hw4 ema545 mechanicalvibrations spring2013

28
HW 4 EMA 545 Mechanical Vibrations Spring 2013 University of Wisconsin, Madison Nasser M. Abbasi Spring 2013 Compiled on April 19, 2021 at 2:56am [public]

Upload: others

Post on 23-Dec-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: HW4 EMA545 MechanicalVibrations Spring2013

HW 4

EMA 545Mechanical Vibrations

Spring 2013University of Wisconsin, Madison

Nasser M. Abbasi

Spring 2013 Compiled on April 19, 2021 at 2:56am [public]

Page 2: HW4 EMA545 MechanicalVibrations Spring2013

Contents1 problem 1 2

2 Problem 2 52.1 part(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.2 Part(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.3 Part(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Problem 3 12

4 Problem 4 184.1 First part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Extra part 20

6 Problem 5 21

7 Problem 6 237.1 Part (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247.2 Part (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1

Page 3: HW4 EMA545 MechanicalVibrations Spring2013

2

1 problem 1

Assuming zero initial conditions. The input to the system is made up of two inputs. Wefind the response to the first input, then add this response to the response due to thesecond input. The first input is

𝑒1(𝑑) = 𝐹0β„Ž(𝑑) βˆ’ 𝐹0β„Ž(𝑑 βˆ’ 𝑇)= 𝐹0(β„Ž(𝑑) βˆ’ β„Ž(𝑑 βˆ’ 𝑇))

Which is a rectangular pulse of width 𝑇 starting at 𝑑 = 0. For example for 𝑇 = 10 sec. and𝐹0 = 1

Assuming the response to unit step is 𝑔𝑠(𝑑) then the response to 𝑒1(𝑑) is

𝑔1(𝑑) = 𝐹0����������𝑔𝑠(𝑑)β„Ž(𝑑) βˆ’οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½π‘”π‘ (𝑑 βˆ’ 𝑇)β„Ž(𝑑 βˆ’ 𝑇)οΏ½

Page 4: HW4 EMA545 MechanicalVibrations Spring2013

3

From appending B, 𝑔𝑠(𝑑) =1

π‘šπœ”2𝑛(1 βˆ’ cos(πœ”π‘›π‘‘)), hence the above becomes

𝑔1(𝑑) = 𝐹0

βŽ›βŽœβŽœβŽœβŽœβŽœβŽοΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½1π‘šπœ”2

𝑛(1 βˆ’ cos(πœ”π‘›π‘‘))β„Ž(𝑑) βˆ’

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½1π‘šπœ”2

𝑛(1 βˆ’ cos(πœ”π‘›(𝑑 βˆ’ 𝑇)))β„Ž(𝑑 βˆ’ 𝑇)

⎞⎟⎟⎟⎟⎟⎠ (1)

Looking at the second input given by 𝑒2(𝑑) = 𝐹0π‘’βˆ’π›½(π‘‘βˆ’π‘‡)β„Ž(𝑑 βˆ’ 𝑇)

From appendix B, the response to an exponential 𝐹0π‘’βˆ’π›½π‘‘β„Ž(𝑑) is

𝐹0π‘šοΏ½πœ”2

𝑛 + 𝛽2οΏ½οΏ½π‘’βˆ’π›½π‘‘ βˆ’ οΏ½cos(πœ”π‘›π‘‘) βˆ’

π›½πœ”π‘›

sin(πœ”π‘›π‘‘)οΏ½οΏ½β„Ž(𝑑)

Therefore the response to 𝑒2(𝑑) is

𝑔2(𝑑) =𝐹0

π‘šοΏ½πœ”2𝑛 + 𝛽2οΏ½

οΏ½π‘’βˆ’π›½(π‘‘βˆ’π‘‡) βˆ’ οΏ½cos(πœ”π‘›(𝑑 βˆ’ 𝑇)) βˆ’π›½πœ”π‘›

sin(πœ”π‘›(𝑑 βˆ’ 𝑇))οΏ½οΏ½β„Ž(𝑑 βˆ’ 𝑇) (2)

Adding Eqs 1 and 2 results in the final response

𝑔(𝑑) = 𝑔1(𝑑) + 𝑔1(𝑑)

= 𝐹0�1

π‘šπœ”2𝑛(1 βˆ’ cos(πœ”π‘›π‘‘))β„Ž(𝑑) βˆ’

1π‘šπœ”2

𝑛(1 βˆ’ cos(πœ”π‘›(𝑑 βˆ’ 𝑇)))β„Ž(𝑑 βˆ’ 𝑇)οΏ½+

𝐹0π‘šοΏ½πœ”2

𝑛 + 𝛽2οΏ½οΏ½π‘’βˆ’π›½(π‘‘βˆ’π‘‡) βˆ’ οΏ½cos(πœ”π‘›(𝑑 βˆ’ 𝑇)) βˆ’

π›½πœ”π‘›

sin(πœ”π‘›(𝑑 βˆ’ 𝑇))οΏ½οΏ½β„Ž(𝑑 βˆ’ 𝑇)

For illustration, the following plot shows the response using some values. Using π‘š = 1kg, πœ”π‘› = 1 rad/sec, 𝑇 = 10 sec, 𝛽 = 1, 𝐹0 = 1 Volt.

Page 5: HW4 EMA545 MechanicalVibrations Spring2013

4

Page 6: HW4 EMA545 MechanicalVibrations Spring2013

5

2 Problem 2

2.1 part(a)The differential equation is

13𝑀𝐿2πœƒβ€²β€²(𝑑) + π‘πœƒβ€²(𝑑) + π‘˜πœƒ(𝑑) = 𝐹0(β„Ž(𝑑) βˆ’ β„Ž(𝑑 βˆ’ 𝑇)) (3)

The initial conditions are not given, and assumed to be zero, therefore πœƒ(0) = 0∘ andπœƒβ€²(0) = 0 rad/sec. The system is underdamped, hence

πœ”π‘‘ = πœ”π‘›οΏ½1 βˆ’ 𝜁2

Page 7: HW4 EMA545 MechanicalVibrations Spring2013

6

Let 𝑇𝑑, be the damped period of oscillation given by

𝑇𝑑 =2πœ‹πœ”π‘‘

=2πœ‹

πœ”π‘›βˆš1 βˆ’ 𝜁2

To obtain an expression for πœ”π‘›, Eq 3 is changed to a standard form πœƒβ€²β€²(𝑑) + 2πœπœ”π‘›πœƒβ€²(𝑑) +πœ”2π‘›πœƒ(𝑑) =

𝐹0(β„Ž(𝑑)βˆ’β„Ž(π‘‘βˆ’π‘‡))13𝑀𝐿2

πœƒβ€²β€²(𝑑) +

2πœπœ”π‘›οΏ½3𝑐𝑀𝐿2

πœƒβ€²(𝑑) +

πœ”2𝑛

οΏ½3π‘˜π‘€πΏ2

πœƒ(𝑑) =𝐹0(β„Ž(𝑑) βˆ’ β„Ž(𝑑 βˆ’ 𝑇))

13𝑀𝐿

2(4)

Thereforeπœ”2𝑛 =

3π‘˜π‘€πΏ2

Using π‘˜ = 20 N/rad, 𝐿 = 0.02meter,𝑀 = 0.003 kg

πœ”2𝑛 =

3(20)(0.003)(0.02)2

= 5.0 Γ— 107

orπœ”π‘› = √5.0 Γ— 107 = 7071 rad/sec

and𝑇𝑑 =

2πœ‹7071.1√1 βˆ’ 0.022

= 0.8888ms

Therefore𝑇 = 2.5𝑇𝑑 = 2.5 Γ— 0.88857 = 2.221ms

To find 𝐹0 it is assumed the head was initially at rest. Therefore

𝐹0 = π‘˜πœƒ0

= 20οΏ½πœ‹6οΏ½ = 10.472 N-meter

Eq 4 becomes

πœƒβ€²β€²(𝑑) + 2πœπœ”π‘›πœƒβ€²(𝑑) + πœ”2π‘›πœƒ(𝑑) =

𝐹0(β„Ž(𝑑) βˆ’ β„Ž(𝑑 βˆ’ 2.5𝑇𝑑))13𝑀𝐿

2

πœƒβ€²β€²(𝑑) + 2(0.02)(7071)πœƒβ€²(𝑑) + οΏ½5 Γ— 107οΏ½πœƒ(𝑑) =3 Γ— 20οΏ½πœ‹6 οΏ½(β„Ž(𝑑) βˆ’ β„Ž(𝑑 βˆ’ 2.5𝑇𝑑))

(0.003)(0.02)2

πœƒβ€²β€²(𝑑) + 283πœƒβ€²(𝑑) + 5 Γ— 107πœƒ(𝑑) = 2.618 Γ— 107(β„Ž(𝑑) βˆ’ β„Ž(𝑑 βˆ’ 0.0022219))

This is solved numerically for 0 < 𝑑 < 10𝑇 with the initial conditions πœƒ(0) = 0∘ andπœƒβ€²(0) = 0 rad/sec. Here is a plot of the solution and the input on a second plot.

Page 8: HW4 EMA545 MechanicalVibrations Spring2013

7

A computational software was used to numerically solve the above differential equationfor the solution πœƒ(𝑑).

2.2 Part(b)From appendix B the response to underdamped second order system to a unit step 𝑒(𝑑) is

π‘žπ‘ (𝑑) =1

π‘€πœ”2𝑛�1 βˆ’ π‘’βˆ’πœπœ”π‘›π‘‘οΏ½cos(πœ”π‘‘π‘‘) +

πœπœ”π‘›πœ”π‘‘

sin(πœ”π‘‘π‘‘)οΏ½οΏ½β„Ž(𝑑)

Page 9: HW4 EMA545 MechanicalVibrations Spring2013

8

Hence the response π‘ˆ(𝑑) due to 𝐹0οΏ½ 13π‘šπΏ

2οΏ½(β„Ž(𝑑) βˆ’ β„Ž(𝑑 βˆ’ 𝑇)) is given by

π‘ˆ(𝑑) =𝐹0

�13𝐿

2οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½π‘žπ‘ (𝑑)β„Ž(𝑑) βˆ’οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½π‘žπ‘ (𝑑 βˆ’ 𝑇)β„Ž(𝑑 βˆ’ 𝑇)οΏ½

Notice the factor 𝐹013𝐿

2. This was used since appendix B solution on based on equation

of motion πœƒβ€²β€²(𝑑) + 2πœπœ”π‘›πœƒβ€²(𝑑) + πœ”2π‘›πœƒ(𝑑) =

1π‘š while in this case, the equation of motion is

πœƒβ€²β€²(𝑑) + 2πœπœ”π‘›πœƒβ€²(𝑑) + πœ”2π‘›πœƒ(𝑑) =

𝐹013π‘šπΏ

2, hence a factor of 𝐹0

13𝐿

2is needed to scale the solution.

Therefore the analytical solution is

π‘ˆ(𝑑) =3𝐹0/𝐿2

π‘€πœ”2𝑛�1 βˆ’ π‘’βˆ’πœπœ”π‘›π‘‘οΏ½cos(πœ”π‘‘π‘‘) +

πœπœ”π‘›πœ”π‘‘

sin(πœ”π‘‘π‘‘)οΏ½οΏ½β„Ž(𝑑)

βˆ’3𝐹0/𝐿2

π‘€πœ”2𝑛�1 βˆ’ π‘’βˆ’πœπœ”π‘›(π‘‘βˆ’2𝑇)οΏ½cos(πœ”π‘‘(𝑑 βˆ’ 𝑇)) +

πœπœ”π‘›πœ”π‘‘

sin(πœ”π‘‘(𝑑 βˆ’ 𝑇))οΏ½οΏ½β„Ž(𝑑 βˆ’ 𝑇)

To compare this solution with the numerical solution found in part(a), the two solutionsare plotted side-by-side for the case 𝑇 = 2.5𝑇𝑑

We see that solutions are in good approximate. Here is a plot of the difference. The erroris in the order of 10βˆ’7

Page 10: HW4 EMA545 MechanicalVibrations Spring2013

9

2.3 Part(c)The analytical solutions for 𝑇 = 2.5𝑇𝑑 and 𝑇 = 3.0𝑇𝑑 are

We see when the step load duration is 𝑇 = 2.5𝑇𝑑, the disk head will vibrate with largeramplitudes than when the step duration was 𝑇 = 3𝑇𝑑.

To understand the reason for this, analysis was done on the undamped version of thesolution for part 𝑏

From appendix B the response to undamped second order system to a unit step 𝑒(𝑑) is

π‘žπ‘ (𝑑) =1

π‘€πœ”2𝑛(1 βˆ’ cos(πœ”π‘›π‘‘))β„Ž(𝑑)

Therefore the solution for 0 < 𝑑 < 𝑇 is 3𝐹0/𝐿2

π‘€πœ”2𝑛(1 βˆ’ cos(πœ”π‘›π‘‘)). This means at 𝑑 = 𝑇 which is

Page 11: HW4 EMA545 MechanicalVibrations Spring2013

10

when the step load is removed,πœƒ(𝑇) = 3𝐹0/𝐿2

π‘€πœ”2𝑛(1 βˆ’ cos(πœ”π‘›π‘‡)) andπœƒβ€²(𝑇) = βˆ’

3𝐹0/𝐿2

π‘€πœ”2𝑛(πœ”π‘› sin(πœ”π‘›π‘‡)).

For 𝑑 > 𝑇, the load is not present any more and we have free vibration response but withthe above initial conditions obtained at the end of the 𝑇. The solution to free vibration ofan undamped system for ̃𝑑 = 𝑑 βˆ’ 𝑇 β‰₯ 0 is given by

πœƒοΏ½ ̃𝑑� =πœƒβ€²(𝑇)πœ”π‘›

sinπœ”π‘› ̃𝑑 + πœƒ(𝑇) cosπœ”π‘› ̃𝑑

=βˆ’3𝐹0/𝐿2

π‘€πœ”2𝑛(πœ”π‘› sin(πœ”π‘›π‘‡))

πœ”π‘›sinπœ”π‘› ̃𝑑 +

3𝐹0/𝐿2

π‘€πœ”2𝑛(1 βˆ’ cos(πœ”π‘›π‘‡)) cosπœ”π‘› ̃𝑑

= βˆ’3𝐹0/𝐿2

π‘€πœ”2𝑛

sin(πœ”π‘›π‘‡) sinπœ”π‘› ̃𝑑 + οΏ½3𝐹0/𝐿2

π‘€πœ”2π‘›βˆ’3𝐹0/𝐿2

π‘€πœ”2𝑛

cos(πœ”π‘›π‘‡)οΏ½ cosπœ”π‘› ̃𝑑

= βˆ’3𝐹0/𝐿2

π‘€πœ”2𝑛

sin(πœ”π‘›π‘‡) sinπœ”π‘› ̃𝑑 βˆ’3𝐹0/𝐿2

π‘€πœ”2𝑛

cos(πœ”π‘›π‘‡) cosπœ”π‘› ̃𝑑 +3𝐹0/𝐿2

π‘€πœ”2𝑛

cosπœ”π‘› ̃𝑑

= βˆ’3𝐹0/𝐿2

π‘€πœ”2𝑛�sin(πœ”π‘›π‘‡) sinπœ”π‘› ̃𝑑 + cos(πœ”π‘›π‘‡) cosπœ”π‘› ̃𝑑� +

3𝐹0/𝐿2

π‘€πœ”2𝑛

cosπœ”π‘› ̃𝑑 (5)

We have obtained a solution for the time after the step load was removed. We now inves-tigate the result observed. We see that when 𝑇 is close to an integer multiple of the periodof the system, where we call the period of the system οΏ½ΜƒοΏ½ to differentiate it from 𝑇, then

sinοΏ½πœ”π‘›π‘›οΏ½ΜƒοΏ½οΏ½ = sinοΏ½2πœ‹οΏ½ΜƒοΏ½π‘›οΏ½ΜƒοΏ½οΏ½ = sin(𝑛2πœ‹) = 0

AlsocosοΏ½πœ”π‘›π‘›οΏ½ΜƒοΏ½οΏ½ = cosοΏ½

2πœ‹οΏ½ΜƒοΏ½π‘›οΏ½ΜƒοΏ½οΏ½ = cos(𝑛2πœ‹) = 1

Hence the response given by equation 5 becomes

πœƒοΏ½ ̃𝑑� = βˆ’3𝐹0/𝐿2

π‘€πœ”2𝑛

cosπœ”π‘› ̃𝑑 +3𝐹0/𝐿2

π‘€πœ”2𝑛

cosπœ”π‘› ̃𝑑

= 0 (6)

But if 𝑇 occurs at multiple of halves of the period of the system (for example, 𝑇 =0.5οΏ½ΜƒοΏ½, 1.5οΏ½ΜƒοΏ½, 2.5οΏ½ΜƒοΏ½, etc...) then now

sinοΏ½πœ”π‘›οΏ½π‘›οΏ½ΜƒοΏ½2 οΏ½οΏ½

β†’ sinοΏ½2πœ‹οΏ½ΜƒοΏ½ οΏ½

𝑛�̃�2 οΏ½οΏ½

β†’ sin(π‘›πœ‹) β†’ 0

HowevercosοΏ½πœ”π‘›π‘›

οΏ½ΜƒοΏ½2 οΏ½

β†’ cosοΏ½2πœ‹οΏ½ΜƒοΏ½π‘›οΏ½ΜƒοΏ½2 οΏ½

β†’ cos(π‘›πœ‹) β†’ βˆ’1

Page 12: HW4 EMA545 MechanicalVibrations Spring2013

11

We notice that the sign is now negative. This means equation 5 becomes

πœƒοΏ½ ̃𝑑� = βˆ’3𝐹0/𝐿2

π‘€πœ”2𝑛

cosπœ”π‘› ̃𝑑 βˆ’3𝐹0/𝐿2

π‘€πœ”2𝑛

cosπœ”π‘› ̃𝑑

= βˆ’6𝐹0/𝐿2

π‘€πœ”2𝑛

cosπœ”π‘› ̃𝑑 (7)

ComparingEqs 6 and 7we see that when 𝑇 is an integer multiple of the period of the system ,then the response after 𝑇 is minimal (zero for the case on undamped)

While when 𝑇 occurs at multiple of halves of the period of the system ,the response islarge beyond the time 𝑇.

The above analysis was done for undamped system, but the same idea carries to theunderdamped case. This explains why the response dies out quickly when 𝑇 = 3𝑇𝑑 whileit was large when 𝑇 = 2.5𝑇𝑑

Page 13: HW4 EMA545 MechanicalVibrations Spring2013

12

3 Problem 3

First lets look at the free vibration response (zero input response, called 𝑒𝑧𝑖). The damping

ratio 𝜁 = π‘π‘π‘Ÿ= 𝑐

2βˆšπ‘˜π‘š= 660

2√11000Γ—1000= 9.9499 Γ— 10βˆ’2 β‰ˆ 0.1 and πœ”π‘› = οΏ½

π‘˜π‘š = οΏ½

100001000 hence

πœ”π‘› = 3.162 rad/sec, and πœ”π‘‘ = πœ”π‘›βˆš1 βˆ’ 𝜁2 = 3.1623√1 βˆ’ 0.12 . Hence πœ”π‘‘ = 3.146 rad/sec .

The damped period of the system is 𝑇𝑑 =2πœ‹πœ”π‘‘= 2πœ‹

3.146 = 1.997 seconds and the natural

period is 𝑇𝑛 =2πœ‹πœ”π‘›= 2πœ‹

3.162 = 1.987 seconds.

Hence the system is underdamped and the solution is

𝑒𝑧𝑖 = Re��̂�𝑒(π‘–πœ”π‘‘βˆ’πœπœ”π‘›)𝑑�

Where οΏ½Μ‚οΏ½ = π‘Ž + 𝑖𝑏 is the complex amplitude. At 𝑑 = 0 we have

π‘Ž = 𝑒𝑧𝑖(0) = βˆ’0.1

and 𝑒′𝑧𝑖(0) ≑ 𝑒′0 = Re((π‘–πœ”π‘‘ βˆ’ πœπœ”π‘›)(π‘Ž + 𝑖𝑏)) = βˆ’π‘πœ”π‘‘ βˆ’ π‘Žπœπœ”π‘› therefore 𝑏 = βˆ’π‘’β€²0βˆ’π‘Žπœπœ”π‘›πœ”π‘‘

. Since car

was dropped from rest, then we take 𝑒′0 = 0 which leads to 𝑏 = βˆ’ (βˆ’0.1)(0.1)3.1623.146 = 0.1

Hence, since π‘Ž = 𝑒′0(0) ≑ 𝑒0 and

𝑏 =βˆ’π‘’β€²0 βˆ’ π‘Žπœπœ”π‘›

πœ”π‘‘= 0.1

then

𝑒𝑧𝑖(𝑑) = ReοΏ½(π‘Ž βˆ’ 𝑖𝑏)𝑒(π‘–πœ”π‘‘βˆ’πœπœ”π‘›)𝑑�

= ReοΏ½π‘’βˆ’πœπœ”π‘›π‘‘οΏ½π‘’0 βˆ’ 𝑖�𝑒′0 + π‘Žπœπœ”π‘›

πœ”π‘‘οΏ½οΏ½π‘’π‘–πœ”π‘‘π‘‘οΏ½

= π‘’βˆ’πœπœ”π‘›π‘‘οΏ½π‘’0(0) cosπœ”π‘‘π‘‘ + �𝑒′0 + π‘Žπœπœ”π‘›

πœ”π‘‘οΏ½ sinπœ”π‘‘π‘‘οΏ½ (8)

Page 14: HW4 EMA545 MechanicalVibrations Spring2013

13

For the numerical values gives, we now can plot this solution

𝑒𝑧𝑖(𝑑) = π‘’βˆ’0.1(3.162)𝑑(βˆ’0.1 cos 3.146𝑑 + 0.1 sin 3.146𝑑)

The phase is given by tanβˆ’1οΏ½ π‘π‘ŽοΏ½ = tanβˆ’1οΏ½ 0.1βˆ’0.1

οΏ½ = 2.356 π‘Ÿπ‘Žπ‘‘ = 1350, In complex plane, π‘’β„Ž(𝑑) is

e n t

a2

b2

tan1 ba

d t

eidt

ent Γ‚

1350

ΞΈ

d t

Zero input (free vibration) solution vector at time t

uzi Re Γ‚eidnt

Γ‚e

n t

Γ‚ a2 b2

Now we add the zero initial conditions response, also called zero state response 𝑒𝑧𝑠 for

Page 15: HW4 EMA545 MechanicalVibrations Spring2013

14

an input which is an impulse using appendix B.

𝑒𝑧𝑠(𝑑) = π‘’βˆ’πœπœ”π‘›π‘‘οΏ½πΉ0π‘šπœ”π‘‘

sinπœ”π‘‘π‘‘οΏ½β„Ž(𝑑)

Hence 𝑒𝑧𝑠 for an impulse that occurs at time 𝑇 is

𝑒𝑧𝑠(𝑑) = π‘’βˆ’πœπœ”π‘›(π‘‘βˆ’π‘‡)�𝐹0π‘šπœ”π‘‘

sinπœ”π‘‘(𝑑 βˆ’ 𝑇)οΏ½β„Ž(𝑑 βˆ’ 𝑇) (9)

Hence the solution is found by combining Eq. 8 and Eq 9

𝑒(𝑑) = 𝑒𝑧𝑖 + 𝑒𝑧𝑠

= π‘’βˆ’πœπœ”π‘›π‘‘οΏ½π‘’0(0) cosπœ”π‘‘π‘‘ + �𝑒′0 + π‘Žπœπœ”π‘›

πœ”π‘‘οΏ½ sinπœ”π‘‘π‘‘οΏ½β„Ž(𝑑) + π‘’βˆ’πœπœ”π‘›(π‘‘βˆ’π‘‡)οΏ½

𝐹0π‘šπœ”π‘‘

sinπœ”π‘‘(𝑑 βˆ’ 𝑇)οΏ½β„Ž(𝑑 βˆ’ 𝑇)

We need now to solve for 𝑇 and 𝐹0 in order to meet the requirements that 𝑒(𝑑) shouldbecome zero between for 2 < 𝑑 < 5. To do this in the complex plane, we draw the zerostate response as a vector

𝑒𝑧𝑠 = π‘’βˆ’πœπœ”π‘›(π‘‘βˆ’π‘‡)�𝐹0π‘šπœ”π‘‘

sinπœ”π‘‘(𝑑 βˆ’ 𝑇)οΏ½β„Ž(𝑑 βˆ’ 𝑇)

= Re�𝐹0π‘’βˆ’πœπœ”π‘›(π‘‘βˆ’π‘‡)

π‘šπœ”π‘‘

1π‘–π‘’π‘–πœ”π‘‘(π‘‘βˆ’π‘‡)οΏ½β„Ž(𝑑 βˆ’ 𝑇)

= Re�𝐹0π‘’βˆ’πœπœ”π‘›(π‘‘βˆ’π‘‡)

π‘šπœ”π‘‘π‘’π‘–οΏ½πœ”π‘‘(π‘‘βˆ’π‘‡)βˆ’

πœ‹2 οΏ½οΏ½β„Ž(𝑑 βˆ’ 𝑇)

Hence 𝑒𝑧𝑠 vector has magnitude 𝐹0π‘’βˆ’πœπœ”π‘›(π‘‘βˆ’π‘‡)

π‘šπœ”π‘‘and phase πœ”π‘‘π‘‘ βˆ’ πœ”π‘‘π‘‡ βˆ’

πœ‹2 Now to solve the

problem of finding 𝑇 and 𝐹0: To make the response become π‘§π‘’π‘Ÿπ‘œ we need the magnitudeof 𝑒𝑧𝑠 to be equal but opposite in sign to the magnitude of 𝑒𝑧𝑖 so that the projection onthe x-axis cancel out (the projection on the x-axis of the vector is the real part which isthe solution). Therefore, for the projection of 𝑒𝑧𝑠 to be the same as the projection of 𝑒𝑧𝑖but of different sign, the following diagram shows all the possible 𝑇 values that allowsthis. We will pick the first 𝑇 value which is larger than 2 seconds to use.

Page 16: HW4 EMA545 MechanicalVibrations Spring2013

15

d tΓ‚ ent

This vector represents the response to the impulse for zero initial conditions shown here at one possible value for T

F0entT

md

Magnitude of this vector is

Magnitude of this vector is

Zero input (free vibration) solution vector at time 0

We want these 2 values to be the same for the total

response to be zero

d t

450

450

450

This angle isd T

2

From the above diagram, we need πœ”π‘‘π‘‡ +πœ‹2 = 2πœ‹ βˆ’ πœ‹

4 , hence 𝑇 =2πœ‹βˆ’πœ‹

4 βˆ’πœ‹4

πœ”π‘‘=

32πœ‹

πœ‹ = 1.5seconds. Hence this value of 𝑇 is not acceptable. We now look for the next possible 𝑇.

Page 17: HW4 EMA545 MechanicalVibrations Spring2013

16

d tΓ‚ ent

This vector represents the response to the impulse for zero initial conditions shown here at one possible value for T

F0entT

md

Magnitude of this vector is

Magnitude of this vector is

Zero input (free vibration) solution vector at time 0

We want these 2 values to be the same for the total

response to be zero

d t

450

450

450

This angle isd T

2

From the above diagram we see it will be πœ”π‘‘π‘‡ +πœ‹2 = 2πœ‹ + πœ‹

4 hence 𝑇 =2πœ‹+πœ‹

4 βˆ’πœ‹2

πœ‹ = 1.75seconds. Hence this is still too early to apply the impulse. We look at the next possiblecase. We see that now we must rotate the vector all the way it was in the first diagramabove to get the projection on the x-axis canceling the projection of the free vibrationvector. Hence now the relation to solve for is

πœ”π‘‘π‘‡ +πœ‹2= 4πœ‹ βˆ’

πœ‹4

Where in the above we added full 2πœ‹ to the first case we considered above. This gives

𝑇 =4πœ‹ βˆ’ πœ‹

4 βˆ’πœ‹2

πœ‹= 3.25 sec

.We have found 𝑇 which brings the system to halt after at least 2 seconds has elapsed.Now we find 𝐹0 This is done by equating the amplitudes of the vectors as follows

𝐹0π‘’βˆ’πœπœ”π‘›(π‘‘βˆ’π‘‡)

π‘šπœ”π‘‘= π‘’βˆ’πœπœ”π‘›π‘‘οΏ½οΏ½Μ‚οΏ½οΏ½

Page 18: HW4 EMA545 MechanicalVibrations Spring2013

17

Now for𝑑 = 𝑇 = 3.25 second, plug-in numerical values

𝐹01000(3.146)

= π‘’βˆ’(0.1)(3.162)(3.25)√0.12 + 0.12

𝐹03146.0

= 5.0607 Γ— 10βˆ’2

𝐹0 = 159.21

To verify, here is a plot of the response when the impulse hit with

𝐹0 = 159.21 N at 𝑑 = 3.25 seconds

Page 19: HW4 EMA545 MechanicalVibrations Spring2013

18

4 Problem 4

4.1 First partLet𝐴 be the area of the cross section and 𝜌 the mass density and 𝐿 the length, then actualmass is

π‘šπ‘Žπ‘π‘‘π‘’π‘Žπ‘™ = 𝐿𝐴𝜌= 50(18 Γ— 0.0254)(4 Γ— 0.3048)(7800)= 217393 kg

Hence we will useπ‘š =

2173933

= 72464 kg

The actual stiffness for a simply supported mean with loading at the center is 48𝐸𝐼𝐿3 where

𝐼 is the area moment of inertia. Hence

𝐼 =π‘€β„Ž3

12=(4 Γ— 0.3048)(18 Γ— 0.0254)3

12= 0.00971m4

Page 20: HW4 EMA545 MechanicalVibrations Spring2013

19

Therefore the stiffness of the beam is

π‘˜ =48𝐸𝐼𝐿3

=48οΏ½210 Γ— 109οΏ½(0.00971)

503= 783014 N/m

The natural frequency is

πœ”π‘› = οΏ½π‘˜π‘š=οΏ½78301472464

= 3.287rad/sec

𝑓𝑛 = 0.523 Hz

Therefore, assuming the loading is given by 𝐹0 cos(�̄�𝑑)where οΏ½Μ„οΏ½ is the forcing frequency.The dynamic response at any time is given by

οΏ½οΏ½Μ‚οΏ½οΏ½ =𝐹0/π‘˜

οΏ½οΏ½1 βˆ’ π‘Ÿ2οΏ½

2+ (2πœπ‘Ÿ)2

Where π‘Ÿ = οΏ½Μ„οΏ½πœ”π‘›.We start by drawing οΏ½οΏ½Μ‚οΏ½οΏ½ vs. οΏ½Μ„οΏ½ for the load of 1000 N by changing οΏ½Μ„οΏ½ from 0

to 8πœ‹, Hence for a single student the displacement vs. forcing frequency is

Page 21: HW4 EMA545 MechanicalVibrations Spring2013

20

Hence we see that for one student, the maximum displacement is around 6 cm when thestudent is jumping at resonance frequency.

To answer the question of how many students are needed to cause |𝑋| to be 50 cm thenthat will depend on what forcing frequency is used. Now we will find the minimumnumber of students needed.

The minimum number will be when they all jump at the resonance frequency which isfound from solving for οΏ½Μ„οΏ½π‘Ÿπ‘’π‘ π‘œπ‘›π‘Žπ‘›π‘π‘’ in

οΏ½Μ„οΏ½π‘Ÿπ‘’π‘ π‘œπ‘›π‘Žπ‘›π‘π‘’πœ”π‘›

= οΏ½1 βˆ’ 2𝜁2

οΏ½Μ„οΏ½π‘Ÿπ‘’π‘ π‘œπ‘›π‘Žπ‘›π‘π‘’ = πœ”π‘›οΏ½1 βˆ’ 2𝜁2

= 3.287οΏ½1 βˆ’ 2(0.01)2

= 3.28667 rad/sec

Therefore, at this forcing frequency, we now solve for 𝐹0 to determine the number ofstudents

οΏ½οΏ½Μ‚οΏ½οΏ½ =𝐹0/π‘˜

οΏ½οΏ½1 βˆ’ οΏ½

οΏ½Μ„οΏ½π‘Ÿπ‘’π‘ π‘œπ‘›π‘Žπ‘›π‘π‘’πœ”π‘›

οΏ½2οΏ½2

+ οΏ½2𝜁 οΏ½Μ„οΏ½π‘Ÿπ‘’π‘ π‘œπ‘›π‘Žπ‘›π‘π‘’πœ”π‘›

οΏ½2

𝐹0 = π‘˜οΏ½οΏ½Μ‚οΏ½οΏ½

οΏ½βƒ“βƒ“βŽ·

βŽ›βŽœβŽœβŽœβŽœβŽ1 βˆ’ οΏ½

οΏ½Μ„οΏ½π‘Ÿπ‘’π‘ π‘œπ‘›π‘Žπ‘›π‘π‘’πœ”π‘›

�2⎞⎟⎟⎟⎟⎠

2

+ οΏ½2πœοΏ½Μ„οΏ½π‘Ÿπ‘’π‘ π‘œπ‘›π‘Žπ‘›π‘π‘’πœ”π‘›

οΏ½2

= (783014)(0.5)

οΏ½βƒ“βƒ“βŽ·

βŽ›βŽœβŽœβŽœβŽœβŽ1 βˆ’ οΏ½

3.286673.287 οΏ½

2⎞⎟⎟⎟⎟⎠

2

+ οΏ½2(0.01)3.286673.287 οΏ½

2

= 7829.75 N

Therefore we need at least 8 students all jumping at 3.287 rad/sec to cause a displace-ment of at least 50 cm.

5 Extra part

To make the structure avoid resonance, we need to make sure the ratio πœ›πœ”π‘›

stays awayfrom one. This is the ratio of the forcing frequency to the natural frequency. One way is tomake πœ”π‘› much larger than any expected πœ› that can occur is typical use of this structure.

But to make πœ”π‘› = οΏ½π‘˜π‘š large, means either making π‘š small or making π‘˜ large. It is hard

to reduce the mass of the structure. Therefore, making the structure more stiff will be abetter solution.

Page 22: HW4 EMA545 MechanicalVibrations Spring2013

21

The bridge can be made more stiff in many ways, such as by adding additional trussstructure to it (assuming this will add minimal weight). For this example, suppose we

double the stiffness. Hence πœ”π‘› = οΏ½2π‘˜π‘š = οΏ½

2(783014)72464 = 4.649rad/sec.

Therefore now οΏ½Μ„οΏ½π‘Ÿπ‘’π‘ π‘œπ‘›π‘Žπ‘›π‘π‘’ = πœ”π‘›βˆš1 βˆ’ 2𝜁2 = 4.649οΏ½1 βˆ’ 2(0.01)2 = 4.65 rad/sec. Now the

same number of students (8) as before, jumping at same frequency of 3.28667 will causedisplacement of

οΏ½οΏ½Μ‚οΏ½οΏ½ =8𝐹0/π‘˜

οΏ½οΏ½1 βˆ’ οΏ½

οΏ½Μ„οΏ½πœ”π‘›οΏ½2οΏ½2

+ οΏ½2𝜁 οΏ½Μ„οΏ½πœ”π‘›οΏ½2

=8000/783014

οΏ½οΏ½1 βˆ’ οΏ½

3.286674.649

οΏ½2οΏ½2

+ οΏ½2(0.01)3.286674.649οΏ½2

= 0.02meter

Therefore by making the bridge twice as stiff, now the same 8 students at οΏ½Μ„οΏ½ = 3.287 willcause only 2 cm displacement instead of 50 cm.

6 Problem 5A radar display is to be tested by mounting it on spring-dashpot suspension and subject-ing it to harmonic force 𝑄 = 𝐹 cos(�̄�𝑑). The mounted mass is 8 kg and 𝜁 = 0.25. A freevibration shows that damped natural frequency 𝑓𝑑 = 5hz.It is observed that when theforce is applied at very low frequency the displacement amplitude is 2 mm. The test is tobe performed at 5.2 Hz. What will be the steady state response?

We are given are the following

π‘š = 8 kg𝜁 = 0.25

πœ”π‘‘ = πœ”π‘›οΏ½1 βˆ’ 𝜁2 = 2πœ‹(5) rad/sec𝐹0/π‘˜ = 0.002meterοΏ½Μ„οΏ½ = 2πœ‹(5.2) rad/sec

Hence πœ”π‘› =πœ”π‘‘

οΏ½1βˆ’πœ2= 2πœ‹(5)

√1βˆ’0.252= 32.446 rad/sec. The steady state response is given by

𝑒𝑠𝑠 = Re��̂�𝑒𝑖�̄�𝑑�

Page 23: HW4 EMA545 MechanicalVibrations Spring2013

22

where οΏ½Μ‚οΏ½ = οΏ½οΏ½Μ‚οΏ½οΏ½π‘’π‘–πœƒ. Hence

οΏ½οΏ½Μ‚οΏ½οΏ½ =𝐹0/π‘˜

οΏ½οΏ½1 βˆ’ οΏ½

οΏ½Μ„οΏ½πœ”π‘›οΏ½2οΏ½2

+ οΏ½2𝜁 οΏ½Μ„οΏ½πœ”π‘›οΏ½2

=0.002

οΏ½οΏ½1 βˆ’ οΏ½

2πœ‹(5.2)32.446

οΏ½2οΏ½2

+ οΏ½2(0.25)2πœ‹(5.2)32.446οΏ½2

= 0.00397

and

πœƒ = tanβˆ’1οΏ½2πœπ‘Ÿ1 βˆ’ π‘Ÿ2 οΏ½

= tanβˆ’1οΏ½2(0.25)0 οΏ½

tanβˆ’1(∞)

Since 0 ≀ πœƒ ≀ πœ‹ then the phase isπœƒ =

πœ‹2

Hence

𝑒 = Re��̂�𝑒𝑖�̄�𝑑�

= ReοΏ½0.00397π‘’π‘–πœ‹2 𝑒𝑖�̄�𝑑�

= 0.00397 cos��̄�𝑑 +πœ‹2οΏ½

= βˆ’0.00397 sin(�̄�𝑑)

Page 24: HW4 EMA545 MechanicalVibrations Spring2013

23

7 Problem 6A one degree of freedom system whose mass is 10 kg and whose natural frequency is 1khz is subjected to a harmonic excitation 1.2 sin �̄�𝑑 kN. The steady state amplitude whenοΏ½Μ„οΏ½ = 1 khz is observed to be 2.4mm. Determine the steady state response at οΏ½Μ„οΏ½ = 0.95 khzand οΏ½Μ„οΏ½ = 1.05 khz.

We are givenπ‘š = 10 kgπœ”π‘› = 2πœ‹(1000) rad/sec𝐹0 = 1200 N|𝑋| = 2.4 Γ— 10βˆ’3 meter when οΏ½Μ„οΏ½ = πœ”π‘›

Since πœ”2𝑛 =

π‘˜π‘š , hence π‘˜ = πœ”2

π‘›π‘š = (2πœ‹(1000))2(10), therefore

π‘˜ = 3.949 Γ— 108 N/m

Now when οΏ½Μ„οΏ½ = πœ”π‘› we have

οΏ½οΏ½Μ‚οΏ½οΏ½ =𝐹0/π‘˜

οΏ½οΏ½1 βˆ’ οΏ½

οΏ½Μ„οΏ½πœ”π‘›οΏ½2οΏ½2

+ οΏ½2𝜁 οΏ½Μ„οΏ½πœ”π‘›οΏ½2

2.4 Γ— 10βˆ’3 =1200/οΏ½3.949 Γ— 108οΏ½

�(2𝜁)2

=3.039 Γ— 10βˆ’6

2𝜁

Page 25: HW4 EMA545 MechanicalVibrations Spring2013

24

Hence

𝜁 = οΏ½3.039 Γ— 10βˆ’6

2 Γ— 2.4 Γ— 10βˆ’3 οΏ½

= 0.000633

7.1 Part (1)

when οΏ½Μ„οΏ½ = 2πœ‹(950) now π‘Ÿ = οΏ½Μ„οΏ½πœ”π‘›

< 1 hence dynamic magnification factor is positive.Therefore loading and displacement will be in phase with each others. (i.e. displacementis in same direction as force). Since the force is sin then the response will be sin withsame frequency but different phase and amplitude. Hence let

𝑒𝑠𝑠 = 𝑋 sin(�̄�𝑑 βˆ’ πœƒ)

Where

𝑋 =𝐹0/π‘˜

οΏ½οΏ½1 βˆ’ οΏ½

οΏ½Μ„οΏ½πœ”π‘›οΏ½2οΏ½2

+ οΏ½2𝜁 οΏ½Μ„οΏ½πœ”π‘›οΏ½2

=1200/οΏ½3.949 Γ— 108οΏ½

οΏ½οΏ½1 βˆ’ οΏ½

2πœ‹(950)2πœ‹(1000)

οΏ½2οΏ½2

+ οΏ½2(0.000633) 2πœ‹(950)2πœ‹(1000)οΏ½2

= 3.116 Γ— 10βˆ’5 meter

and

πœƒ = tanβˆ’1οΏ½2πœπ‘Ÿ1 βˆ’ π‘Ÿ2 οΏ½

= tanβˆ’1

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

2(0.000633) 2πœ‹(950)2πœ‹(1000)

1 βˆ’ οΏ½ 2πœ‹(950)2πœ‹(1000)

οΏ½2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= tanβˆ’1οΏ½1.234 Γ— 10βˆ’2οΏ½= 0.01235 radians= 0.71∘

Hence steady state response is

𝑒𝑠𝑠 = 3.116 Γ— 10βˆ’5 sin(�̄�𝑑 βˆ’ 0.71∘)

Hence we see that the displacement is lagging the load by 0.71∘. On complex plane itlooks as follows

Page 26: HW4 EMA545 MechanicalVibrations Spring2013

25

1.2sin t

t

t

Re

Im When r<1 the displacement moves with load, but lags behind it by

Xsin t

load

Disp.

7.2 Part (2)

When οΏ½Μ„οΏ½ = 2πœ‹(1050) now π‘Ÿ = οΏ½Μ„οΏ½πœ”π‘›

> 1 hence dynamic magnification factor is negative.Therefore loading and displacement will be out of phase with loading. (i.e .displacementis in opposite direction to force). Doing the same calculations are done as above

𝑒𝑠𝑠 = 𝑋 sin(�̄�𝑑 βˆ’ πœƒ)

Page 27: HW4 EMA545 MechanicalVibrations Spring2013

26

where 𝑋

𝑋 =𝐹0/π‘˜

οΏ½οΏ½1 βˆ’ οΏ½

οΏ½Μ„οΏ½πœ”π‘›οΏ½2οΏ½2

+ οΏ½2𝜁 οΏ½Μ„οΏ½πœ”π‘›οΏ½2

=1200/οΏ½3.949 Γ— 108οΏ½

οΏ½οΏ½1 βˆ’ οΏ½

2πœ‹(1050)2πœ‹(1000)

οΏ½2οΏ½2

+ οΏ½2(0.000633)2πœ‹(1050)2πœ‹(1000)οΏ½2

= 2.964 Γ— 10βˆ’5 meter

and

πœƒ = tanβˆ’1οΏ½2πœπ‘Ÿ1 βˆ’ π‘Ÿ2 οΏ½

= tanβˆ’1

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

2(0.000633)2πœ‹(1050)2πœ‹(1000)

1 βˆ’ οΏ½2πœ‹(1050)2πœ‹(1000)οΏ½2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= tanβˆ’1οΏ½0.0013293βˆ’0.1025 οΏ½

= 3.12862 radians= 179.257∘

Hence steady state response is

𝑒𝑠𝑠 = 2.964 Γ— 10βˆ’5 sin(�̄�𝑑 βˆ’ 179.257∘)

On complex plane it looks as follows

Page 28: HW4 EMA545 MechanicalVibrations Spring2013

27

1.2sin t

t

load

displacement

t

Re

Im

When r>1 the displacement moves with load, but lags behind it by

Xsin t

179.257

load

disp

Load increasing

Displacement increasing

We see that when r>1 then as load increases in one direction, the displacement is increasing but in opposite direction

Here is a plot by hand for the above 2 cases. First, the period that the loading is using𝑇 = 2πœ‹

πœ› = 1950 = 1.0526 Γ— 10

βˆ’3sec𝑇 = 1.053ms