Bioplastics from waste streams

» Production process

Phase 1:Biomass production

Phase 2:PHA production

Organic C

N‐source

Air/O2

CO2

Air/O2

CO2

H2

Page 5: Improving productivities in fermentation processes · Case: Bioplastics from waste streams » Renewable resource: » Organic waste stream » Offgases » Target compound: » Fully

26/04/2013 5© 2012, VITO NV

Bio‐based production chemicals

Aspect Current practice Future

Substrate Single 2nd generation feedstocksOrganic waste

Microorganisms Pure culture Undefined mixed culture

Operation mode Batch Continuous

Sterilization equipment Yes No

Product titre High Low

Product recovery Separate/downstream Integrated

Product separationLow amount of impurities

Dilute product streamHigh amount of impuritiesDifferent technologies

Our approach: high conversion efficiencies and product concentrationsthrough process intensification

Page 6: Improving productivities in fermentation processes · Case: Bioplastics from waste streams » Renewable resource: » Organic waste stream » Offgases » Target compound: » Fully

26/04/2013 6© 2012, VITO NV

From batch to continuous processes …

» Increase throughput» Reduce cleanup time» Reduce required footprint» Often only feasible

alternative for high volume, low value products

» Advanced process control» Maintain sterility» On‐line quality 

measurements

Advantages Challenges

High titer and productivity by using several stirred tanks in series

Page 7: Improving productivities in fermentation processes · Case: Bioplastics from waste streams » Renewable resource: » Organic waste stream » Offgases » Target compound: » Fully

26/04/2013 7© 2012, VITO NV

… to high cell density fermentation …

» Membrane bioreactors (MBRs): cell retention by membranes» Advantage:  increased throughput and productivity» Challenge:membrane fouling control

Page 8: Improving productivities in fermentation processes · Case: Bioplastics from waste streams » Renewable resource: » Organic waste stream » Offgases » Target compound: » Fully

26/04/2013 8© 2012, VITO NV

Case: Organic acids from waste

» Renewable resource:» Organic waste stream consisting of

» Non‐edible residues of plants» Fecal material» Toilet paper

» Target compound: » Volatile Fatty Acids (VFA, acetate – propionate – butyrate)» Part of closed loop system for Advanced Life Support in space

» Biocatalyst: undefined mixed bacterial culture» Concept: continuous fermentation at increased cell density (MBR)

Page 9: Improving productivities in fermentation processes · Case: Bioplastics from waste streams » Renewable resource: » Organic waste stream » Offgases » Target compound: » Fully

26/04/2013 9© 2012, VITO NV

Towards integrated biorefinery concepts

» Two‐stage bioconversion processes based on organic acids from waste

(Source: Li and Yu, 2011)

Page 10: Improving productivities in fermentation processes · Case: Bioplastics from waste streams » Renewable resource: » Organic waste stream » Offgases » Target compound: » Fully

26/04/2013 10© 2012, VITO NV

… to inclusion of product removal techniques

» In‐situ product recovery or removal (ISPR)

» Advantages:» Integration of fermentation with 

first step of downstream process» Higher productivity by removal 

of product inhibition» Concentrated feedstocks can be fermented

» Challenges:» Match mode of operation of bioreactor/separation units» Optimize integrated set‐up for maximum productivity gain

Source: Woodley et al. (2008)

Page 11: Improving productivities in fermentation processes · Case: Bioplastics from waste streams » Renewable resource: » Organic waste stream » Offgases » Target compound: » Fully

26/04/2013 11© 2012, VITO NV

Case: Biobutanol from sugars

» Acetone‐Butanol‐Ethanol (ABE) fermentation one of the largest biotechnological processes ever developed 

» Process challenges» Product inhibition, low product concentrations and low productivity» Cost of substrates

» Renewable resource: sugars» Target compound: butanol» Biocatalyst: pure bacterial culture» Concept: continuous fermentation with in‐situ butanol removal

Page 12: Improving productivities in fermentation processes · Case: Bioplastics from waste streams » Renewable resource: » Organic waste stream » Offgases » Target compound: » Fully

26/04/2013 12© 2012, VITO NV

Case: Biobutanol from sugars

» In‐situ butanol removal by organophilic pervaporation» Proof‐of‐concept: continuous conversion in two‐stage fermentation 

using commercial composite membrane with PDMS top layer

Pervaporation module

Solventogenic fermentation

Acidogenic fermentation

Fermentor temperature: 35°C Permeate pressure: ~19.9 mbar

Page 13: Improving productivities in fermentation processes · Case: Bioplastics from waste streams » Renewable resource: » Organic waste stream » Offgases » Target compound: » Fully

26/04/2013 13© 2012, VITO NV

Case: Biobutanol from sugars

» Our own optimization studies in long‐term continuous experiments

» Next step: switch to high cell‐density fermentation (MBR concept)

Result Gain

Increased productivity from0.35 to 1.15 g.L‐1.h‐1

Decreased fermentor cost

Increased flux from375 to 620 g.m‐2.h‐1

Decreased capital costs forpervaporation

Increased permeate concentration from120 to >200 g.L‐1

Decreased energy consumption in distillation section

Page 14: Improving productivities in fermentation processes · Case: Bioplastics from waste streams » Renewable resource: » Organic waste stream » Offgases » Target compound: » Fully

26/04/2013 14© 2012, VITO NV

Conclusions

» Bioconversions on organic waste streams present challenges in terms of product separation and purification

» Combination of bioconversion and separation technology results in improved productivities» Current efforts are mainly at laboratory scale» Need for upscaling, demonstration of robustness

Page 15: Improving productivities in fermentation processes · Case: Bioplastics from waste streams » Renewable resource: » Organic waste stream » Offgases » Target compound: » Fully

26/04/2013 15© 2012, VITO NV

VITO experience

» Feedstocks:» Synthetic media and organic waste streams» Synthetic gas mixtures and waste gases

» Target compounds: » Intracellular: bioplastics» Extracellular: organic acids, alcohols, biosurfactants, …

» Biocatalysts: » Pure bacterial cultures and mixed cultures» Enzymes

» Concepts: » Batch, fed‐batch and continuous operation» Single and multistage fermentations, stand‐alone or integrated with

separation technology

H2 CO2