hw4 physics 311 mechanics - 12000.org

23
HW4 Physics 311 Mechanics F 2015 P U W, M I: P S W B N M. A N 28, 2019

Upload: others

Post on 23-Dec-2021

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: HW4 Physics 311 Mechanics - 12000.org

HW4 Physics 311 Mechanics

Fall 2015Physics department

University of Wisconsin, Madison

Instructor: Professor Stefan Westerhoff

By

Nasser M. Abbasi

November 28, 2019

Page 2: HW4 Physics 311 Mechanics - 12000.org

Contents

0.1 Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.1.1 part(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.1.2 part(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40.1.3 Part(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40.1.4 Part(4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

0.2 Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50.3 Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

0.3.1 SOLUTION method one . . . . . . . . . . . . . . . . . . . . . . . . . . 80.3.2 another solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

0.4 Problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120.4.1 case (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130.4.2 case (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140.4.3 case(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

0.5 Problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150.5.1 Part (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160.5.2 Part(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160.5.3 Part(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2

Page 3: HW4 Physics 311 Mechanics - 12000.org

3

0.1 Problem 1

Mechanics

Physics 311Fall 2015

Homework 4 (10/2/15, due 10/9/15)

1. (5 points)The damping factor λ of a spring suspension system is one-tenth the critical value. Letω0 be the undamped frequency. Find (i) the resonant frequency, (ii) the quality factor Q,(iii) the phase angle Φ when the system is driven at frequency ω = ω0/2, and (iv) thesteady-state amplitude at this frequency.

2. (10 points)A string of length 2 l is suspended at points A and B located on a horizontal line. Thedistance between A and B is 2 d, with d < l. A small, heavy bead can slide on the stringwithout friction. Find the period of the small-amplitude oscillations of the bead in thevertical plane containing the suspension points.Hint: The trajectory of the bead is a section of an ellipse (why?). Move the origin to theequilibrium point and use a Taylor expansion to get an approximate expression for thetrajectory around the equilibrium point. Apply Lagrange.

...continued on next page...

SOLUTION:

Note that πœ†π‘π‘Ÿπ‘–π‘‘π‘–π‘π‘Žπ‘™ = πœ”0. We are told that πœ† = 0.1πœ”0 in this problem.

0.1.1 part(1)

The resonant frequency (for this case of under-damped) occurs when the steady state am-plitude is maximum

𝑏 =π‘“π‘š

οΏ½οΏ½πœ”20 βˆ’ πœ”2οΏ½

2+ 4πœ†2πœ”2

This happens when the denominator is minimum. Taking derivative of the denominator w.r.t.πœ” and setting the result to zero gives

π‘‘π‘‘πœ”

οΏ½οΏ½πœ”20 βˆ’ πœ”2οΏ½

2+ 4πœ†2πœ”2οΏ½ = 0

2 οΏ½πœ”20 βˆ’ πœ”2οΏ½ (βˆ’2πœ”) + 8πœ†2πœ” = 08πœ†2πœ” + 4πœ”3 βˆ’ 4πœ”πœ”2

0 = 02πœ†2 + πœ”2 βˆ’ πœ”2

0 = 0πœ”2 = πœ”2

0 βˆ’ 2πœ†2

Taking the positive root (since πœ” must be positive) gives

πœ” = οΏ½πœ”20 βˆ’ 2πœ†2

When πœ† = 0.1πœ”0 the above becomes

πœ” =οΏ½πœ”20 βˆ’ 2 οΏ½

110πœ”0οΏ½

2

=οΏ½98100

πœ”20

= 0.98995πœ”0 rad/sec

Page 4: HW4 Physics 311 Mechanics - 12000.org

4

0.1.2 part(2)

Quality factor 𝑄 is defined as

𝑄 =πœ”π‘‘2πœ†

= οΏ½πœ”20 βˆ’ πœ†2

2πœ†

= οΏ½πœ”20 βˆ’ (0.1πœ”0)

2

2 (0.1πœ”0)

=πœ”0√1 βˆ’ 0.12

0.2πœ”0

= √1 βˆ’ 0.12

0.2Therefore

𝑄 = 4.975

0.1.3 Part(3)

Given

π‘₯β€²β€² (𝑑) + 2πœ†π‘₯β€² + πœ”20π‘₯ =

π‘“π‘šπ‘’π‘–πœ”π‘‘ (1)

Assuming the particular solution is π‘₯𝑝 (𝑑) = π΅π‘’π‘–πœ”π‘‘ where 𝐡 = π‘π‘’π‘–πœ™ is the complex amplitudeand 𝑏 is the amplitude and πœ™ is the phase of 𝐡. We want to find the phase. Plugging π‘₯𝑝 (𝑑)into (1) and simplifying gives

𝐡 =π‘“π‘š

πœ”20 βˆ’ πœ”2 + 2πœ†π‘–πœ”

Hence

πœ™ = 0 βˆ’ tanβˆ’1 οΏ½2πœ†πœ”

πœ”20 βˆ’ πœ”2 οΏ½

= tanβˆ’1 οΏ½βˆ’2πœ†πœ”πœ”20 βˆ’ πœ”2 οΏ½

Since πœ† = 0.1πœ”0 and πœ” = πœ”02 the above becomes

πœ™ = tanβˆ’1

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽβˆ’2 (0.1πœ”0)

πœ”02

πœ”20 βˆ’ οΏ½

πœ”02οΏ½2

⎞⎟⎟⎟⎟⎟⎟⎠

= tanβˆ’1 (βˆ’0.13333)= βˆ’0.13255 rad

Page 5: HW4 Physics 311 Mechanics - 12000.org

5

0.1.4 Part(4)

The steady state amplitude is 𝑏 from above, which is found as follows

𝑏2 = π΅π΅βˆ—

Where π΅βˆ— is the complex conjugate of 𝐡 =π‘“π‘š

πœ”20βˆ’πœ”2+2πœ†π‘–πœ”

. Therefore

𝑏 =π‘“π‘š

οΏ½οΏ½πœ”20 βˆ’ πœ”2οΏ½

2+ 4πœ†2πœ”2

=π‘“π‘š

1

οΏ½οΏ½πœ”2

0 βˆ’ οΏ½πœ”02οΏ½2οΏ½2+ 4 (0.1πœ”0)

2 οΏ½πœ”02οΏ½2

=π‘“π‘š

1

οΏ½0.572 5πœ”40

= 1.3216𝑓

π‘šπœ”20

But π‘šπœ”20 = π‘˜, the stiοΏ½ness, hence the above is

𝑏 = 1.3216π‘“π‘˜

0.2 Problem 2

Mechanics

Physics 311Fall 2015

Homework 4 (10/2/15, due 10/9/15)

1. (5 points)The damping factor λ of a spring suspension system is one-tenth the critical value. Letω0 be the undamped frequency. Find (i) the resonant frequency, (ii) the quality factor Q,(iii) the phase angle Φ when the system is driven at frequency ω = ω0/2, and (iv) thesteady-state amplitude at this frequency.

2. (10 points)A string of length 2 l is suspended at points A and B located on a horizontal line. Thedistance between A and B is 2 d, with d < l. A small, heavy bead can slide on the stringwithout friction. Find the period of the small-amplitude oscillations of the bead in thevertical plane containing the suspension points.Hint: The trajectory of the bead is a section of an ellipse (why?). Move the origin to theequilibrium point and use a Taylor expansion to get an approximate expression for thetrajectory around the equilibrium point. Apply Lagrange.

...continued on next page...

SOLUTION:

The locus the bead describes is an ellipse, since in an ellipse the total distance from anypoint on it to the points 𝐴,𝐡 is always the same

Page 6: HW4 Physics 311 Mechanics - 12000.org

6

In an ellipse, these twosegments always add tosame length. In this ex-ample, this is 2l

ellipse

To obtain the potential energy, we move the bead a little from the origin and find how muchthe bead moved above the origin, as shown in the following diagram

s 2l βˆ’ s

d+ x dβˆ’ x

originx

AB

H =√l2 βˆ’ d2

h

y = H βˆ’ h

s2 = h2 + (d+ x)2

(2l βˆ’ s)2 = h2 + (dβˆ’ x)2

From the above, we see that, by applying pythagoras triangle theorem to the left and to theright triangles, we obtain two equations which we solve for β„Ž in order to obtain the potentialenergy

𝑠2 = β„Ž2 + (𝑑 + π‘₯)2

(2𝑙 βˆ’ 𝑠)2 = β„Ž2 + (𝑑 βˆ’ π‘₯)2

Solving for β„Ž gives

β„Ž =οΏ½1 βˆ’

𝑑2

𝑙2βˆšπ‘™2 βˆ’ π‘₯2

Therefore

𝑦 = 𝐻 βˆ’ β„Ž

= 𝐻 βˆ’οΏ½1 βˆ’

𝑑2

𝑙2βˆšπ‘™2 βˆ’ π‘₯2

Page 7: HW4 Physics 311 Mechanics - 12000.org

7

Hence

π‘ˆ = π‘šπ‘”π‘¦

= π‘šπ‘”βŽ›βŽœβŽœβŽœβŽœβŽπ» βˆ’

οΏ½1 βˆ’

𝑑2

𝑙2βˆšπ‘™2 βˆ’ π‘₯2

⎞⎟⎟⎟⎟⎠

The kinetic energy is

𝑇 =12π‘š οΏ½οΏ½οΏ½2 + οΏ½οΏ½2οΏ½

Therefore the Lagrangian is

𝐿 = 𝑇 βˆ’ π‘ˆ

=12π‘š οΏ½οΏ½οΏ½2 + οΏ½οΏ½2οΏ½ βˆ’ π‘šπ‘”

βŽ›βŽœβŽœβŽœβŽœβŽπ» βˆ’

οΏ½1 βˆ’

𝑑2

𝑙2βˆšπ‘™2 βˆ’ π‘₯2

⎞⎟⎟⎟⎟⎠

The equation of motion in the π‘₯ coordinate is now found. From

πœ•πΏπœ•π‘₯

=12π‘šπ‘”οΏ½1 βˆ’

𝑑2

𝑙2(βˆ’2π‘₯)

βˆšπ‘™2 βˆ’ π‘₯2

= βˆ’π‘šπ‘”οΏ½1 βˆ’

𝑑2

𝑙2π‘₯

βˆšπ‘™2 βˆ’ π‘₯2And

π‘‘π‘‘π‘‘πœ•πΏπœ•π‘₯

= π‘šοΏ½οΏ½

Applying Euler-Lagrangian equation gives

π‘‘π‘‘π‘‘πœ•πΏπœ•π‘₯

βˆ’πœ•πΏπœ•π‘₯

= 0

οΏ½οΏ½ + 𝑔�1 βˆ’

𝑑2

𝑙2π‘₯

βˆšπ‘™2 βˆ’ π‘₯2= 0

For very small π‘₯, we drop the π‘₯2 term and the above reduces to

οΏ½οΏ½ + 𝑔�1 βˆ’

𝑑2

𝑙2π‘₯𝑙= 0

Hence the undamped natural frequency is

πœ”20 =

𝑔𝑙 οΏ½

1 βˆ’π‘‘2

𝑙2or

πœ”0 =�𝑔𝑙�

1 βˆ’π‘‘2

𝑙2

Page 8: HW4 Physics 311 Mechanics - 12000.org

8

The period of small oscillation is therefore

𝑇 =2πœ‹πœ”0

= 2πœ‹1

�𝑔𝑙�1 βˆ’

𝑑2

𝑙2

0.3 Problem 3

3. (10 points)A rod of length L rotates in a plane with a constant angular velocity Ο‰ about an axis fixedat one end of the rod and perpendicular to the plane of rotation. A bead of mass m isinitially at the stationary end of the rod. It is given a slight push so that its initial speedalong the rod is Ο‰L. Find the time it takes the bead to reach the other end of the rod.

4. (10 points)Consider a harmonic oscillator with Ο‰0 = 0.5 sβˆ’1. Let x0 = 1.0m be the initial amplitudeat t = 0 and assume that the oscillator is released with zero initial velocity. Use a computerto plot the phase-space plot (x versus x) for the following damping coefficients Ξ».(1) Ξ» = 0.05 sβˆ’1 (weak damping)(2) Ξ» = 0.25 sβˆ’1 (strong damping)(3) Ξ» = Ο‰0 (critical damping).

5. (15 points)A damped harmonic oscillator has a period of free oscillation (with no damping) of T0 =1.0 s. The oscillator is initially displaced by an amount x0 = 0.1m and released with zeroinitial velocity.(1) Consider the case that the oscillator is critically damped. Determine the displacementx as a function of time and use a computer program to plot x(t) for 0 ≀ t ≀ 2 s.(2) Now consider the case that the system is overdamped. Determine the displacementas a function of time and use a computer program to plot x(t) for damping coefficients(i) Ξ» = 2.2 Ο€sβˆ’1, (ii) Ξ» = 4 Ο€sβˆ’1, and (iii) Ξ» = 10 Ο€sβˆ’1 for 0 ≀ t ≀ 2 s. Compare to thecritically damped case.(3) Now consider the case that the system is underdamped. Determine the displacementas a function of time and use a computer program to plot x(t) for damping coefficients (i)Ξ» = 5.0 sβˆ’1, (ii) Ξ» = 1.0 sβˆ’1, and (iii) Ξ» = 0.1 sβˆ’1 for 0 ≀ t ≀ 2 s. Compare to the criticallydamped case.

0.3.1 SOLUTION method one

The velocity of the particle is as shown in the following diagram

ΞΈ

velocity diagram

x

yω = θ

r

rΟ‰ Vx = r cos ΞΈ βˆ’ rΟ‰ sin ΞΈ

Vy = r sin θ + rω cos θ

There is no potential energy, and the Lagrangian only comes from kinetic energy.

𝑣2 = 𝑉2π‘₯ + 𝑉2

𝑦

= (οΏ½οΏ½ cosπœƒ βˆ’ π‘Ÿπœ” sinπœƒ)2 + (οΏ½οΏ½ sinπœƒ + π‘Ÿπœ” cosπœƒ)2

Exapnding and simplifying gives

𝑣2 = οΏ½οΏ½2 + π‘Ÿ2πœ”2

Hence

𝐿 =12π‘š οΏ½οΏ½οΏ½2 + π‘Ÿ2πœ”2οΏ½

Page 9: HW4 Physics 311 Mechanics - 12000.org

9

And the equation of motion in the radial π‘Ÿ direction is

π‘‘π‘‘π‘‘πœ•πΏπœ•οΏ½οΏ½

βˆ’πœ•πΏπœ•π‘Ÿ

= 0

π‘‘π‘‘π‘‘π‘šοΏ½οΏ½ βˆ’ π‘šπ‘Ÿπœ”2 = 0

Hence the equation of motion is

οΏ½οΏ½ βˆ’ π‘Ÿπœ”2 = 0 (1)

The roots of the characteristic equation are Β±πœ”, hence the solution is

π‘Ÿ (𝑑) = 𝑐1π‘’πœ”π‘‘ + 𝑐2π‘’βˆ’πœ”π‘‘

At 𝑑 = 0, π‘Ÿ (0) = 0 and οΏ½οΏ½ (𝑑) = πΏπœ”. Using these we can find 𝑐1, 𝑐2.

0 = 𝑐1 + 𝑐2 (2)

But οΏ½οΏ½ (𝑑) = πœ”π‘1π‘’πœ”π‘‘ βˆ’ πœ”π‘2π‘’βˆ’πœ”π‘‘ and at 𝑑 = 0 this becomes

πΏπœ” = πœ”π‘1 βˆ’ πœ”π‘2 (3)

From (2,3) we solve for 𝑐1, 𝑐2. From (2), 𝑐1 = βˆ’π‘2 and (3) becomes

πΏπœ” = βˆ’πœ”π‘2 βˆ’ πœ”π‘2

𝑐2 =πΏπœ”βˆ’2πœ”

=βˆ’12𝐿

Hence 𝑐1 =12𝐿 and the solution is

π‘Ÿ (𝑑) = 𝑐1π‘’πœ”π‘‘ + 𝑐2π‘’βˆ’πœ”π‘‘

=12πΏπ‘’πœ”π‘‘ βˆ’

12πΏπ‘’βˆ’πœ”π‘‘

= 𝐿 οΏ½π‘’πœ”π‘‘ βˆ’ π‘’βˆ’πœ”π‘‘

2 οΏ½

Or

π‘Ÿ (𝑑) = 𝐿 (sinhπœ”π‘‘)

To find the time it takes to reach end of rod, we solve for 𝑑𝑝 from

𝐿 = 𝐿 οΏ½sinhπœ”π‘‘π‘οΏ½1 = sinhπœ”π‘‘π‘

Hence

πœ”π‘‘π‘ = sinhβˆ’1 (1)= 0.88137

Therefore

𝑑𝑝 =0.88137

πœ” sec

Page 10: HW4 Physics 311 Mechanics - 12000.org

10

0.3.2 another solution

Let the local coordinate frame rotate with the bar, where the bar is oriented along the π‘₯axis of the local body coordinate frame as shown below.

X

Y

x

y

~rm

x, y is Rotating (body) frame of reference

X,Y is inertial (fixed) frame of reference

~i~j

~v = ~rrel + ~Ο‰ Γ— ~r

Ο‰

~r = r~i

~Ο‰ = Ο‰~k

The position vector of the particle is 𝒓 = π’Šπ‘Ÿ where π’Š is unit vector along the π‘₯ axis. Takingtime derivative, and using the rotating vector time derivative rule which says that 𝑑𝑨

𝑑𝑑 =

οΏ½π‘‘π‘¨π‘‘π‘‘οΏ½π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’

+ πœ” Γ— 𝑨 where πœ” is the angular velocity of the rotating frame then

οΏ½οΏ½ = οΏ½οΏ½π‘Ÿπ‘’π‘™ + πœ” Γ— 𝒓 (1)

To find the acceleration of the particle, we take time derivative one more time𝑑𝑑𝑑�� =

𝑑𝑑𝑑(οΏ½οΏ½π‘Ÿπ‘’π‘™) + οΏ½οΏ½ ×𝒓 + πœ” Γ— οΏ½οΏ½

But 𝑑𝑑𝑑(οΏ½οΏ½π‘Ÿπ‘’π‘™) = οΏ½οΏ½π‘Ÿπ‘’π‘™ + πœ” Γ— οΏ½οΏ½π‘Ÿπ‘’π‘™ by applying the rule of time derivative of rotating vector again.

Therefore the above equation becomes𝑑𝑑𝑑�� = οΏ½οΏ½π‘Ÿπ‘’π‘™ + πœ” Γ— οΏ½οΏ½π‘Ÿπ‘’π‘™+ οΏ½οΏ½ ×𝒓 + πœ” Γ— οΏ½οΏ½

Replacing οΏ½οΏ½ in the above from its value in (1) gives

οΏ½οΏ½ = οΏ½οΏ½π‘Ÿπ‘’π‘™ + πœ” Γ— οΏ½οΏ½π‘Ÿπ‘’π‘™+ οΏ½οΏ½ ×𝒓 + πœ” Γ— (οΏ½οΏ½π‘Ÿπ‘’π‘™ + πœ” Γ— 𝒓)= οΏ½οΏ½π‘Ÿπ‘’π‘™ + πœ” Γ— οΏ½οΏ½π‘Ÿπ‘’π‘™+ οΏ½οΏ½ ×𝒓 + πœ” Γ— οΏ½οΏ½π‘Ÿπ‘’π‘™ +𝝎 Γ— (𝝎 Γ— 𝒓)= οΏ½οΏ½π‘Ÿπ‘’π‘™ + 2 (πœ” Γ— οΏ½οΏ½π‘Ÿπ‘’π‘™) + οΏ½οΏ½ ×𝒓 + πœ” Γ— (πœ” Γ— 𝒓)

But πœ” is constant (bar rotate with constant angular speed), hence the term οΏ½οΏ½ above is zero,and the above reduces to

οΏ½οΏ½ = οΏ½οΏ½π‘Ÿπ‘’π‘™ + 2 (πœ” Γ— οΏ½οΏ½π‘Ÿπ‘’π‘™) + πœ” Γ— (πœ” Γ— 𝒓) (2)

The above is the acceleration of the particle as seen in the inertial frame. Now we calculatethis acceleration by preforming the vector operations above, noting that 𝒓 = π’Šπ‘Ÿ, πœ” = π’Œπœ”,

Page 11: HW4 Physics 311 Mechanics - 12000.org

11

hence (2) becomes

οΏ½οΏ½ = π’ŠοΏ½οΏ½π‘Ÿπ‘’π‘™ + 2 (π’Œπœ” Γ— π’ŠοΏ½οΏ½π‘Ÿπ‘’π‘™) + π’Œπœ” Γ— (π’Œπœ” Γ— π’Šπ‘Ÿ)

= π’ŠοΏ½οΏ½π‘Ÿπ‘’π‘™ + 2 οΏ½π’‹πœ”οΏ½οΏ½π‘Ÿπ‘’π‘™οΏ½ + π’Œπœ” Γ— οΏ½π’‹πœ”π‘ŸοΏ½

= π’ŠοΏ½οΏ½π‘Ÿπ‘’π‘™ + 2 οΏ½π’‹πœ”οΏ½οΏ½π‘Ÿπ‘’π‘™οΏ½ βˆ’ π’Šπœ”2π‘Ÿ

= π’Š οΏ½οΏ½οΏ½π‘Ÿπ‘’π‘™ βˆ’ πœ”2π‘ŸοΏ½ + 𝒋 (2πœ”οΏ½οΏ½π‘Ÿπ‘’π‘™)

The particle has an acceleration along π‘₯ axis and an acceleration along 𝑦 axis. We areinterested in the acceleration along π‘₯ since this is where the rod is oriented along. Thescalar version of the acceleration in the π‘₯ direction is

π‘Žπ‘₯ = οΏ½οΏ½π‘Ÿπ‘’π‘™ βˆ’ πœ”2π‘Ÿ

Using 𝐹π‘₯ = π‘šπ‘Žπ‘₯ and since 𝐹π‘₯ = 0 (there is no force on the particle) then the equation ofmotion along the bar (π‘₯ axis) is

οΏ½οΏ½π‘Ÿπ‘’π‘™ βˆ’ πœ”2π‘Ÿ = 0

The roots of the characteristic equation is Β±πœ”, hence the solution is

π‘Ÿ (𝑑) = 𝑐1π‘’πœ”π‘‘ + 𝑐2π‘’βˆ’πœ”π‘‘

At 𝑑 = 0, π‘Ÿ (0) = 0 and οΏ½οΏ½ (𝑑) = πΏπœ”. Using these we can find 𝑐1, 𝑐2.

0 = 𝑐1 + 𝑐2 (3)

But οΏ½οΏ½ (𝑑) = πœ”π‘1π‘’πœ”π‘‘ βˆ’ πœ”π‘2π‘’βˆ’πœ”π‘‘ and at 𝑑 = 0 this becomes

πΏπœ” = πœ”π‘1 βˆ’ πœ”π‘2 (4)

From (3,4) we solve for 𝑐1, 𝑐2. From (3), 𝑐1 = βˆ’π‘2 and (4) becomes

πΏπœ” = βˆ’πœ”π‘2 βˆ’ πœ”π‘2

𝑐2 =πΏπœ”βˆ’2πœ”

=βˆ’12𝐿

Hence 𝑐1 =12𝐿 and the solution is

π‘Ÿ (𝑑) = 𝑐1π‘’πœ”π‘‘ + 𝑐2π‘’βˆ’πœ”π‘‘

=12πΏπ‘’πœ”π‘‘ βˆ’

12πΏπ‘’βˆ’πœ”π‘‘

= 𝐿 οΏ½π‘’πœ”π‘‘ βˆ’ π‘’βˆ’πœ”π‘‘

2 οΏ½

= 𝐿 (sinhπœ”π‘‘)To find the time it takes to reach end of rod, we solve for 𝑑𝑝 from

𝐿 = 𝐿 οΏ½sinhπœ”π‘‘π‘οΏ½1 = sinhπœ”π‘‘π‘

Hence

πœ”π‘‘π‘ = sinhβˆ’1 (1)= 0.88137

Page 12: HW4 Physics 311 Mechanics - 12000.org

12

Therefore

𝑑𝑝 =0.88137

πœ” sec

0.4 Problem 4

3. (10 points)A rod of length L rotates in a plane with a constant angular velocity Ο‰ about an axis fixedat one end of the rod and perpendicular to the plane of rotation. A bead of mass m isinitially at the stationary end of the rod. It is given a slight push so that its initial speedalong the rod is Ο‰L. Find the time it takes the bead to reach the other end of the rod.

4. (10 points)Consider a harmonic oscillator with Ο‰0 = 0.5 sβˆ’1. Let x0 = 1.0m be the initial amplitudeat t = 0 and assume that the oscillator is released with zero initial velocity. Use a computerto plot the phase-space plot (x versus x) for the following damping coefficients Ξ».(1) Ξ» = 0.05 sβˆ’1 (weak damping)(2) Ξ» = 0.25 sβˆ’1 (strong damping)(3) Ξ» = Ο‰0 (critical damping).

5. (15 points)A damped harmonic oscillator has a period of free oscillation (with no damping) of T0 =1.0 s. The oscillator is initially displaced by an amount x0 = 0.1m and released with zeroinitial velocity.(1) Consider the case that the oscillator is critically damped. Determine the displacementx as a function of time and use a computer program to plot x(t) for 0 ≀ t ≀ 2 s.(2) Now consider the case that the system is overdamped. Determine the displacementas a function of time and use a computer program to plot x(t) for damping coefficients(i) Ξ» = 2.2 Ο€sβˆ’1, (ii) Ξ» = 4 Ο€sβˆ’1, and (iii) Ξ» = 10 Ο€sβˆ’1 for 0 ≀ t ≀ 2 s. Compare to thecritically damped case.(3) Now consider the case that the system is underdamped. Determine the displacementas a function of time and use a computer program to plot x(t) for damping coefficients (i)Ξ» = 5.0 sβˆ’1, (ii) Ξ» = 1.0 sβˆ’1, and (iii) Ξ» = 0.1 sβˆ’1 for 0 ≀ t ≀ 2 s. Compare to the criticallydamped case.

SOLUTION:

Starting with the equation of motion for damped oscillator

π‘₯β€²β€² + 2πœ†π‘₯β€² + πœ”20π‘₯ = 0

The solution for cases 1,2 (both are underdamped) is

π‘₯ = π‘’βˆ’πœ†π‘‘ (𝐴 cosπœ”π‘‘π‘‘ + 𝐡 sinπœ”π‘‘π‘‘) (1)

Where πœ”π‘‘ = οΏ½πœ”20 βˆ’ πœ†2. While the solution for case (3), the critical damped case is

π‘₯ = (𝐴 + 𝑑𝐡) π‘’βˆ’πœ†π‘‘ (2)

For (1) above, at 𝑑 = 0 we obtain

1 = 𝐴

Hence (1) becomes π‘₯ = π‘’βˆ’πœ†π‘‘ (cosπœ”π‘‘π‘‘ + 𝐡 sinπœ”π‘‘π‘‘), and taking derivative gives

οΏ½οΏ½ = βˆ’πœ†π‘’βˆ’πœ†π‘‘ (cosπœ”π‘‘π‘‘ + 𝐡 sinπœ”π‘‘π‘‘) + π‘’βˆ’πœ†π‘‘ (βˆ’πœ”π‘‘ sinπœ”π‘‘π‘‘ + π΅πœ”π‘‘ cosπœ”π‘‘π‘‘)

At 𝑑 = 0 we have

0 = βˆ’πœ† + π΅πœ”π‘‘

𝐡 =πœ†πœ”π‘‘

Hence the complete solution for (1) is

π‘₯ = π‘’βˆ’πœ†π‘‘ οΏ½cosπœ”π‘‘π‘‘ +πœ†πœ”π‘‘

sinπœ”π‘‘π‘‘οΏ½ (3)

οΏ½οΏ½ = βˆ’πœ†π‘₯ + π‘’βˆ’πœ†π‘‘ (βˆ’πœ”π‘‘ sinπœ”π‘‘π‘‘ + πœ† cosπœ”π‘‘π‘‘) (4)

Now we find the solution for (2), the critical damped case. At 𝑑 = 0

1 = 𝐴

Page 13: HW4 Physics 311 Mechanics - 12000.org

13

Hence (2) becomes π‘₯ = (1 + 𝑑𝐡) π‘’βˆ’πœ†π‘‘, and taking derivative gives

οΏ½οΏ½ = π΅π‘’βˆ’πœ†π‘‘ βˆ’ πœ† (1 + 𝑑𝐡) π‘’βˆ’πœ†π‘‘

At 𝑑 = 0

0 = 𝐡 βˆ’ πœ†π΅ = πœ†

Hence the solution to (2) becomes

π‘₯ = (1 + πœ†π‘‘) π‘’βˆ’πœ†π‘‘ (5)

οΏ½οΏ½ = πœ†π‘’βˆ’πœ†π‘‘ βˆ’ πœ† (1 + πœ†π‘‘) π‘’βˆ’πœ†π‘‘ (6)

Now that the solutions are found, we plot the phase space using the computer, using para-metric plot command

0.4.1 case (1)

For πœ† = 0.05, and πœ”π‘‘ = οΏ½πœ”20 βˆ’ πœ†2 = √0.52 βˆ’ 0.052 = 0.4975, then equations (3,4) become

π‘₯ = π‘’βˆ’0.05𝑑 (cos 0.4975𝑑 + 0.1005 sin 0.4975𝑑) (3A)

οΏ½οΏ½ = βˆ’0.05π‘₯ + π‘’βˆ’0.05𝑑 (βˆ’0.4975 sin 0.4975𝑑 + 0.05 cos 0.4975𝑑) (4A)

Here is the plot generated, showing starting point (1, 0) with the code used

Out[59]=

-0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

x(t)

v(t)

Phase plot, 50 seconds, case(1)

am = 0.05;wn = 0.5;wd = Sqrt[wn^2 - lam^2];x = Exp[-lam t] (Cos[wd t] + lam/wd Sin[wd t]);y = -lam x + Exp[-lam t] (-wd Sin[wd t] + lam Cos[lam t]);ParametricPlot[{x, y}, {t, 0, 50}, Frame -> True,GridLines -> Automatic, GridLinesStyle -> LightGray,FrameLabel -> {{"v(t)", None}, {"x(t)",

"Phase plot, 50 seconds, case(1)"}}, Epilog -> Disk[{1, 0}, .02],ImageSize -> 400]

Page 14: HW4 Physics 311 Mechanics - 12000.org

14

0.4.2 case (2)

For πœ† = 0.25, and πœ”π‘‘ = οΏ½πœ”20 βˆ’ πœ†2 = √0.52 βˆ’ 0.252 = 0.433, equations (3,4) become

π‘₯ = π‘’βˆ’0.25𝑑 (cos 0.433𝑑 + 0.5774 sin 0.433𝑑) (3A)

οΏ½οΏ½ = βˆ’0.05π‘₯ + π‘’βˆ’0.25𝑑 (βˆ’0.433 sin 0.433𝑑 + 0.05 cos 0.433𝑑) (4A)

Here is the plot generated where the starting point was (1, 0)

Out[150]=

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2-0.3

-0.2

-0.1

0.0

0.1

0.2

x(t)

v(t)

Phase plot, 50 seconds, case(2)

This below is a zoomed in version of the above close to the origin

Out[151]=

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10-0.15

-0.10

-0.05

0.00

0.05

0.10

x(t)

v(t)

Phase plot, 50 seconds, case(2), zoom in

0.4.3 case(3)

For this case, equations (5,6) are used. For πœ† = 0.5, equations (5,6) become

π‘₯ = (1 + 0.5𝑑) π‘’βˆ’0.5𝑑 (5A)

οΏ½οΏ½ = 0.5π‘’βˆ’0.5𝑑 βˆ’ 0.5 (1 + 0.5𝑑) π‘’βˆ’0.5𝑑 (6A)

Here is the plot generated, showing starting point (1, 0) with the code used

Page 15: HW4 Physics 311 Mechanics - 12000.org

15

Out[155]=

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2-0.3

-0.2

-0.1

0.0

0.1

0.2

x(t)v(t)

Phase plot, 50 seconds, case(3)

lam = 0.5;x = (1 + lam*t) Exp[-lam t];y = lam*Exp[-lam t] - lam*(1 + lam t) Exp[- lam t]ParametricPlot[{x, y}, {t, 0, 30}, Frame -> True,GridLines -> Automatic, GridLinesStyle -> LightGray,FrameLabel -> {{"v(t)", None}, {"x(t)",

"Phase plot, 50 seconds, case(3)"}}, Epilog -> Disk[{1, 0}, .02],ImageSize -> 500, PlotRange -> {{-.3, 1.2}, {-.3, .2}},PlotTheme -> "Classic"]

0.5 Problem 5

3. (10 points)A rod of length L rotates in a plane with a constant angular velocity Ο‰ about an axis fixedat one end of the rod and perpendicular to the plane of rotation. A bead of mass m isinitially at the stationary end of the rod. It is given a slight push so that its initial speedalong the rod is Ο‰L. Find the time it takes the bead to reach the other end of the rod.

4. (10 points)Consider a harmonic oscillator with Ο‰0 = 0.5 sβˆ’1. Let x0 = 1.0m be the initial amplitudeat t = 0 and assume that the oscillator is released with zero initial velocity. Use a computerto plot the phase-space plot (x versus x) for the following damping coefficients Ξ».(1) Ξ» = 0.05 sβˆ’1 (weak damping)(2) Ξ» = 0.25 sβˆ’1 (strong damping)(3) Ξ» = Ο‰0 (critical damping).

5. (15 points)A damped harmonic oscillator has a period of free oscillation (with no damping) of T0 =1.0 s. The oscillator is initially displaced by an amount x0 = 0.1m and released with zeroinitial velocity.(1) Consider the case that the oscillator is critically damped. Determine the displacementx as a function of time and use a computer program to plot x(t) for 0 ≀ t ≀ 2 s.(2) Now consider the case that the system is overdamped. Determine the displacementas a function of time and use a computer program to plot x(t) for damping coefficients(i) Ξ» = 2.2 Ο€sβˆ’1, (ii) Ξ» = 4 Ο€sβˆ’1, and (iii) Ξ» = 10 Ο€sβˆ’1 for 0 ≀ t ≀ 2 s. Compare to thecritically damped case.(3) Now consider the case that the system is underdamped. Determine the displacementas a function of time and use a computer program to plot x(t) for damping coefficients (i)Ξ» = 5.0 sβˆ’1, (ii) Ξ» = 1.0 sβˆ’1, and (iii) Ξ» = 0.1 sβˆ’1 for 0 ≀ t ≀ 2 s. Compare to the criticallydamped case.

SOLUTION:

Since πœ”0 =2πœ‹π‘‡0, then πœ”0 =

2πœ‹1 = 2πœ‹.

Page 16: HW4 Physics 311 Mechanics - 12000.org

16

0.5.1 Part (1)

For critical damping πœ† = πœ”0 and the solution is

π‘₯ (𝑑) = (𝐴 + 𝐡𝑑) π‘’βˆ’πœ†π‘‘ (1)

οΏ½οΏ½ (𝑑) = π΅π‘’βˆ’πœ†π‘‘ βˆ’ πœ† (𝐴 + 𝐡𝑑) π‘’βˆ’πœ†π‘‘ (2)

Initial conditions are now used to find 𝐴,𝐡. At 𝑑 = 0, π‘₯ (0) = π‘₯0 = 0.1. From (1) we obtain

π‘₯0 = 𝐴

And since οΏ½οΏ½ (0) = 0, then from (2)

0 = 𝐡 βˆ’ πœ†π΄π΅ = πœ†π΄= πœ†π‘₯0

Putting values found for 𝐴,𝐡, back into (1) gives

π‘₯ (𝑑) = (π‘₯0 + πœ†π‘₯0𝑑) π‘’βˆ’πœ†π‘‘

Since this is critical damping, then πœ† = πœ”0 = 2πœ‹, hence

π‘₯ (𝑑) = (π‘₯0 + 2πœ‹π‘₯0𝑑) π‘’βˆ’2πœ‹π‘‘

Finally, since π‘₯0 = 0.1 meter, then

π‘₯ (𝑑) = οΏ½110+2πœ‹10𝑑� π‘’βˆ’2πœ‹π‘‘

A plot of the above for 0 ≀ 𝑑 ≀ 2𝑠 is given below

Out[179]=

0.0 0.5 1.0 1.5 2.0

0.00

0.02

0.04

0.06

0.08

0.10

time (sec)

x(t)

Part(1) critical damped

0.5.2 Part(2)

For overdamped, πœ† > πœ”0 the two roots of the characteristic polynomial are real, hence nooscillation occur. The solution is given by

π‘₯ (𝑑) = π΄π‘’οΏ½βˆ’πœ†+οΏ½πœ†2βˆ’πœ”2

0�𝑑 + π΅π‘’οΏ½βˆ’πœ†βˆ’οΏ½πœ†2βˆ’πœ”2

0�𝑑 (1)

Page 17: HW4 Physics 311 Mechanics - 12000.org

17

𝐴,𝐡 are found from initial conditions. When 𝑑 = 0 the above becomes

π‘₯0 = 𝐴 + 𝐡 (2)

Taking derivative of (1) gives

οΏ½οΏ½ (𝑑) = 𝐴 οΏ½βˆ’πœ† +οΏ½πœ†2 βˆ’ πœ”2

0οΏ½ π‘’οΏ½βˆ’πœ†+οΏ½πœ†2βˆ’πœ”2

0�𝑑 + 𝐡 οΏ½βˆ’πœ† βˆ’ οΏ½πœ†2 βˆ’ πœ”2

0οΏ½ π‘’οΏ½βˆ’πœ†βˆ’οΏ½πœ†2βˆ’πœ”2

0�𝑑

At 𝑑 = 0 the above becomes

0 = οΏ½βˆ’πœ† +οΏ½πœ†2 βˆ’ πœ”2

0�𝐴 + οΏ½βˆ’πœ† βˆ’ οΏ½πœ†2 βˆ’ πœ”2

0� 𝐡 (3)

We have two equations (2,3) which we solve for 𝐴,𝐡. From (2), 𝐴 = π‘₯0 βˆ’ 𝐡, and (3) becomes

0 = οΏ½βˆ’πœ† +οΏ½πœ†2 βˆ’ πœ”2

0οΏ½ (π‘₯0 βˆ’ 𝐡) + οΏ½βˆ’πœ† βˆ’ οΏ½πœ†2 βˆ’ πœ”2

0� 𝐡

0 = οΏ½βˆ’πœ† +οΏ½πœ†2 βˆ’ πœ”2

0οΏ½ π‘₯0 βˆ’ 𝐡 οΏ½βˆ’πœ† +οΏ½πœ†2 βˆ’ πœ”2

0οΏ½ + οΏ½βˆ’πœ† βˆ’ οΏ½πœ†2 βˆ’ πœ”2

0� 𝐡

0 = οΏ½βˆ’πœ† +οΏ½πœ†2 βˆ’ πœ”2

0οΏ½ π‘₯0 βˆ’ 2π΅οΏ½πœ†2 βˆ’ πœ”2

0

𝐡 =οΏ½βˆ’πœ† +οΏ½πœ†

2 βˆ’ πœ”20οΏ½ π‘₯0

2οΏ½πœ†2 βˆ’ πœ”2

0

(4)

Using 𝐡 found in (4) then (3) now gives 𝐴 as

𝐴 = π‘₯0 βˆ’ 𝐡

= π‘₯0 βˆ’οΏ½βˆ’πœ† +οΏ½πœ†

2 βˆ’ πœ”20οΏ½ π‘₯0

2οΏ½πœ†2 βˆ’ πœ”2

0

= π‘₯0

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ1 βˆ’

οΏ½βˆ’πœ† +οΏ½πœ†2 βˆ’ πœ”2

0οΏ½

2οΏ½πœ†2 βˆ’ πœ”2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

= π‘₯0

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

πœ† + οΏ½πœ†2 βˆ’ πœ”2

0

2οΏ½πœ†2 βˆ’ πœ”2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Hence the complete solution from (1) becomes

π‘₯ (𝑑) = π‘₯0

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

πœ† + οΏ½πœ†2 βˆ’ πœ”2

0

2οΏ½πœ†2 βˆ’ πœ”2

0

βŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ π‘’οΏ½βˆ’πœ†+οΏ½πœ†2βˆ’πœ”2

0�𝑑 + π‘₯0

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

βˆ’πœ† +οΏ½πœ†2 βˆ’ πœ”2

0

2οΏ½πœ†2 βˆ’ πœ”2

0

βŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ π‘’οΏ½βˆ’πœ†βˆ’οΏ½πœ†2βˆ’πœ”2

0�𝑑 (5)

The above is now used for each case below to plot the solution..

Page 18: HW4 Physics 311 Mechanics - 12000.org

18

case (i)

πœ† = 2.2πœ‹,πœ”0 = 2πœ‹, π‘₯0 = 0.1, hence (5) becomes

π‘₯ (𝑑) = 0.1

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

2.2πœ‹ + οΏ½(2.2πœ‹)2 βˆ’ (2πœ‹)2

2οΏ½(2.2πœ‹)2 βˆ’ (2πœ‹)2

βŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ π‘’οΏ½βˆ’2.2πœ‹+οΏ½(2.2πœ‹)2βˆ’(2πœ‹)2�𝑑

+ 0.1

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

βˆ’2.2πœ‹ + οΏ½(2.2πœ‹)2 βˆ’ (2πœ‹)2

2οΏ½(2.2πœ‹)2 βˆ’ (2πœ‹)2

βŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ π‘’οΏ½βˆ’2.2πœ‹βˆ’οΏ½(2.2πœ‹)2βˆ’(2πœ‹)2�𝑑

= 0.17π‘’βˆ’4.032 2𝑑 βˆ’ 0.07 π‘’βˆ’9.791𝑑

A plot of the above for 0 ≀ 𝑑 ≀ 2𝑠 is given below

Out[297]=

0.0 0.5 1.0 1.5 2.0

0.00

0.02

0.04

0.06

0.08

0.10

time (sec)

x(t)

Part(2.1) overdamped, Ξ»=2.2 Ο€

case (ii)

πœ† = 4πœ‹,πœ”0 = 2πœ‹, π‘₯0 = 0.1, hence (5) becomes

π‘₯ (𝑑) = 0.1

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

4πœ‹ + οΏ½(4πœ‹)2 βˆ’ (2πœ‹)2

2οΏ½(4πœ‹)2 βˆ’ (2πœ‹)2

βŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ π‘’οΏ½βˆ’4πœ‹+οΏ½(4πœ‹)2βˆ’(2πœ‹)2�𝑑

+ 0.1

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

βˆ’4πœ‹ +οΏ½(4πœ‹)2 βˆ’ (2πœ‹)2

2οΏ½(4πœ‹)2 βˆ’ (2πœ‹)2

βŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ π‘’οΏ½βˆ’4πœ‹βˆ’οΏ½(4πœ‹)2βˆ’(2πœ‹)2�𝑑

= 0.1077π‘’βˆ’1.6836𝑑 βˆ’ 0.00774π‘’βˆ’23.449𝑑

A plot of the above for 0 ≀ 𝑑 ≀ 2𝑠 is given below

Page 19: HW4 Physics 311 Mechanics - 12000.org

19

Out[310]=

0.0 0.5 1.0 1.5 2.0

0.00

0.02

0.04

0.06

0.08

0.10

time (sec)

x(t)

Part(2.2) overdamped, Ξ»=4 Ο€

case (iii)

πœ† = 10πœ‹,πœ”0 = 2πœ‹, π‘₯0 = 0.1, hence (5) becomes

π‘₯ (𝑑) = 0.1

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

10πœ‹ + οΏ½(10πœ‹)2 βˆ’ (2πœ‹)2

2οΏ½(10πœ‹)2 βˆ’ (2πœ‹)2

βŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ π‘’οΏ½βˆ’10πœ‹+οΏ½(10πœ‹)2βˆ’(2πœ‹)2�𝑑

+ 0.1

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

βˆ’10πœ‹ +οΏ½(10πœ‹)2 βˆ’ (2πœ‹)2

2οΏ½(10πœ‹)2 βˆ’ (2πœ‹)2

βŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ π‘’οΏ½βˆ’10πœ‹βˆ’οΏ½(10πœ‹)2βˆ’(2πœ‹)2�𝑑

= 0.101 π‘’βˆ’0.634 73𝑑 βˆ’ 0.001034π‘’βˆ’62.197𝑑

A plot of the above for 0 ≀ 𝑑 ≀ 2𝑠 is given below

Out[314]=

0.0 0.5 1.0 1.5 2.0

0.04

0.06

0.08

0.10

time (sec)

x(t)

Part(2.3) overdamped, Ξ»=10 Ο€

To compare to the critical damped case, the above three plots are plotted on the same figureagainst the critical damped case in order to get a better picture and be able to compare theresults

Page 20: HW4 Physics 311 Mechanics - 12000.org

20

critical

damping

2.2 pi

4 pi

10 pi

increased damping

0.0 0.5 1.0 1.5 2.0

0.00

0.02

0.04

0.06

0.08

0.10

time (sec)

x(t)

Comparing critical damped response to overdamped

From the above we see that critical damping has the fastest decay of the response π‘₯ (𝑑). Asthe damping increases, it takes longer for the response to decay.

0.5.3 Part(3)

For the underdamped case, the solution is given by

π‘₯ (𝑑) = π‘’βˆ’πœ†π‘‘ (𝐴 cosπœ”π‘‘π‘‘ + 𝐡 sinπœ”π‘‘π‘‘) (1)

Where πœ”π‘‘ = οΏ½πœ”20 βˆ’ πœ†2 and 𝐴,𝐡 are constant of integration that can be found from initial

conditions. And

οΏ½οΏ½ (𝑑) = βˆ’πœ†π‘’βˆ’πœ†π‘‘ (𝐴 cosπœ”π‘‘π‘‘ + 𝐡 sinπœ”π‘‘π‘‘) + π‘’βˆ’πœ†π‘‘ (βˆ’π΄πœ”π‘‘ sinπœ”π‘‘π‘‘ + π΅πœ”π‘‘ cosπœ”π‘‘π‘‘) (2)

Applying initial conditions π‘₯ (0) = π‘₯0 then (1) becomes

π‘₯0 = 𝐴

Applying initial conditions οΏ½οΏ½ (0) = 0 then (2) becomes

0 = βˆ’πœ†π‘₯0 + π΅πœ”π‘‘

𝐡 =πœ†π‘₯0πœ”π‘‘

Replacing 𝐴,𝐡 back into the solution (1) gives the solution

π‘₯ (𝑑) = π‘’βˆ’πœ†π‘‘ οΏ½π‘₯0 cosπœ”π‘‘π‘‘ +πœ†π‘₯0πœ”π‘‘

sinπœ”π‘‘π‘‘οΏ½ (3)

We now use the above solution for the rest of the problem

Page 21: HW4 Physics 311 Mechanics - 12000.org

21

case(i)

πœ† = 5π‘ βˆ’1, πœ”0 = 2πœ‹, π‘₯0 = 0.1, hence πœ”π‘‘ = οΏ½πœ”20 βˆ’ πœ†2 = οΏ½(2πœ‹)

2 βˆ’ 52 = 3.8051 and (3) becomes

π‘₯ (𝑑) = π‘’βˆ’5𝑑 οΏ½0.1 cos (3.8051𝑑) +(5) (0.1)3.8051

sin (3.8051𝑑)οΏ½

= π‘’βˆ’5𝑑 (0.1 cos (3.8051𝑑) + 0.1314 sin (3.8051𝑑))A plot of the above solution π‘₯ (𝑑) for 0 ≀ 𝑑 ≀ 2𝑠 is given below

Out[600]=

0.0 0.5 1.0 1.5 2.0

0.00

0.02

0.04

0.06

0.08

0.10

time (sec)

x(t)

Part(3.1) underdamped, Ξ»=5 per sec

case(ii)

πœ† = 1π‘ βˆ’1, πœ”0 = 2πœ‹, π‘₯0 = 0.1, hence πœ”π‘‘ = οΏ½πœ”20 βˆ’ πœ†2 = οΏ½(2πœ‹)

2 βˆ’ 12 = 6.2031 and (3) becomes

π‘₯ (𝑑) = π‘’βˆ’π‘‘ οΏ½0.1 cos (6.2031𝑑) +(1) (0.1)6.2031

sin (6.2031𝑑)οΏ½

= π‘’βˆ’π‘‘ (0.1 cos (6.2031𝑑) + 0.016 sin (6.2031𝑑))A plot of the above solution π‘₯ (𝑑) for 0 ≀ 𝑑 ≀ 2𝑠 is given below

Page 22: HW4 Physics 311 Mechanics - 12000.org

22

Out[596]=

0.0 0.5 1.0 1.5 2.0

-0.05

0.00

0.05

0.10

time (sec)

x(t)

Part(3.2) underdamped, Ξ»=1 per sec

case(iii)

πœ† = 0.1π‘ βˆ’1, πœ”0 = 2πœ‹, π‘₯0 = 0.1, hence πœ”π‘‘ = οΏ½πœ”20 βˆ’ πœ†2 = οΏ½(2πœ‹)

2 βˆ’ 0.12 = 6.2824 and (3) becomes

π‘₯ (𝑑) = π‘’βˆ’0.1𝑑 οΏ½0.1 cos (6.2824𝑑) +(0.1) (0.1)6.2824

sin (6.2824𝑑)οΏ½

= π‘’βˆ’0.1𝑑 (0.1 cos (6.2824𝑑) + 0.001592 sin (6.2824𝑑))A plot of the above solution π‘₯ (𝑑) for 0 ≀ 𝑑 ≀ 2𝑠 is given below

Out[591]=

0.0 0.5 1.0 1.5 2.0-0.10

-0.05

0.00

0.05

0.10

time (sec)

x(t)

Part(3.3) underdamped, Ξ»=0.1 per sec

To compare to the critical damped case, the above 3 plots are now plotted on the same figureagainst the critical damped case in order to get a better picture and be able to compare theresults

Page 23: HW4 Physics 311 Mechanics - 12000.org

23

decreased damping

critical

5

1.0

0.1

0.0 0.5 1.0 1.5 2.0

-0.10

-0.05

0.00

0.05

0.10

time (sec)

x(t)

Comparing critical damped response to underdamped

As the damping becomes smaller, more oscillation occur. The case for πœ† = 5π‘ βˆ’1 had thesmallest oscillation.