improved gaasp solar cells with back reflector for space … › files › 2020 › 05 ›...

19
Improved GaAsP Solar Cells with Back Reflector for Space Applications ECE443 Final Project Brian Li

Upload: others

Post on 25-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

Improved GaAsP Solar Cells with Back Reflector for Space Applications

ECE443 Final ProjectBrian Li

Page 2: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

Introduction/motivation Technical Background Simulation Results Conclusions

Outline

2

Page 3: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

Terrestrial PV dominated by low-cost Si solar cells

Space PV mainly uses III-V multijunction cells

Space PV prioritizes high-efficiency over cell cost– High specific power (W/kg)

reduces launch cost

Space Solar Power

3

Module type Module cost ($/W)III-V 150Si 0.3-0.5

Estimated cost for cell modules [1]

Cell type efficiency (%) Ref.Si 18.3 [2]

InGaP/GaAs/InGaAs 31.5 [3]

Efficiency of cells under AM0 spectrum

[1] Horowitz, K. A. et al. Technical Report: National Renewable Energy Laboratory (2018)[2] Crotty, G. T. et al. Conf. Rec. IEEE Photovolt. Spec. Conf. 1035–1038 (1997)[3] Takamoto, T. et al. 2014 IEEE 40th Photovolt. Spec. Conf. PVSC 2014 1–5 (2014)

Page 4: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

Recent trend: low-earth orbit (LEO) satellite constellations [1]– Cheaper, shorter duration than

geostationary (GEO) satellites

Cell cost may be more important for LEO satellites

III-V on Si could achieve high efficiency at low cost

Low-earth orbit satellites

4

Satellite Type

Altitude (km)

Averageduration

(yrs)GEO 35000 15-20

LEO 500-2000 7

GEO vs. LEO satellites [3]

[1] G. Ritchie, “Why Low-Earth Orbit Satellites are the New Space Race,” Washington Post. [Online]. Available: https://www.washingtonpost.com/business/why-low-earth-orbit-satellites-are-the-new-space-race/2019/08/15/6b224bd2-bf72-11e9-a8b0-7ed8a0d5dc5d_story.html.[2] M Williams, “Starlink’s Satellites Will be Orbiting at a Much Lower Altitude, Reducing the Risks of Space Junk” [Online]. Available: https://www.universetoday.com/142134/starlinks-satellites-will-be-orbiting-at-a-much-lower-altitude-reducing-the-risks-of-space-junk/[3] J. Pelton, S. Madry, and S. Camacho-Lara, Handbook of Satellite Applications. New York: Springer US, 2013.

Sketch of LEO constellation [2]

Page 5: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

GaAsP/Si has high theoretical efficiency 34% (AM0), above record Si cells

Real cells suffer from lattice mismatch defects, and need improved growth and design

This work: Improve GaAsPcells with back reflector

GaAsP/Si tandem cells

5

tunnel junction

1.7eV GaAsP top cell

1.1eV Si bottom cell

GaAsyP1-y graded buffer

Structure of GaAsP/Si cell

Experiment (AM1.5G) 20.1 [1]Theoretical (AM1.5G) 37.0 [2]Theoretical (AM0) 34.0 [2]

Efficiency (%) of GaAsP/Si cells

[1] M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (Version 55),” Prog. Photovoltaics Res. Appl., vol. 28, no. 1, pp. 3–15, 2020.

[2] J. Geisz and D. Friedman, “III–N–V semiconductors for solar photovoltaic applications,” Semicond. Sci. Technol., vol. 769, 2002.

Page 6: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

Intro/motivation Technical Background Simulation Results Conclusions

Outline

6

Page 7: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

Achieving high EQE:– Low reflectance– Long carrier lifetime – Low surface recomb.– High absorption

Short-circuit current density (Jsc) is dependent on EQE

External Quantum Efficiency (EQE)

7

Region 1 carrier losses1. Reflectance2. Emitter recomb.3. Front surface recomb.

WavelengthEQ

E (%

)𝜆𝜆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

100Perfect EQE

0

Region 1

Region 2

Region 2 carrier losses1. Base recomb.2. Back surface recomb.3. Transmission of light

p-typebase

n-type emitter

junction

𝐸𝐸𝐸𝐸𝐸𝐸(𝜆𝜆) =𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐 𝑗𝑗𝑗𝑗𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗

𝑐𝑐𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗𝑐𝑐 𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗𝑐𝑐

Page 8: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

500 1000 15000.0

0.5

1.0

1.5

2.0

2.5

Spec

tral i

rradi

ance

(W*m

-2*n

m-1

)

Wavelength (nm)

Tandem Jsc is limited by the worse of the 2 sub-cells

Jsc should be equal to minimize loss (current matching)

GaAsP cell is current-limiting due to defects harming carrier collection [1]

Irradiation in space will further harm cell [2]

Tandem cells and current-matching

8

tunnel junction

1.7eV GaAsP top cell

1.1eV Si bottom cell

GaAsyP1-y graded buffer

AM0spectrum

[1] S. Fan et al., “20%-efficient epitaxial GaAsP/Si tandem solar cells,” Sol. Energy Mater. Sol. Cells, vol. 202, no. March, pp. 1–8, 2019.[2] N. Gruginskie et al., “Electron radiation – induced degradation of GaAs solar cells with different architectures,” Prog. Photovoltaics Res. Appl., vol. 28, no. 4, pp. 266–278, 2020.

Page 9: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

Distributed Bragg reflector (DBR)– Alternating high/low index layers – Creates reflectance “stop-band” at

central wavelength 𝜆𝜆𝑐𝑐 Thin cell with reflector can

improve long-wavelength EQE

Improving EQE with backside reflector

9

nH = high index

nL = low index

DBR(N pairs)

reflected light

Δλ

𝜆𝜆𝑐𝑐

Base (p-type)

Emitter (n-type)

e-

x e- recombines beforereaching junction

Base (p-type)

Emitter (n-type)

e-e- collects at junction

DBR

Thick cell w/out reflector Thin cell with reflector

Reflectance stop-band of DBR

𝑐𝑐𝐻𝐻 =𝜆𝜆𝑐𝑐

4𝑗𝑗𝐻𝐻

𝑐𝑐𝐿𝐿 =𝜆𝜆𝑐𝑐

4𝑗𝑗𝐿𝐿

Page 10: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

Intro/motivation Technical Background Simulation Results

– 1J GaAsP cell design – DBR design– Improved Jsc of GaAsP cell with DBR

Conclusions

Outline

10

Page 11: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

1J GaAsP cell modeled after literature [1]

Thin emitter, thick base to generate carriers near the junction

Window and back surface field (BSF) to block minority carriers

Design of 1J GaAsP cell

11

Window n-Al0.65In0.35P 20 nm 1×1018 cm-3

Emitter n-GaAs0.77P0.23 50 nm 1×1018 cm-3

Base p-GaAs0.77P0.23 1150 nm 1×1017 cm-3

BSF p-In0.37Ga0.63P 25 nm 1×1018 cm-3

Contact Layer p-GaAs0.77P0.23 50 nm 1×1019 cm-3

contact

contact

0 200 400 600 800 1000 1200

-2

-1

0

1

2

Ene

rgy

(eV

)

Depth from surface (nm)

AlInP window InGaP BSFEc

EF

Ev

2% front reflection

[1] S. Fan et al., “20%-efficient epitaxial GaAsP/Si tandem solar cells,” Sol. Energy Mater. Sol. Cells, vol. 202, no. March, pp. 1–8, 2019.

Page 12: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

Al0.1Ga0.9As/Al0.9Ga0.1As for the high/low index pairs

Design of DBR structures

12

400 500 600 700 800 9000

20

40

60

80

100

Sim

ulat

ed E

QE

(%)

Wavelength (nm)

0

20

40

60

80

100 DBR C DBR B DBR A

DBR

refle

ctan

ce (%

)

Description of three DBR designs

DBR label No. of layer pairs 𝝀𝝀𝒄𝒄 (nm)

A 10 650

B 20 650

C 20 600 and 680 (10 pairs each)

Window n-Al0.65In0.35P 20 nm 1×1018 cm-3

Emitter n-GaAs0.77P0.23 50 nm 1×1018 cm-3

Base p-GaAs0.77P0.23 1150 nm 1×1017 cm-3

BSF p-In0.37Ga0.63P 25 nm 1×1018 cm-3

Contact Layer p-GaAs0.77P0.23 50 nm 1×1019 cm-3

contact

contact

2% front reflection

DBR reflection profile

Page 13: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

DBR A and DBR B similarly improve EQE DBR C improves over wider region

Effect of DBR on EQE

13

300 400 500 600 7000

20

40

60

80

100

DBR C DBR B DBR A no reflection

EQE

(%)

Wavelength (nm)

Page 14: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

1 2 3 421.5

22.0

22.5

23.0

23.5

24.0

24.5

J sc (m

A/cm

2 )

no backreflection

DBR A DBR B DBR C

1200nm, 1ns

800nm, 1ns

800nm, 0.1ns

1200nm, 0.1ns

baseline

Jsc for current-matching to Si cell: ~24mA/cm2 [1]

Vary thickness and lifetime 𝜏𝜏:– 1ns = nominal carrier lifetime– 0.1ns = “irradiated” carrier lifetime

800nm + DBR has better Jsc at 0.1ns carrier lifetime– Carriers generated closer to junction

leads to improved collection

Effect of DBR on Jsc

14

Window n-AlInP 20 nm

Emitter/base n- and p- GaAsP

1200nm or 800nm

𝝉𝝉 = 1ns or 0.1ns

BSF p-InGaP 25 nmContact Layer p-GaAsP 50 nm

contact

contact

2% front reflection

AM0 spectrum

Thickness (nm)

Reflector 𝝉𝝉 (ns) Jsc(mA/cm2)

1200 none 1 23.42

800 DBR C 1 23.87

1200 none 0.1 21.99

800 DBR C 0.1 22.83

Jsc for baseline vs. optimized cells

[1] G. T. Crotty, P. J. Verlinden, M. Cudzinovic, R. M. Swanson, and R. A. Crane, “18.3% Efficient Silicon Solar Cells for Space Applications,” Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 1035–1038, 1997.

DBR reflection profile

Page 15: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

The Jsc of GaAsP cells was improved with thin 800nm cell and a high-performance DBR– Jsc is 1.9% higher under nominal 1ns lifetime and

3.8% higher under degraded 0.1ns lifetime– Jsc with 1ns lifetime was near current-matching

condition of 24 mA/cm2

Overall, new cell design would improve performance over long-term use in space

Conclusion

15

Page 16: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

Adjusted GaAsP minority carrier lifetime 𝜏𝜏 and interface recomb. velocities (IRV) to fit EQE from ref. [1]

Obtained similar long-wavelength EQE to ref.

Same Jsc of 17.8mA/cm2

under AM1.5G

Supplemental: Fitting for EQE

16

Window n-Al0.65In0.35P 20 nm 1×1018 cm-3

Emitter n-GaAs0.77P0.23 50 nm 1×1018 cm-3

Base p-GaAs0.77P0.23 1150 nm 1×1017 cm-3

BSF p-In0.37Ga0.63P 25 nm 1×1018 cm-3

Contact Layer p-GaAs0.77P0.23 50 nm 1×1019 cm-3

contact

contact

300 400 500 600 7000

20

40

60

80

100

Reference Simulation

EQE

(%)

Wavelength (nm)

Important region for study

2% front reflection

Carrier lifetime 𝝉𝝉 (ns) 1Emitter/window IRV (m/s) 1x103

Base/BSF IRV (m/s) 1x105

Fitted lifetime and velocity parameters

[1] S. Fan et al., “20%-efficient epitaxial GaAsP/Si tandem solar cells,” Sol. Energy Mater. Sol. Cells, vol. 202, no. March, pp. 1–8, 2019.

Page 17: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

Supplemental: specs of DBR

17

DBR label No. of layer pairs 𝝀𝝀𝒄𝒄 (nm) High/low indices Al0.1Ga0.9As/Al0.9Ga0.1As thicknesses (nm)

Thickness(nm)

A 10 650 3.58/2.99 45.43/54.29 997

B 20 650 3.58/2.99 45.43/54.29 1994

C 10 + 10 600 and 680 3.58/2.99 41.93/50.12 and47.53/56.80 1963

400 500 600 700 800 9000

20

40

60

80

100

Sim

ulat

ed E

QE

(%)

Wavelength (nm)

0

20

40

60

80

100 DBR C DBR B DBR A

DBR

refle

ctan

ce (%

) Al0.1Ga0.9As/Al0.9Ga0.1As for the high/low index pairs– Index values of 3.58 and 2.99– Set absorption = 0

Page 18: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

Supplemental: Tabulated Jsc

18

Cell conditions Jsc (mA/cm2) for different reflectance casesGaAsP

Thickness (nm)Bulk

lifetime (ns)No back

reflectionDBR

10 pairDBR

20 pairsDBR

10+10 pairsTotal back reflection

1200 1 23.42 23.80 23.80 23.98 24.101200 0.1 21.99 22.29 22.29 22.43 22.52800 1 22.74 23.55 23.58 23.87 24.06800 0.1 21.82 22.55 22.58 22.83 23.01

1 2 3 4 521.5

22.0

22.5

23.0

23.5

24.0

24.5

J sc (m

A/cm

2 )

no backreflection

DBR A DBR B DBR C 100% backreflection

1200nm, 1ns

800nm, 1ns

800nm, 0.1ns

1200nm, 0.1ns

500 550 600 650 700 75040

50

60

70

80

90

100% reflection DBR C DBR B DBR A no reflection

EQE

(%)

Wavelength (nm)

Page 19: Improved GaAsP Solar Cells with Back Reflector for Space … › files › 2020 › 05 › SolarCell... · 2020-05-06 · The J sc of GaAsP cells was improved with thin 800nm cell

Voc surprisingly worsens after thinning the cell

Due to excess surface recombination at base/BSF?

Possibly non-physical artifact of simulation setup

Supplemental: LIV

19

0.00 0.25 0.50 0.75 1.00 1.250

5

10

15

20

25

800nm - DBR C - 1ns 1200nm - no reflection - 1ns

800nm - DBR C - 0.1ns 1200nm - no reflection - 0.1ns

Cur

rent

Den

sity

(mA/

cm2 )

Voltage (V)

AM0

Voc(V)

Jsc(mA/cm2)

FF (%)

𝜂𝜂(%)

800nm 1ns 1.172 23.87 86.1 17.62

1200nm 1ns 1.209 23.42 88.9 18.40

800nm 0.1ns 1.069 22.83 85.2 15.21

1200nm 0.1ns 1.152 21.99 82.4 15.27