icecs, athens, december 2010 1/18 from nanoscale technology scenarios to compact device models for...

23
ICECS, Athens , December 2010 1/18 From nanoscale technology scenarios to compact device models for ambipolar devices Sébastien Frégonèse, Cristell Maneux, Thomas Zimmer CNRS, Université Bordeaux, UMR 5218, Laboratoire IMS, Bordeaux

Upload: mitchell-mccarthy

Post on 28-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

ICECS, Athens , December 2010 1/18

From nanoscale technology scenarios to compact device models for

ambipolar devices

Sébastien Frégonèse, Cristell Maneux, Thomas Zimmer

CNRS,

Université Bordeaux,

UMR 5218, Laboratoire IMS, Bordeaux

2/18ICECS, Athènes , December 2010

• Introduction

• Development of a dual-gate compact model– Material parameter

– Drain current modeling

– Charge modeling

– Equivalent circuit and self-consistent potential calculation

• Comparison of compact model with measurement of the literature

• Circuit simulation

• Conclusion

Outline

3/18ICECS, Athènes , December 2010

• New materials: – Nanowire

– Carbon nanotube (single wall : 1993)

– Graphene and graphene nanoribbon (2004)

(Nobel Prize 2010)

Introduction

New transistors

4/18ICECS, Athènes , December 2010

Introduction

Y.-M. Lin, J. Appenzeller, J. Knoch, and Ph. Avouris, “High performance carbon nanotube field-effect

transistor with tunable polarities,” IEEE Trans. On Nanotech., vol. 4, N° 5, pp. 481–489, September 2005

New transistor development using emerging material

Open new design paradigm

5/18ICECS, Athènes , December 2010

I. O’Connor, J. Liu, F. Gaffiot, F. Prégaldiny, C. Lallement, C. Maneux, J. Goguet, S. Frégonèse, T. Zimmer, L. Anghel, TT Dang, R. Leveugle, “CNTFET Modeling and Reconfigurable

Logic-Circuit Design”, IEEE Trans. On Circuits And Systems I, Vol. 54, No. 11, November 2007 pp 2365-2379

IntroductionPossibility to develop new reconfigurable logic cells

Needs an accurate compact model to :

- validate the approach

- evaluate the performances

-develop new structures

6/18ICECS, Athènes , December 2010

Tunneling (SB)

Inner partSource access

Drain access

D

Si (P++)

SiO2

S DCNT

DG-CNTFET

Al

Al2 O3

Introduction

Vdi

Vsi

source

drain

Sn

DnVCNTS

VCNTD

VCNTi

Thermionic transport

Electrostatic control with back-gate

Electrostatic control with front-gate

Schottky barrier

Carrier Charge

Valence Band

Conduction Band

FG D

BG

Ti

7/18ICECS, Athènes , December 2010

J. C. Charlier et al. , Rev. Mod. Phys., Vol. 79, No. 2, April–June 2007

Density of statesBand structure

Zone Folding model of a (10,0) nanotubeNumerical calculation

Analytical model for Density of states• subband value• effective mass• non-parabolicity parameter

Material parameter

Input data for charge model and drain current model

8/18ICECS, Athènes , December 2010

DEF

DEF

q(VSi-VCNT)-sbbd[1]

qVSi

qVDi

Current spectrum in a MOS-like CNTFET using NEGF simulation *

VCNTi

IDS

60mV/decOhmic behavior

Slope > 60mV/decSchottky behavior

Source exhaustion

BTBT behavior

0 0

2S S D D

eI M f E T E dE f E T E dE

h

Thermionic contribution

BTBT

• Thermionic contribution : T(E) = 1 above conduction band = 0 otherwise

• BTBT contribution : T(E) = for E =[CB access, VB channel]

0 otherwise

, ,

, , , ,

BTBT S BTBT D

BTBT S BTBT D BTBT S BTBT D

T T

T T T T

* NEGF simulator is originally created in Purdue University

Drain current modeling

9/18ICECS, Athènes , December 2010

Charge modeling

MAX ,

MAX ,

_MAX , ,

MAX ,

MAX , ,

MAX ,

2

2

2

2

Sn I

I Dn

Sn I Dn

I Dn

Sn I D

I Sn

SCB

DCB

IP eCB

DCB

CB CB

SCB

D Ef E dE

D Ef E dE

Q eD E

f E dE

D Ef E dE

Analytical approximate solution proposed in IEEE Trans Elec. Devices

Vdi

Vsi

source

drain

Sn

Dn

Dp

Sp

integration limits for carrier coming from source

integration from Sn to

integration limits for carrier coming from drain

:CBi inner

conduction band

integration from CBi to

integration from SnCBi to

Carriers from the drain are reflected on the source SB

valence band

VCNTSVCNTD

VCNTi

Same method is applied for electrons and holes and in each region

10/18ICECS, Athènes , December 2010

CNTi

Si

Di

VD

VS

FG FGx FGi

,IP DdQ

dt

,IP SdQ

dt

VFB-FG CFGRG

RS

RD

CDEi

CSEi

IDS IBTBT

CNTd

CNTs

FGi BG

BGix

,SA DdQ

dt

,DA DdQ

dt

,SA SdQ

dt

,DA SdQ

dt

CBGS

BGiD

BGiS

CBGD

RBGD

RBGS

VFB-BG

CNTs

CNTd CDEx

CSEx

CG_coup. /2

CG_coup. /2

CNTi

0.5*CBGi

CNTi

0.5*CBGi

Optional elementsCore of the model

Equivalent circuit

, , ,,

, , ,,

, , ,,

SEi CNTi S SEx Si S BGiS S BGS S SCNTs S

BGS S SEi SEx

DEi CNTd S SEi CNTs S Gi S FG I iCNTi S

FG I SEi DEi

DEi CNTi S DEx Di S BGiD S BGD D DCNTd S

BGD D DEi DEx

C V C V V C L QV

C L C C

C V C V V C L QV

C L C C

C V C V V C L QV

C L C C

Self consistent potential

calculation in each region

Thermionic, SB, BTBT current

Charge in inner part from Source

Charge in inner part from Drain

Charge in Source and Drain access

from Drain

Charge in Source and Drain access

from Source

11/18ICECS, Athènes , December 2010

Validation of the model: comparison with the IBM device

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

-1.50 -1.00 -0.50 0.00

I DS

[A]

VFGS [V]

measurement

simulation

VDS

Y.-M. Lin, J. Appenzeller, J. Knoch, and Ph. Avouris, vol. 4, N° 5, pp. 481–489, September 2005

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

-1.50 -1.00 -0.50 0.00

I DS

[A]

VFGS [V]

measurement

simulation

VBGS

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

-2.00 -1.50 -1.00 -0.50 0.00I D

S[A

]

VFGS [V] (VFGS=VBGS)

measurement

simulation

12/18ICECS, Athènes , December 2010

0

2

4

6

8

10

12

14

0.00 0.50 1.00

-I DS

[µA]

-VDS [V]

measurement

Simulation

Validation of the model: comparison with the Stanford device

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

-1.00 0.00 1.00 2.00

I DS

[A]

VBGS [V]

measurement

simulation

VDS=10mV

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

-2.00 -1.50 -1.00 -0.50 0.00

I DS

[A]

VFGS [V]

measurement, VBG=-2 V

simulation, VBG=-2V

measurement, VBG=-2.5V

simulation, VBG= -2.5V

VBG=-2.5V VDS=300mV

VDS, VBG=-2V

A. Javey, et al., Nano Letters, vol. 4, Mar.

2004, p. 447-450

Prior front gate fabrication

13/18ICECS, Athènes , December 2010

D

S

FG BG

Evaluation of parasitic element with TCAD

Parasitic parameter extractionto metal 1

Finite element

simulation

14/18ICECS, Athènes , December 2010

+VBG

-VBG

+VBG

-VBG

+VBG

-VBG

+VDD

Circuit application: voltage controlled ring oscillator

Parameters used in the simulation are the one obtained from the IBM

technology except VFB which is reduced to have a better symmetry of the CMOS

like inverter

5 stages ring oscillatortime [s] [E-6]

Vou

t [V

], V

bg=+/-3V

V

out [V

], V

bg=+/-2.

5V V

out [V

], V

bg=+/-2.

25V

[E

-3]

8 10 12 14 16 18 20-200

0

200

400

600

800

[µS]

[mV]

ICECS, Athènes , December 2010 15/18

• A compact model dedicated to dual gate device – Drain current modeling

– Charge modeling

– Equivalent circuit

• Validation with measurement from 2 different technologies– Stanford University

– IBM

• Circuit simulation– Parasitic element

– Voltage controlled oscillator

• Outlook– Main limitation for technology developpement: control of nanotube chirality

and density• Technological breakthrough needed

Conclusion

16/18ICECS, Athènes , December 2010

Outlooks

“Dual-gate Graphene FETs With fT of 50 GHz”, LIN et al., IEEE EDL, VOL. 31, NO. 1, JANUARY 2010

“Dual-gate silicon nanowire transistors with nickel silicide contacts”J. Appenzeller et al.1IBM, 2Institute for Thin Film and Interfaces,Julich

Alternative solutions for dual gate devices

Model can be easily extended to graphene nanoribbon and very small nanowire (1D and ballistic)

17/18ICECS, Athènes , December 2010

• Work was supported by the French National Research Agency ANR through ARPEGE “NANOGRAIN” project.

• The authors would also like to thank all partners of this project for the fruitful discussions.

Acknowledgement

ICECS, Athènes , December 2010 18/18

Conclusion and outlooks

Time

Visibility

Technology trigger

Peak of inflated

expectation

Through of disillusionment

Plateau of productivity

Slope of enlightenment

1991-1993Discover of

CNTs

~2008-2010CNTFET

Technological breakthrough needed(control of nanotube chirality and density)

19/18ICECS, Athènes , December 2010

J ds / per tube [LOG] fT

with

12

tube

s / 50

nm fT

with

6 tub

es / 5

0nm

fT

with

1 tub

e / 50

nm [E

+9]

1E-8 1E-7 1E-6 1E-50

200

400

600

800

Performance of an optimized structure

20nm

50nm

50nm

• SB height is optimized to get ambipolar symmetric behavior

• Optimize ION current for both N an P behavior

• Back-gate insulator is optimized to improve the tradeoff between parasitic and SB thickness control (ION current)

1 tube /50 nm

12 tubes /50 nm(Optimum theoretical limit with this configuration)

6 tubes /50 nm

20/18ICECS, Athènes , December 2010

Calculation of the Schottky barrier

Z. Chen, J. Appenzeller, J. Knoch, Y. Lin, and P. Avouris, “The Role of Metal-Nanotube Contact in

the Performance of Carbon Nanotube Field-Effect Transistors”, Nano Letters, 2005, Vol. 5,

No. 7, 1497-1502

0.123meV on Valence band

side

21/18ICECS, Athènes , December 2010

Modeling: Tunneling through Schottky barrier

_ / 1 / , exp / 1 / ,SBeff S D SB tunnelsbbd V cnts cntd si d sbbd V cnts cntd si

Fitting parameter

Effective Schottky barrier model

WKB calculation

• Tunneling through barrier is usually performed using WKB approximation

• WKB is too complex to obtain analytical expression of current

=> Effective Schottky barrier approach*

*Knoch, J.; Appenzeller, J., physica status solidi (a), vol. 205, issue 4, pp. 679-694

(2008).

22/18ICECS, Athènes , December 2010

_max , 1 ,Sn SBeff S sbbd V cnts si

Thermionic / Schottky Current modeling

_

1

max , [ ] ( , ),ln 1 exp

4

max , [ ] ( , ), ( , )ln 1 exp

Sn Dn

nb sbbdBB

DS ep Sn Dn

B

sbbd p V cnti s

k Tek TI

h sbbd p V cnti s V di si

k T

Transition between Thermionic /Schottky behavior:

Vdi

Vsi

source

drain

Sn

Dn

DpSp

:CBi conduction band

Thermionic contribution

SB tunnel contribution

:VBi valence banda)

VCNTi

Log IDS

60mV/decMos-like behavior

Slope > 60mV/decSchottky behavior

Source exhaustion

b)

Landauer equation

Electron contribution:

23/18ICECS, Athènes , December 2010

MAX ,

_

MAX ,

2I

Sn Dn

I

Sn Dn

VB

Sn

BTBT e BTBT VB

Dn

f E dEMq

I Th f E dE

, ,

, , , ,

BTBT S BTBT DBTBT

BTBT S BTBT D BTBT S BTBT D

T TT

T T T T

* 3/ 2

,

4 2 (2 [ ])exp

3

S D

BTBT S DS D

m sbbd pT

q V

D

VCNTi

IDS

60mV/decOhmic behavior

Slope > 60mV/decSchottky behavior

Source exhaustion

BTBT behavior

BTBT Current modeling

Analytical model:

Analytical solution is straightforward

DEF

DEF

q(VSi-VCNT)-sbbd[1]

qVSi

qVDi

Current spectrum in a MOS-like CNTFET using NEGF simulation *

* NEGF simulator is originally created in Purdue University