hw4, math 322, fall 2016

28
HW4, Math 322, Fall 2016 Nasser M. Abbasi December 30, 2019 Contents 1 HW 4 2 1.1 Problem 2.5.24 ......................................... 2 1.2 Problem 3.2.2 (b,d) ....................................... 4 1.2.1 Part b .......................................... 4 1.2.2 Part d .......................................... 9 1.3 Problem 3.2.4 .......................................... 13 1.4 Problem 3.3.2 (d) ........................................ 13 1.5 Problem 3.3.3 (b) ........................................ 16 1.6 Problem 3.3.8 .......................................... 19 1.6.1 Part (a) ......................................... 19 1.6.2 Part (b) ......................................... 19 1.6.3 Part (c) ......................................... 19 1.7 Problem 3.4.3 .......................................... 21 1.7.1 Part (a) ......................................... 21 1.7.2 Part (b) ......................................... 23 1.8 Problem 3.4.9 .......................................... 25 1.9 Problem 3.4.11 ......................................... 26 1

Upload: others

Post on 23-Dec-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

HW4, Math 322, Fall 2016

Nasser M. Abbasi

December 30, 2019

Contents

1 HW 4 21.1 Problem 2.5.24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Problem 3.2.2 (b,d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Part b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2.2 Part d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Problem 3.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.4 Problem 3.3.2 (d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.5 Problem 3.3.3 (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161.6 Problem 3.3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6.1 Part (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191.6.2 Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191.6.3 Part (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7 Problem 3.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211.7.1 Part (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211.7.2 Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.8 Problem 3.4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251.9 Problem 3.4.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1

2

1 HW 4

1.1 Problem 2.5.24

88

(a) 8' (x, 0) = 0,

(b) u(x,0) = 0,

(c) u(x,0) = 0,

(d) (x, 0) = 0,

Chapter 2. Method of Separation of Variables

"' (x, H) = 0, u(0, y) = f (y)

u(x, H) = 0, u(0,y) = f(y)

u(x, H) = 0, (0,y) = f(y)

Ou (x, H) = 0, a: (0, y) = f (y)

Show that the solution [part (d)] exists only if fH f (y) dy = 0.

2.5.16. Consider Laplace's equation inside a rectangle 0 < x < L, 0 < y < H, withthe boundary conditions

8uau

8u&"

8x(0,y) = 0, 8x(L, y) = g(y),

8y(x, 0)= 0, 8y (x, H) = f (x)

(a) What is the solvability condition and its physical interpretation?(b) Show that u(x, y) = A(x2 - y2) is a solution if f (x) and g(y) are

constants [under the conditions of part (a)].(c) Under the conditions of part (a), solve the general case [nonconstant

f (x) and g(y)]. [Hints: Use part (b) and the fact that f (x) = f +[f (x) - f.,.], where f.,. = L fL f (x) dx.]

2.5.17. Show that the mass density p(x, t) satisfies k + V (pu) = 0 due to con-servation of mass.

2.5.18. If the mass density is constant, using the result of Exercise 2.5.17, showthat

2.5.19. Show that the streamlines are parallel to the fluid velocity.

2.5.20. Show that anytime there is a stream function, V x u = 0.

2.5.21. From u and v=- ,derive u,-=rue=-2.5.22. Show the drag force is zero for a uniform flow past a cylinder including

circulation.

2.5.23. Consider the velocity ug at the cylinder. Where do the maximum andminimum occur?

2.5.24. Consider .the velocity ue at the cylinder. If the circulation is negative, showthat the velocity will be larger above the cylinder than below.

2.5.25. A stagnation point is a place where u = 0. For what values of the circulationdoes a stagnation point exist on the cylinder?

2.5.26. For what values of 0 will u,. = 0 off the cylinder? For these 6, where (forwhat values of r) will ue = 0 also?

2.5.27. Show that r/ = a 81T B satisfies Laplace's equation. Show that the streamlinesare circles. Graph the streamlines.

Introduction. The stream velocity οΏ½οΏ½ in Cartesian coordinates is

οΏ½οΏ½ = 𝑒 𝚀 + 𝑣 πš₯

=πœ•Ξ¨πœ•π‘¦

𝚀 βˆ’πœ•Ξ¨πœ•π‘₯

πš₯ (1)

Where Ξ¨ is the stream function which satisfies Laplace PDE in 2D βˆ‡ 2Ξ¨ = 0. In Polar coordinatesthe above becomes

οΏ½οΏ½ = π‘’π‘ŸοΏ½οΏ½ + π‘’πœƒοΏ½οΏ½

=1π‘Ÿπœ•Ξ¨πœ•πœƒ

οΏ½οΏ½ βˆ’πœ•Ξ¨πœ•π‘Ÿ

οΏ½οΏ½ (2)

The solution to βˆ‡ 2Ξ¨ = 0 was found under the following conditions

1. When π‘Ÿ very large, or in other words, when too far away from the cylinder or the wing, theflow lines are horizontal only. This means at π‘Ÿ = ∞ the 𝑦 component of οΏ½οΏ½ in (1) is zero. This

meansπœ•Ξ¨οΏ½π‘₯,𝑦�

πœ•π‘₯ = 0. Therefore Ξ¨οΏ½π‘₯, 𝑦� = 𝑒0𝑦 where 𝑒0 is some constant. In polar coordinates thisimplies Ξ¨(π‘Ÿ, πœƒ) = 𝑒0π‘Ÿ sinπœƒ, since 𝑦 = π‘Ÿ sinπœƒ.

2. The second condition is that radial component of οΏ½οΏ½ is zero. In other words, 1π‘Ÿπœ•Ξ¨πœ•πœƒ = 0 when

π‘Ÿ = π‘Ž, where π‘Ž is the radius of the cylinder.

3. In addition to the above two main condition, there is a condition that Ξ¨ = 0 at π‘Ÿ = 0

Using the above three conditions, the solution to βˆ‡ 2Ξ¨ = 0 was derived in lecture Sept. 30, 2016, tobe

Ξ¨(π‘Ÿ, πœƒ) = 𝑐1 ln οΏ½ π‘Ÿπ‘ŽοΏ½ + 𝑒0 οΏ½π‘Ÿ βˆ’

π‘Ž2

π‘Ÿ οΏ½sinπœƒ

Using the above solution, the velocity οΏ½οΏ½ can now be found using the definition in (2) as follows

1π‘Ÿπœ•Ξ¨πœ•πœƒ

=1π‘Ÿπ‘’0 οΏ½π‘Ÿ βˆ’

π‘Ž2

π‘Ÿ οΏ½cosπœƒ

πœ•Ξ¨πœ•π‘Ÿ

=𝑐1π‘Ÿ+ 𝑒0 οΏ½1 +

π‘Ž2

π‘Ÿ2 οΏ½sinπœƒ

Hence, in polar coordinates

οΏ½οΏ½ = οΏ½ 1π‘Ÿπ‘’0 οΏ½π‘Ÿ βˆ’π‘Ž2

π‘ŸοΏ½ cosπœƒοΏ½ οΏ½οΏ½ βˆ’ οΏ½ 𝑐1π‘Ÿ + 𝑒0 οΏ½1 +

π‘Ž2

π‘Ÿ2οΏ½ sinπœƒοΏ½ οΏ½οΏ½ (3)

3

Now the question posed can be answered. The circulation is given by

Ξ“ = οΏ½2πœ‹

0π‘’πœƒπ‘Ÿπ‘‘πœƒ

But from (3) π‘’πœƒ = βˆ’ �𝑐1π‘Ÿ + 𝑒0 οΏ½1 +

π‘Ž2

π‘Ÿ2οΏ½ sinπœƒοΏ½, therefore the above becomes

Ξ“ = οΏ½2πœ‹

0βˆ’ �𝑐1π‘Ÿ+ 𝑒0 οΏ½1 +

π‘Ž2

π‘Ÿ2 οΏ½sinπœƒοΏ½ π‘Ÿπ‘‘πœƒ

At π‘Ÿ = π‘Ž the above simplifies to

Ξ“ = οΏ½2πœ‹

0βˆ’ �𝑐1π‘Ž+ 2𝑒0 sinπœƒοΏ½ π‘Žπ‘‘πœƒ

= οΏ½2πœ‹

0βˆ’π‘1 βˆ’ 2π‘Žπ‘’0 sinπœƒπ‘‘πœƒ

= βˆ’οΏ½2πœ‹

0𝑐1π‘‘πœƒ βˆ’ 2π‘Žπ‘’0οΏ½

2πœ‹

0sinπœƒπ‘‘πœƒ

But ∫2πœ‹

0sinπœƒπ‘‘πœƒ = 0, hence

Ξ“ = βˆ’π‘1οΏ½2πœ‹

0π‘‘πœƒ

= βˆ’2𝑐1πœ‹

Since Ξ“ < 0, then 𝑐1 > 0. Now that 𝑐1 is known to be positive, then the velocity is calculated at πœƒ = βˆ’πœ‹2

and then at πœƒ = +πœ‹2 to see which is larger. Since this is calculated at π‘Ÿ = π‘Ž, then the radial velocity is

zero and only π‘’πœƒ needs to be evaluated in (3).

At πœƒ = βˆ’πœ‹2

𝑒� βˆ’πœ‹2 οΏ½ = βˆ’ �𝑐1π‘Ÿ+ 𝑒0 οΏ½1 +

π‘Ž2

π‘Ÿ2 οΏ½sin οΏ½βˆ’πœ‹

2οΏ½οΏ½

= βˆ’ �𝑐1π‘Ÿβˆ’ 𝑒0 οΏ½1 +

π‘Ž2

π‘Ÿ2 οΏ½sin οΏ½πœ‹

2οΏ½οΏ½

= βˆ’ �𝑐1π‘Ÿβˆ’ 𝑒0 οΏ½1 +

π‘Ž2

π‘Ÿ2 οΏ½οΏ½

At π‘Ÿ = π‘Ž

𝑒� βˆ’πœ‹2 οΏ½ = βˆ’ �𝑐1π‘Žβˆ’ 2𝑒0οΏ½

= βˆ’π‘1π‘Ž+ 2𝑒0 (4)

At πœƒ = +πœ‹2

𝑒�+πœ‹2 οΏ½ = βˆ’ �𝑐1π‘Ÿ+ 𝑒0 οΏ½1 +

π‘Ž2

π‘Ÿ2 οΏ½sin οΏ½πœ‹

2οΏ½οΏ½

= βˆ’ �𝑐1π‘Ÿ+ 𝑒0 οΏ½1 +

π‘Ž2

π‘Ÿ2 οΏ½οΏ½

4

At π‘Ÿ = π‘Ž

𝑒� βˆ’πœ‹2 οΏ½ = βˆ’ �𝑐1π‘Ž+ 2𝑒0οΏ½

= βˆ’π‘1π‘Žβˆ’ 2𝑒0 (5)

Comparing (4),(5), and since 𝑐1 > 0, then the magnitude of π‘’πœƒ at πœ‹2 is larger than the magnitude of

π‘’πœƒ at βˆ’πœ‹2 . Which implies the stream flows faster above the cylinder than below it.

1.2 Problem 3.2.2 (b,d)

3.2. Convergence Theorem

L n7rx L n7rx n7rxan

Lf (x) cos L dx = L J cos L dx nir sin L

L L/2

= 1sinn7r - sin

nirnir 2

bn = 1 L f (x) sinnirx

L

1Ldx = sin n

xL nir LLJ

/2

nnCos - - cos n7r

n7r 2

95

(3.2.7)

(3.2.8)

We omit simplifications that arise by noting that sinn7r = 0, cosnir = (-1)", andso on.

EXERCISES 3.2

3.2.1. For the following functions, sketch the Fourier series off (x) (on the interval-L < x < L). Compare f (x) to its Fourier series:

(a) f(x) = 1 *(b) f(x) = x2

(c) f(x)=1+x *(d) f(x) = ex

(e) f (x) = { 2x x > 0 * (f) f (x) 1+x(g) f(x) x

0x < L/2x > L/2

x > O

3.2.2. For the following functions, sketch the Fourier series of f (x) (on the interval-L < x < L) and determine the Fourier coefficients:

*(a) f(x)=x (b) f(x) = e-x

*(c) f(x) = sin

L(d) f(x)

0 x < 0

l x x>0

(e) f(x) I jxj < L/20 jxI > L/2

(g) f(x) = I 1 x < 0

l 2 x>0

-1 nirxdx = - cos

* (f) f (x) = l 0

L

IL/2

L

L/2

x<0x>0

1.2.1 Part b

The following is sketch of periodic extension of π‘’βˆ’π‘₯ from π‘₯ = βˆ’πΏβ‹―πΏ (for 𝐿 = 1) for illustration. Thefunction will converge to π‘’βˆ’π‘₯ between π‘₯ = βˆ’πΏβ‹―πΏ and between π‘₯ = βˆ’3πΏβ‹―βˆ’ 𝐿 and between π‘₯ = 𝐿⋯3𝐿and so on. But at the jump discontinuities which occurs at π‘₯ = β‹― ,βˆ’3𝐿, βˆ’πΏ, 𝐿, 3𝐿,β‹― it will converge tothe average shown as small circles in the sketch.

oo o o

-3 -2 -1 1 2 3

0.5

1.0

1.5

2.0

2.5

3.0

Periodic extension of exp(-x) from -1...1

5

By definitions,

π‘Ž0 =1𝑇 οΏ½

𝑇/2

βˆ’π‘‡/2𝑓 (π‘₯) 𝑑π‘₯

π‘Žπ‘› =1𝑇/2 οΏ½

𝑇/2

βˆ’π‘‡/2𝑓 (π‘₯) cos �𝑛 οΏ½

2πœ‹π‘‡ οΏ½

π‘₯οΏ½ 𝑑π‘₯

𝑏𝑛 =1𝑇/2 οΏ½

𝑇/2

βˆ’π‘‡/2𝑓 (π‘₯) sin �𝑛 οΏ½

2πœ‹π‘‡ οΏ½

π‘₯οΏ½ 𝑑π‘₯

The period here is 𝑇 = 2𝐿, therefore the above becomes

π‘Ž0 =12𝐿 οΏ½

𝐿

βˆ’πΏπ‘“ (π‘₯) 𝑑π‘₯

π‘Žπ‘› =1𝐿 οΏ½

𝐿

βˆ’πΏπ‘“ (π‘₯) cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

𝑏𝑛 =1𝐿 οΏ½

𝐿

βˆ’πΏπ‘“ (π‘₯) sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

These are now evaluated for 𝑓 (π‘₯) = π‘’βˆ’π‘₯

π‘Ž0 =12𝐿 οΏ½

𝐿

βˆ’πΏπ‘’βˆ’π‘₯𝑑π‘₯ =

12𝐿 �

π‘’βˆ’π‘₯

βˆ’1 �𝐿

βˆ’πΏ=βˆ’12𝐿

(π‘’βˆ’π‘₯)πΏβˆ’πΏ =βˆ’12𝐿

οΏ½π‘’βˆ’πΏ βˆ’ 𝑒𝐿� =𝑒𝐿 βˆ’ π‘’βˆ’πΏ

2𝐿

Now π‘Žπ‘› is found

π‘Žπ‘› =1𝐿 οΏ½

𝐿

βˆ’πΏπ‘’βˆ’π‘₯ cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

This can be done using integration by parts. βˆ«π‘’π‘‘π‘£ = 𝑒𝑣 βˆ’ βˆ«π‘£π‘‘π‘’. Let

𝐼 = �𝐿

βˆ’πΏπ‘’βˆ’π‘₯ cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

and 𝑒 = cos οΏ½π‘›πœ‹πΏ π‘₯οΏ½ , 𝑑𝑣 = 𝑒

βˆ’π‘₯,β†’ 𝑑𝑒 = βˆ’π‘›πœ‹πΏ sin οΏ½π‘›πœ‹

𝐿 π‘₯οΏ½ , 𝑣 = βˆ’π‘’βˆ’π‘₯, therefore

𝐼 = [𝑒𝑣]πΏβˆ’πΏ βˆ’οΏ½πΏ

βˆ’πΏπ‘£π‘‘π‘’

= οΏ½βˆ’π‘’βˆ’π‘₯ cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½οΏ½

𝐿

βˆ’πΏβˆ’π‘›πœ‹πΏ οΏ½

𝐿

βˆ’πΏπ‘’βˆ’π‘₯ sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

= οΏ½βˆ’π‘’βˆ’πΏ cos οΏ½π‘›πœ‹πΏπΏοΏ½ + 𝑒𝐿 cos οΏ½π‘›πœ‹

𝐿(βˆ’πΏ)οΏ½οΏ½ βˆ’

π‘›πœ‹πΏ οΏ½

𝐿

βˆ’πΏπ‘’βˆ’π‘₯ sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

= οΏ½βˆ’π‘’βˆ’πΏ cos (π‘›πœ‹) + 𝑒𝐿 cos (π‘›πœ‹)οΏ½ βˆ’ π‘›πœ‹πΏ οΏ½

𝐿

βˆ’πΏπ‘’βˆ’π‘₯ sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

Applying integration by parts again to ∫ π‘’βˆ’π‘₯ sin οΏ½π‘›πœ‹πΏ π‘₯οΏ½ 𝑑π‘₯ where now 𝑒 = sin οΏ½π‘›πœ‹

𝐿 π‘₯οΏ½ , 𝑑𝑣 = π‘’βˆ’π‘₯ β†’ 𝑑𝑒 =

6

π‘›πœ‹πΏ cos οΏ½π‘›πœ‹

𝐿 π‘₯οΏ½ , 𝑣 = βˆ’π‘’βˆ’π‘₯, hence the above becomes

𝐼 = οΏ½βˆ’π‘’βˆ’πΏ cos (π‘›πœ‹) + 𝑒𝐿 cos (π‘›πœ‹)οΏ½ βˆ’ π‘›πœ‹πΏοΏ½π‘’π‘£ βˆ’οΏ½π‘£π‘‘π‘’οΏ½

= οΏ½βˆ’π‘’βˆ’πΏ cos (π‘›πœ‹) + 𝑒𝐿 cos (π‘›πœ‹)οΏ½ βˆ’ π‘›πœ‹πΏ

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

0

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½βˆ’π‘’βˆ’π‘₯ sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½οΏ½

𝐿

βˆ’πΏ+π‘›πœ‹πΏ οΏ½

𝐿

βˆ’πΏπ‘’βˆ’π‘₯ cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= οΏ½βˆ’π‘’βˆ’πΏ cos (π‘›πœ‹) + 𝑒𝐿 cos (π‘›πœ‹)οΏ½ βˆ’ π‘›πœ‹πΏ οΏ½

π‘›πœ‹πΏ οΏ½

𝐿

βˆ’πΏπ‘’βˆ’π‘₯ cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯οΏ½

= οΏ½βˆ’π‘’βˆ’πΏ cos (π‘›πœ‹) + 𝑒𝐿 cos (π‘›πœ‹)οΏ½ βˆ’ οΏ½π‘›πœ‹πΏοΏ½2οΏ½

𝐿

βˆ’πΏπ‘’βˆ’π‘₯ cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

But ∫𝐿

βˆ’πΏπ‘’βˆ’π‘₯ cos οΏ½π‘›πœ‹

𝐿 π‘₯οΏ½ 𝑑π‘₯ = 𝐼 and the above becomes

𝐼 = βˆ’π‘’βˆ’πΏ cos (π‘›πœ‹) + 𝑒𝐿 cos (π‘›πœ‹) βˆ’ οΏ½π‘›πœ‹πΏοΏ½2𝐼

Simplifying and solving for 𝐼

𝐼 + οΏ½π‘›πœ‹πΏοΏ½2𝐼 = cos (π‘›πœ‹) �𝑒𝐿 βˆ’ π‘’βˆ’πΏοΏ½

𝐼 οΏ½1 + οΏ½π‘›πœ‹πΏοΏ½2οΏ½ = cos (π‘›πœ‹) �𝑒𝐿 βˆ’ π‘’βˆ’πΏοΏ½

𝐼 �𝐿2 + 𝑛2πœ‹2

𝐿2 οΏ½ = cos (π‘›πœ‹) �𝑒𝐿 βˆ’ π‘’βˆ’πΏοΏ½

𝐼 = �𝐿2

𝐿2 + 𝑛2πœ‹2 οΏ½ cos (π‘›πœ‹) �𝑒𝐿 βˆ’ π‘’βˆ’πΏοΏ½

Hence π‘Žπ‘› becomes

π‘Žπ‘› =1𝐿 οΏ½

𝐿2

𝐿2 + 𝑛2πœ‹2 οΏ½ cos (π‘›πœ‹) �𝑒𝐿 βˆ’ π‘’βˆ’πΏοΏ½

But cos (π‘›πœ‹) = βˆ’1𝑛 hence

π‘Žπ‘› = (βˆ’1)𝑛 οΏ½

𝐿𝑛2πœ‹2 + 𝐿2 οΏ½

�𝑒𝐿 βˆ’ π‘’βˆ’πΏοΏ½

Similarly for 𝑏𝑛

𝑏𝑛 =1𝐿 οΏ½

𝐿

βˆ’πΏπ‘’βˆ’π‘₯ sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

This can be done using integration by parts. βˆ«π‘’π‘‘π‘£ = 𝑒𝑣 βˆ’ βˆ«π‘£π‘‘π‘’. Let

𝐼 = �𝐿

βˆ’πΏπ‘’βˆ’π‘₯ sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

7

and 𝑒 = sin οΏ½π‘›πœ‹πΏ π‘₯οΏ½ , 𝑑𝑣 = 𝑒

βˆ’π‘₯,β†’ 𝑑𝑒 = π‘›πœ‹πΏ cos οΏ½π‘›πœ‹

𝐿 π‘₯οΏ½ , 𝑣 = βˆ’π‘’βˆ’π‘₯, therefore

𝐼 = [𝑒𝑣]πΏβˆ’πΏ βˆ’οΏ½πΏ

βˆ’πΏπ‘£π‘‘π‘’

=

0

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½βˆ’π‘’βˆ’π‘₯ sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½οΏ½

𝐿

βˆ’πΏ+π‘›πœ‹πΏ οΏ½

𝐿

βˆ’πΏπ‘’βˆ’π‘₯ cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

=π‘›πœ‹πΏ οΏ½

𝐿

βˆ’πΏπ‘’βˆ’π‘₯ cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

Applying integration by parts again to ∫ π‘’βˆ’π‘₯ cos οΏ½π‘›πœ‹πΏ π‘₯οΏ½ 𝑑π‘₯ where now 𝑒 = cos οΏ½π‘›πœ‹

𝐿 π‘₯οΏ½ , 𝑑𝑣 = π‘’βˆ’π‘₯ β†’ 𝑑𝑒 =

βˆ’π‘›πœ‹πΏ sin οΏ½π‘›πœ‹

𝐿 π‘₯οΏ½ , 𝑣 = βˆ’π‘’βˆ’π‘₯, hence the above becomes

𝐼 =π‘›πœ‹πΏοΏ½π‘’π‘£ βˆ’οΏ½π‘£π‘‘π‘’οΏ½

=π‘›πœ‹πΏ οΏ½οΏ½βˆ’π‘’βˆ’π‘₯ cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½οΏ½

𝐿

βˆ’πΏβˆ’π‘›πœ‹πΏ οΏ½

𝐿

βˆ’πΏπ‘’βˆ’π‘₯ sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯οΏ½

=π‘›πœ‹πΏ οΏ½βˆ’π‘’βˆ’πΏ cos οΏ½π‘›πœ‹

𝐿𝐿� + 𝑒𝐿 cos οΏ½π‘›πœ‹

𝐿𝐿� βˆ’

π‘›πœ‹πΏ οΏ½

𝐿

βˆ’πΏπ‘’βˆ’π‘₯ sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯οΏ½

=π‘›πœ‹πΏ οΏ½cos (π‘›πœ‹) �𝑒𝐿 βˆ’ π‘’βˆ’πΏοΏ½ βˆ’ π‘›πœ‹

𝐿 �𝐿

βˆ’πΏπ‘’βˆ’π‘₯ sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯οΏ½

But ∫𝐿

βˆ’πΏπ‘’βˆ’π‘₯ cos οΏ½π‘›πœ‹

𝐿 π‘₯οΏ½ 𝑑π‘₯ = 𝐼 and the above becomes

𝐼 =π‘›πœ‹πΏοΏ½cos (π‘›πœ‹) �𝑒𝐿 βˆ’ π‘’βˆ’πΏοΏ½ βˆ’ π‘›πœ‹

𝐿𝐼�

Simplifying and solving for 𝐼

𝐼 =π‘›πœ‹πΏ

cos (π‘›πœ‹) �𝑒𝐿 βˆ’ π‘’βˆ’πΏοΏ½ βˆ’ οΏ½π‘›πœ‹πΏοΏ½2𝐼

𝐼 + οΏ½π‘›πœ‹πΏοΏ½2𝐼 =

π‘›πœ‹πΏ

cos (π‘›πœ‹) �𝑒𝐿 βˆ’ π‘’βˆ’πΏοΏ½

𝐼 οΏ½1 + οΏ½π‘›πœ‹πΏοΏ½2οΏ½ =

π‘›πœ‹πΏ

cos (π‘›πœ‹) �𝑒𝐿 βˆ’ π‘’βˆ’πΏοΏ½

𝐼 �𝐿2 + 𝑛2πœ‹2

𝐿2 οΏ½ =π‘›πœ‹πΏ

cos (π‘›πœ‹) �𝑒𝐿 βˆ’ π‘’βˆ’πΏοΏ½

𝐼 = �𝐿2

𝐿2 + 𝑛2πœ‹2 οΏ½π‘›πœ‹πΏ

cos (π‘›πœ‹) �𝑒𝐿 βˆ’ π‘’βˆ’πΏοΏ½

Hence 𝑏𝑛 becomes

𝑏𝑛 =1𝐿 οΏ½

𝐿2

𝐿2 + 𝑛2πœ‹2 οΏ½π‘›πœ‹πΏ

cos (π‘›πœ‹) �𝑒𝐿 βˆ’ π‘’βˆ’πΏοΏ½

= οΏ½π‘›πœ‹

𝐿2 + 𝑛2πœ‹2 οΏ½ cos (π‘›πœ‹) �𝑒𝐿 βˆ’ π‘’βˆ’πΏοΏ½

But cos (π‘›πœ‹) = βˆ’1𝑛 hence

𝑏𝑛 = (βˆ’1)𝑛 οΏ½

π‘›πœ‹πΏ2 + 𝑛2πœ‹2 οΏ½ �𝑒

𝐿 βˆ’ π‘’βˆ’πΏοΏ½

8

Summary

π‘Ž0 =𝑒𝐿 βˆ’ π‘’βˆ’πΏ

2𝐿

π‘Žπ‘› = (βˆ’1)𝑛 οΏ½

𝐿𝑛2πœ‹2 + 𝐿2 οΏ½

�𝑒𝐿 βˆ’ π‘’βˆ’πΏοΏ½

𝑏𝑛 = (βˆ’1)𝑛 οΏ½

π‘›πœ‹πΏ2 + 𝑛2πœ‹2 οΏ½ �𝑒

𝐿 βˆ’ π‘’βˆ’πΏοΏ½

𝑓 (π‘₯) β‰ˆ π‘Ž0 +βˆžοΏ½π‘›=1

π‘Žπ‘› cos �𝑛 οΏ½2πœ‹π‘‡ οΏ½

π‘₯οΏ½ + 𝑏𝑛 sin �𝑛 οΏ½2πœ‹π‘‡ οΏ½

π‘₯οΏ½

β‰ˆ π‘Ž0 +βˆžοΏ½π‘›=1

π‘Žπ‘› cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½ + 𝑏𝑛 sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½

The following shows the approximation 𝑓 (π‘₯) for increasing number of terms. Notice the Gibbsphenomena at the jump discontinuity.

-3 -2 -1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

x

f(x)

Fourier series approximation, number of terms 3Showing 3 periods extenstion of -L..L, with L=1

-3 -2 -1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

x

f(x)

Fourier series approximation, number of terms 10Showing 3 periods extenstion of -L..L, with L=1

9

-3 -2 -1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

f(x)

Fourier series approximation, number of terms 50Showing 3 periods extenstion of -L..L, with L=1

1.2.2 Part d

The following is sketch of periodic extension of 𝑓 (π‘₯) from π‘₯ = βˆ’πΏβ‹―πΏ (for 𝐿 = 1) for illustration. Thefunction will converge to 𝑓 (π‘₯) between π‘₯ = βˆ’πΏβ‹―πΏ and between π‘₯ = βˆ’3πΏβ‹―βˆ’πΏ and between π‘₯ = 𝐿⋯3𝐿and so on. But at the jump discontinuities which occurs at π‘₯ = β‹― ,βˆ’3𝐿, βˆ’πΏ, 𝐿, 3𝐿,β‹― it will converge tothe average 1

2 shown as small circles in the sketch.

oo o o

-3 -2 -1 1 2 3

0.20.40.60.81.0

Showing 3 periods extenstion of f(x) between -L..L, with L=1

By definitions,

π‘Ž0 =1𝑇 οΏ½

𝑇/2

βˆ’π‘‡/2𝑓 (π‘₯) 𝑑π‘₯

π‘Žπ‘› =1𝑇/2 οΏ½

𝑇/2

βˆ’π‘‡/2𝑓 (π‘₯) cos �𝑛 οΏ½

2πœ‹π‘‡ οΏ½

π‘₯οΏ½ 𝑑π‘₯

𝑏𝑛 =1𝑇/2 οΏ½

𝑇/2

βˆ’π‘‡/2𝑓 (π‘₯) sin �𝑛 οΏ½

2πœ‹π‘‡ οΏ½

π‘₯οΏ½ 𝑑π‘₯

The period here is 𝑇 = 2𝐿, therefore the above becomes

π‘Ž0 =12𝐿 οΏ½

𝐿

βˆ’πΏπ‘“ (π‘₯) 𝑑π‘₯

π‘Žπ‘› =1𝐿 οΏ½

𝐿

βˆ’πΏπ‘“ (π‘₯) cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

𝑏𝑛 =1𝐿 οΏ½

𝐿

βˆ’πΏπ‘“ (π‘₯) sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

10

These are now evaluated for given 𝑓 (π‘₯)

π‘Ž0 =12𝐿 οΏ½

𝐿

βˆ’πΏπ‘“ (π‘₯) 𝑑π‘₯

=12𝐿 ��

0

βˆ’πΏπ‘“ (π‘₯) 𝑑π‘₯ +οΏ½

𝐿

0𝑓 (π‘₯) 𝑑π‘₯οΏ½

=12𝐿 �

0 +�𝐿

0π‘₯𝑑π‘₯οΏ½

=12𝐿 �

π‘₯2

2 �𝐿

0

=𝐿4

Now π‘Žπ‘› is found

π‘Žπ‘› =1𝐿 οΏ½

𝐿

βˆ’πΏπ‘“ (π‘₯) cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

=1𝐿 ��

0

βˆ’πΏπ‘“ (π‘₯) cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ +οΏ½

𝐿

0𝑓 (π‘₯) cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯οΏ½

=1𝐿 �

𝐿

0π‘₯ cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

Integration by parts. Let 𝑒 = π‘₯, 𝑑𝑒 = 1, 𝑑𝑣 = cos οΏ½π‘›πœ‹πΏ π‘₯οΏ½ , 𝑣 =

sinοΏ½π‘›πœ‹πΏ π‘₯οΏ½

π‘›πœ‹πΏ

, hence the above becomes

π‘Žπ‘› =1𝐿

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

0

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½π‘›πœ‹πΏπ‘₯ sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½οΏ½

𝐿

0βˆ’οΏ½

𝐿

0

sin οΏ½π‘›πœ‹πΏ π‘₯οΏ½

π‘›πœ‹πΏ

𝑑π‘₯

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=1𝐿 οΏ½βˆ’πΏπ‘›πœ‹ οΏ½

𝐿

0sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯οΏ½

=1𝐿

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽβˆ’

πΏπ‘›πœ‹

βŽ›βŽœβŽœβŽœβŽœβŽœβŽβˆ’ cos οΏ½π‘›πœ‹

𝐿 π‘₯οΏ½

π‘›πœ‹πΏ

⎞⎟⎟⎟⎟⎟⎠

𝐿

0

⎞⎟⎟⎟⎟⎟⎟⎠

=1𝐿

βŽ›βŽœβŽœβŽœβŽœβŽοΏ½πΏπ‘›πœ‹οΏ½

2

cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½

𝐿

0

⎞⎟⎟⎟⎟⎠

=𝐿

𝑛2πœ‹2 cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½

𝐿

0

=𝐿

𝑛2πœ‹2 οΏ½cos οΏ½π‘›πœ‹πΏπΏοΏ½ βˆ’ 1οΏ½

=𝐿

𝑛2πœ‹2 [βˆ’1𝑛 βˆ’ 1]

11

Now 𝑏𝑛 is found

𝑏𝑛 =1𝐿 οΏ½

𝐿

βˆ’πΏπ‘“ (π‘₯) sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

=1𝐿 ��

0

βˆ’πΏπ‘“ (π‘₯) sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ +οΏ½

𝐿

0𝑓 (π‘₯) sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯οΏ½

=1𝐿 �

𝐿

0π‘₯ sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

Integration by parts. Let 𝑒 = π‘₯, 𝑑𝑒 = 1, 𝑑𝑣 = sin οΏ½π‘›πœ‹πΏ π‘₯οΏ½ , 𝑣 =

βˆ’ cosοΏ½π‘›πœ‹πΏ π‘₯οΏ½

π‘›πœ‹πΏ

, hence the above becomes

𝑏𝑛 =1𝐿

βŽ›βŽœβŽœβŽœβŽœβŽœβŽοΏ½βˆ’

πΏπ‘›πœ‹π‘₯ cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½οΏ½

𝐿

0+οΏ½

𝐿

0

cos οΏ½π‘›πœ‹πΏ π‘₯οΏ½

π‘›πœ‹πΏ

𝑑π‘₯

⎞⎟⎟⎟⎟⎟⎠

=1𝐿 οΏ½βˆ’πΏπ‘›πœ‹

�𝐿 cos οΏ½π‘›πœ‹πΏπΏοΏ½ βˆ’ 0οΏ½ +

πΏπ‘›πœ‹ οΏ½

𝐿

0cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯οΏ½

=1𝐿

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

βˆ’πΏ2

π‘›πœ‹(βˆ’1)𝑛 +

πΏπ‘›πœ‹

0

�����������������⎑⎒⎒⎒⎒⎒⎣sin οΏ½π‘›πœ‹

𝐿 π‘₯οΏ½

π‘›πœ‹πΏ

⎀βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦

𝐿

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=πΏπ‘›πœ‹

οΏ½βˆ’ (βˆ’1)𝑛�

= (βˆ’1)𝑛+1πΏπ‘›πœ‹

Summary

π‘Ž0 =𝐿4

π‘Žπ‘› =𝐿

𝑛2πœ‹2 [βˆ’1𝑛 βˆ’ 1]

𝑏𝑛 = (βˆ’1)𝑛+1 𝐿

π‘›πœ‹

𝑓 (π‘₯) β‰ˆ π‘Ž0 +βˆžοΏ½π‘›=1

π‘Žπ‘› cos �𝑛 οΏ½2πœ‹π‘‡ οΏ½

π‘₯οΏ½ + 𝑏𝑛 sin �𝑛 οΏ½2πœ‹π‘‡ οΏ½

π‘₯οΏ½

β‰ˆ π‘Ž0 +βˆžοΏ½π‘›=1

π‘Žπ‘› cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½ + 𝑏𝑛 sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½

The following shows the approximation 𝑓 (π‘₯) for increasing number of terms. Notice the Gibbsphenomena at the jump discontinuity.

12

-3 -2 -1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

x

f(x)

Fourier series approximation, number of terms 3Showing 3 periods extenstion of -L..L, with L=1

-3 -2 -1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

x

f(x)

Fourier series approximation, number of terms 10Showing 3 periods extenstion of -L..L, with L=1

-3 -2 -1 0 1 2 3-0.2

0.0

0.2

0.4

0.6

0.8

1.0

x

f(x)

Fourier series approximation, number of terms 50Showing 3 periods extenstion of -L..L, with L=1

13

1.3 Problem 3.2.4

96 Chapter 3. Fourier Series

3.2.3. Show that the Fourier series operation is linear: that is, show that theFourier series of c1 f (x) + c2g(x) is the sum of cl times the Fourier series off (x) and c2 times the Fourier series of g(x).

3.2.4. Suppose that f (x) is piecewise smooth. What value does the Fourier seriesof f (x) converge to at the endpoint x = -L? at x = L?

3.3 Fourier Cosine and Sine SeriesIn this section we show that the series of sines only (and the series of cosines only)are special cases of a Fourier series.

3.3.1 Fourier Sine SeriesOdd functions. An odd function is a function with the property f (-x)- f (x). The sketch of an odd function for x < 0 will be minus the mirror image off (x) for x > 0, as illustrated in Fig. 3.3.1. Examples of odd functions are f (x) = x3(in fact, any odd power) and f (x) = sin 4x. The integral of an odd function overa symmetric interval is zero (any contribution from x > 0 will be canceled by acontribution from x < 0).

Figure 3.3.1 An odd function.

Fourier series of odd functions. Let us calculate the Fourier coeffi-cients of an odd function:

ao1 fL

1 J_Lf (x) dx = 0

L

an = L ff(x)cosdx=0.L

Both are zero because the integrand, f (x) cos nirx/L, is odd (being the product ofan even function cos n7rx/L and an odd function f (x)). Since an = 0, all the cosinefunctions (which are even) will not appear in the Fourier series of an odd function.The Fourier series of an odd function is an infinite series of odd functions (sines):

00

f (x) - bn sinn1x,

(3.3.1)n=1

It will converge to the average value of the function at the end points after making periodic extensionsof the function. Specifically, at π‘₯ = βˆ’πΏ the Fourier series will converge to

12�𝑓 (βˆ’πΏ) + 𝑓 (𝐿)οΏ½

And at π‘₯ = 𝐿 it will converge to

12�𝑓 (𝐿) + 𝑓 (βˆ’πΏ)οΏ½

Notice that if 𝑓 (𝐿) has same value as 𝑓 (βˆ’πΏ), then there will not be a jump discontinuity when periodicextension are made, and the above formula simply gives the value of the function at either end, sinceit is the same value.

1.4 Problem 3.3.2 (d)

114 Chapter 3. Fourier Series

(a)

(c)

f(x) = 1

f(x) _ {1 + x x > 0

(e) f(x) e-x x > 0

(b) f(x)=1+x

*(d) f(x) = ex

3.3.2. For the following functions, sketch the Fourier sine series of f (x) and deter-mine its Fourier coefficients.

(a) [Verify formula (3.3.13).]

(c) f(x)0

xx < L/2

x > L/2

1 x < L/6

(b) f (x) = 3 L/6 < x < L/20 x > L/2

* (d) f (x) 1 x < L/20 x > L/2

3.3.3. For the following functions, sketch the Fourier sine series of f (x). Also,roughly sketch the sum of a finite number of nonzero terms (at least thefirst two) of the Fourier sine series:

(a) f (x) = cos irx/L [Use formula (3.3.13).]

(b) f(x) _ { 1 x < L/20 x > L/2

(c) f (x) = x [Use formula (3.3.12).]

3.3.4. Sketch the Fourier cosine series of f (x) = sin irx/L. Briefly discuss.

3.3.5. For the following functions, sketch the Fourier cosine series of f (x) anddetermine its Fourier coefficients:

1 x < L/6(a) f (x) = x2 (b) f (x) = 3 L/6 < x < L/2 (c) f (x) =

0 x > L/2 fx x > L/2

3.3.6. For the following functions, sketch the Fourier cosine series of f (x). Also,roughly sketch the sum of a finite number of nonzero terms (at least thefirst two) of the Fourier cosine series:

(a) f (x) = x [Use formulas (3.3.22) and (3.3.23).]

(b) f (x) = 0 x<L/21 x > L12 [Use carefully formulas (3.2.6) and (3.2.7).]

_ 0 x < L/2(c) f (x)1 x > L/2 [Hint: Add the functions in parts (b) and (c).]

3.3.7. Show that ex is the sum of an even and an odd function.

𝑓 (π‘₯) =

⎧βŽͺβŽͺ⎨βŽͺβŽͺ⎩1 π‘₯ < 𝐿

20 π‘₯ > 𝐿

2

The first step is to sketch 𝑓 (π‘₯) over 0⋯𝐿. This is the result for 𝐿 = 1 as an example.

14

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

Original f(x) function defined for 0..L

The second step is to make an odd extension of 𝑓 (π‘₯) over βˆ’πΏβ‹―πΏ. This is the result.

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

odd extension of f(x) defined for -L..L

The third step is to extend the above as periodic function with period 2𝐿 (as normally would bedone) and mark the average value at the jump discontinuities. This is the result

o

o o

o

o o

o

o

o

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Showing 3 periods extenstion of f(x) between -L..L, with L=1

Now the Fourier sin series is found for the above function. Since the function 𝑓 (π‘₯) is odd, then only𝑏𝑛 will exist

𝑓 (π‘₯) β‰ˆβˆžοΏ½π‘›=1

𝑏𝑛 sin �𝑛 οΏ½2πœ‹2𝐿 οΏ½

π‘₯οΏ½

β‰ˆβˆžοΏ½π‘›=1

𝑏𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½

Where

𝑏𝑛 =1𝐿 οΏ½

𝐿

βˆ’πΏπ‘“ (π‘₯) sin �𝑛 οΏ½

2πœ‹2𝐿 οΏ½

π‘₯οΏ½ 𝑑π‘₯ =1𝐿 οΏ½

𝐿

βˆ’πΏπ‘“ (π‘₯) sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

15

Since 𝑓 (π‘₯) sin οΏ½π‘›πœ‹πΏ π‘₯οΏ½ is even, then the above becomes

𝑏𝑛 =2𝐿 οΏ½

𝐿

0𝑓 (π‘₯) sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

=2𝐿 ��

𝐿/2

01 Γ— sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ +οΏ½

𝐿/2

00 Γ— sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯οΏ½

=2𝐿 �

𝐿/2

0sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

=2𝐿

βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ’βŽ£βˆ’

cos οΏ½π‘›πœ‹πΏ π‘₯οΏ½

π‘›πœ‹πΏ

⎀βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦

𝐿/2

0

=βˆ’2π‘›πœ‹ οΏ½

cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½οΏ½

𝐿/2

0

=βˆ’2π‘›πœ‹ οΏ½

cos οΏ½π‘›πœ‹πΏπΏ2οΏ½βˆ’ 1οΏ½

=βˆ’2π‘›πœ‹ οΏ½

cos οΏ½π‘›πœ‹2οΏ½ βˆ’ 1οΏ½

=2π‘›πœ‹ οΏ½

1 βˆ’ cos οΏ½π‘›πœ‹2οΏ½οΏ½

Therefore

𝑓 (π‘₯) β‰ˆβˆžοΏ½π‘›=1

2π‘›πœ‹

οΏ½1 βˆ’ cos οΏ½π‘›πœ‹2οΏ½οΏ½ sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½

The following shows the approximation 𝑓 (π‘₯) for increasing number of terms. Notice the Gibbsphenomena at the jump discontinuity.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

f(x)

Fourier series approximation, number of terms 3Showing 3 periods extenstion of -L..L, with L=1

16

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

f(x)

Fourier series approximation, number of terms 10Showing 3 periods extenstion of -L..L, with L=1

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

f(x)

Fourier series approximation, number of terms 50Showing 3 periods extenstion of -L..L, with L=1

1.5 Problem 3.3.3 (b)

114 Chapter 3. Fourier Series

(a)

(c)

f(x) = 1

f(x) _ {1 + x x > 0

(e) f(x) e-x x > 0

(b) f(x)=1+x

*(d) f(x) = ex

3.3.2. For the following functions, sketch the Fourier sine series of f (x) and deter-mine its Fourier coefficients.

(a) [Verify formula (3.3.13).]

(c) f(x)0

xx < L/2

x > L/2

1 x < L/6

(b) f (x) = 3 L/6 < x < L/20 x > L/2

* (d) f (x) 1 x < L/20 x > L/2

3.3.3. For the following functions, sketch the Fourier sine series of f (x). Also,roughly sketch the sum of a finite number of nonzero terms (at least thefirst two) of the Fourier sine series:

(a) f (x) = cos irx/L [Use formula (3.3.13).]

(b) f(x) _ { 1 x < L/20 x > L/2

(c) f (x) = x [Use formula (3.3.12).]

3.3.4. Sketch the Fourier cosine series of f (x) = sin irx/L. Briefly discuss.

3.3.5. For the following functions, sketch the Fourier cosine series of f (x) anddetermine its Fourier coefficients:

1 x < L/6(a) f (x) = x2 (b) f (x) = 3 L/6 < x < L/2 (c) f (x) =

0 x > L/2 fx x > L/2

3.3.6. For the following functions, sketch the Fourier cosine series of f (x). Also,roughly sketch the sum of a finite number of nonzero terms (at least thefirst two) of the Fourier cosine series:

(a) f (x) = x [Use formulas (3.3.22) and (3.3.23).]

(b) f (x) = 0 x<L/21 x > L12 [Use carefully formulas (3.2.6) and (3.2.7).]

_ 0 x < L/2(c) f (x)1 x > L/2 [Hint: Add the functions in parts (b) and (c).]

3.3.7. Show that ex is the sum of an even and an odd function.

This is the same problem as 3.3.2 part (d). But it asks to plot for 𝑛 = 1 and 𝑛 = 2 in the sum. Thesketch of the Fourier sin series was done above in solving 3.3.2 part(d) and will not be repeated

17

again. From above, it was found that

𝑓 (π‘₯) β‰ˆβˆžοΏ½π‘›=1

𝐡𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½

Where 𝐡𝑛 =2π‘›πœ‹οΏ½1 βˆ’ cos οΏ½π‘›πœ‹2 οΏ½οΏ½. The following is the plot for 𝑛 = 1β‹―10.

18

-1.0 -0.5 0.0 0.5 1.0

-0.5

0.0

0.5

1.0

x

f(x)

Fourier series approximation, number of terms 1Showing 3 periods extenstion of -L..L, with L=1

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

f(x)

Fourier series approximation, number of terms 2Showing 3 periods extenstion of -L..L, with L=1

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

f(x)

Fourier series approximation, number of terms 3Showing 3 periods extenstion of -L..L, with L=1

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

f(x)

Fourier series approximation, number of terms 4Showing 3 periods extenstion of -L..L, with L=1

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

f(x)

Fourier series approximation, number of terms 5Showing 3 periods extenstion of -L..L, with L=1

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

f(x)

Fourier series approximation, number of terms 6Showing 3 periods extenstion of -L..L, with L=1

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

f(x)

Fourier series approximation, number of terms 7Showing 3 periods extenstion of -L..L, with L=1

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

f(x)

Fourier series approximation, number of terms 8Showing 3 periods extenstion of -L..L, with L=1

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

f(x)

Fourier series approximation, number of terms 9Showing 3 periods extenstion of -L..L, with L=1

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

f(x)

Fourier series approximation, number of terms 10Showing 3 periods extenstion of -L..L, with L=1

19

1.6 Problem 3.3.8

3.3. Cosine and Sine Series 115

3.3.8. (a) Determine formulas for the even extension of any f (x). Compare tothe formula for the even part of f (x).

(b) Do the same for the odd extension of f (x) and the odd part of f (x).

(c) Calculate and sketch the four functions of parts (a) and (b) if

= J x x>0f(x x2 x <0.

Graphically add the even and odd parts of f (x). What occurs? Simi-larly, add the even and odd extensions. What occurs then?

3.3.9. What is the sum of the Fourier sine series of f (x) and the Fourier cosineseries of f (x)? [What is the sum of the even and odd extensions of f (x)?]

2

*3.3.10. If f (x) = e_z x > 0 , what are the even and odd parts of f (x)?

3.3.11. Given a sketch of f(x), describe a procedure to sketch the even and odd

parts of f (x).

3.3.12. (a) Graphically show that the even terms (n even) of the Fourier sine seriesof any function on 0 < x < L are odd .(antisymmetric) around x = L/2.

(b) Consider a function f (x) that is odd around x = L/2. Show that theodd coefficients (n odd) of the Fourier sine series of f (x) on 0 < x < Lare zero.

*3.3.13. Consider a function f (x) that is even around x = L/2. Show that the evencoefficients (n even) of the Fourier sine series of f (x) on 0 < x < L are zero.

3.3.14. (a) Consider a function f (x) that is even around x = L/2. Show thatthe odd coefficients (n odd) of the Fourier cosine series of f (x) on0 < x < L are zero.

(b) Explain the result of part (a) by considering a Fourier cosine series off (x) on the interval 0 < x < L/2.

3.3.15. Consider a function f (x) that is odd around x = L/2. Show that the evencoefficients (n even) of the Fourier cosine series of f (x) on 0 < x < L arezero.

3.3.16. Fourier series can be defined on other intervals besides -L < x < L. Sup-pose that g(y) is defined for a < y < b. Represent g(y) using periodictrigonometric functions with period b - a. Determine formulas for the coef-ficients. [Hint: Use the linear transformation

a+b b-a2 + 2L

1.6.1 Part (a)

The even extension of 𝑓 (π‘₯) is⎧βŽͺβŽͺ⎨βŽͺβŽͺ⎩

𝑓 (π‘₯) π‘₯ > 0𝑓 (βˆ’π‘₯) π‘₯ < 0

But the even part of 𝑓 (π‘₯) is12�𝑓 (π‘₯) + 𝑓 (βˆ’π‘₯)οΏ½

1.6.2 Part (b)

The odd extension of 𝑓 (π‘₯) is⎧βŽͺβŽͺ⎨βŽͺβŽͺ⎩

𝑓 (π‘₯) π‘₯ > 0βˆ’π‘“ (βˆ’π‘₯) π‘₯ < 0

While the odd part of 𝑓 (π‘₯) is12�𝑓 (π‘₯) βˆ’ 𝑓 (βˆ’π‘₯)οΏ½

1.6.3 Part (c)

First a plot of 𝑓 (π‘₯) is given

𝑓 (π‘₯) =

⎧βŽͺβŽͺ⎨βŽͺβŽͺ⎩π‘₯ π‘₯ > 0π‘₯2 π‘₯ < 0

20

-1.0 -0.5 0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

x

f(x)

Plot of f(x)

A plot of even extension and the even part for 𝑓 (π‘₯) Is given below

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

f(x)

Plot of even extension

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

f(x)

Plot of even part

A plot of odd extension and the odd part is given below

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

function

Plot of odd extension

-1.0 -0.5 0.0 0.5 1.0

-0.10

-0.05

0.00

0.05

0.10

x

function

Plot of odd part of f(x)

Adding the even part and the odd part gives back the original function

21

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

function

Plot of (odd +even parts of f(x))

Plot of adding the even extension and the odd extension is below

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

x

function

Plot of (even extension+odd extension of f(x))

1.7 Problem 3.4.3

3.4. Term-by-Term Differentiation 125

3.4.3. Suppose that f (x) is continuous [except for a jump discontinuity at x = xΒ°if (xa) = a and f (xo) = 01 and df /dx is piecewise smooth.

*(a) Determine the Fourier sine series of df /dx in terms of the Fourier cosineseries coefficients of f (x).

(b) Determine the Fourier cosine series of df /dx in terms of the Fouriersine series coefficients of f(x).

3.4.4. Suppose that f (x) and df /dx are piecewise smooth.

(a) Prove that the Fourier sine series of a continuous function f (x) canonly be differentiated term by term if f (0) = 0 and f (L) = 0.

(b) Prove that the Fourier cosine series of a continuous function f (x) canbe differentiated term by term.

3.4.5. Using (3.3.13) determine the Fourier cosine series of sin 7rx/L.

3.4.6. There are some things wrong in the following demonstration. Find themistakes and correct them.

In this exercise we attempt to obtain the Fourier cosine coefficients of ex:

00 nirxex=AΒ°+E A.cos r .

n=1

Differentiating yields

00 nir nirxe2=-L ,

n=1

the Fourier sine series of ex. Differentiating again yields

(3.4.22)

Β°O 2n7rex - ( L) An cos nLx (3.4.23)

n=1

Since equations (3.4.22) and (3.4.23) give the Fourier cosine series of ex,

they must be identical. Thus,

`40 0 (obviously wrong!).An =0

By correcting the mistakes, you should be able to obtain AΒ° and An withoutusing the typical technique, that is, An = 2/L f L ex cos nirx/L dx.

3.4.7. Prove that the Fourier series of a continuous function u(x, t) can be differ-entiated term by term with respect to the parameter t if 8u/8t is piecewisesmooth.

1.7.1 Part (a)

Fourier sin series of 𝑓′ (π‘₯) is given by, assuming period is βˆ’πΏβ‹―πΏ

𝑓′ (π‘₯) βˆΌβˆžοΏ½π‘›=1

𝑏𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½

22

Where

𝑏𝑛 =2𝐿 οΏ½

𝐿

0𝑓′ (π‘₯) sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

Applying integration by parts. Let 𝑓′ (π‘₯) = 𝑑𝑣, 𝑒 = sin οΏ½π‘›πœ‹πΏ π‘₯οΏ½, then 𝑣 = 𝑓 (π‘₯) , 𝑑𝑒 = π‘›πœ‹

𝐿 cos οΏ½π‘›πœ‹πΏ π‘₯οΏ½. Since𝑣 = 𝑓 (π‘₯) has has jump discontinuity at π‘₯0 as described, and assuming π‘₯0 > 0, then, and usingsin οΏ½π‘›πœ‹

𝐿 π‘₯οΏ½ = 0 at π‘₯ = 𝐿

𝑏𝑛 =2𝐿 οΏ½

𝐿

0𝑒𝑑𝑣

=2𝐿 οΏ½οΏ½[𝑒𝑣]π‘₯

βˆ’00 + [𝑒𝑣]𝐿π‘₯+0 οΏ½ βˆ’οΏ½

𝐿

0𝑣𝑑𝑒�

=2𝐿

βŽ›βŽœβŽœβŽœβŽœβŽοΏ½sin �𝑛

πœ‹πΏπ‘₯οΏ½ 𝑓 (π‘₯)οΏ½

π‘₯βˆ’0

0+ οΏ½sin �𝑛

πœ‹πΏπ‘₯οΏ½ 𝑓 (π‘₯)οΏ½

𝐿

π‘₯+0βˆ’π‘›πœ‹πΏ οΏ½

𝐿

0𝑓 (π‘₯) cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

⎞⎟⎟⎟⎟⎠

=2𝐿 �

sin οΏ½π‘›πœ‹πΏπ‘₯βˆ’0οΏ½ 𝑓 οΏ½π‘₯βˆ’0οΏ½ βˆ’ sin οΏ½π‘›πœ‹

𝐿π‘₯+0𝑓 οΏ½π‘₯+0 οΏ½οΏ½ βˆ’

π‘›πœ‹πΏ οΏ½

𝐿

0𝑓 (π‘₯) cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯οΏ½ (1)

In the above, sin οΏ½π‘›πœ‹πΏ π‘₯οΏ½ = 0 and at π‘₯ = 𝐿 was used. But

𝑓 οΏ½π‘₯βˆ’0οΏ½ = 𝛼

𝑓 οΏ½π‘₯+0 οΏ½ = 𝛽

And since sin is continuous, then sin οΏ½π‘›πœ‹πΏ π‘₯

βˆ’0οΏ½ = sin οΏ½π‘›πœ‹

𝐿 π‘₯+0 οΏ½ = sin οΏ½π‘›πœ‹

𝐿 π‘₯0οΏ½. Equation (1) simplifies to

𝑏𝑛 =2𝐿 ��𝛼 βˆ’ 𝛽� sin οΏ½π‘›πœ‹

𝐿π‘₯0οΏ½ βˆ’

π‘›πœ‹πΏ οΏ½

𝐿

0𝑓 (π‘₯) cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯οΏ½ (2)

On the other hand, the Fourier cosine series for 𝑓 (π‘₯) is given by

𝑓 (π‘₯) ∼ π‘Ž0 +βˆžοΏ½π‘›=1

π‘Žπ‘› cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½

Where

π‘Ž0 =1𝐿 οΏ½

𝐿

0𝑓 (π‘₯) 𝑑π‘₯

π‘Žπ‘› =2𝐿 οΏ½

𝐿

0𝑓 (π‘₯) cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

Therefore ∫𝐿

0𝑓 (π‘₯) cos οΏ½π‘›πœ‹

𝐿 π‘₯οΏ½ 𝑑π‘₯ =𝐿2π‘Žπ‘›. Substituting this into (2) gives

𝑏𝑛 =2𝐿 ��𝛼 βˆ’ 𝛽� sin οΏ½π‘›πœ‹

𝐿π‘₯0οΏ½ βˆ’

π‘›πœ‹πΏ οΏ½

𝐿2π‘Žπ‘›οΏ½οΏ½

=2𝐿�𝛼 βˆ’ 𝛽� sin οΏ½π‘›πœ‹

𝐿π‘₯0οΏ½ βˆ’

2πΏπ‘›πœ‹πΏ οΏ½

𝐿2π‘Žπ‘›οΏ½

Hence

𝑏𝑛 =2𝐿 sin οΏ½π‘›πœ‹

𝐿 π‘₯0οΏ½ �𝛼 βˆ’ 𝛽� βˆ’π‘›πœ‹πΏ π‘Žπ‘› (3)

Summary the Fourier sin series of 𝑓′ (π‘₯) is

𝑓′ (π‘₯) βˆΌβˆžοΏ½π‘›=1

𝑏𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½

23

With 𝑏𝑛 given by (3). The above is in terms of π‘Žπ‘›, which is the Fourier cosine series of 𝑓 (π‘₯), which iswhat required to show. In addition, the cos series of 𝑓 (π‘₯) can also be written in terms of sin series of𝑓′ (π‘₯). From (3), solving for π‘Žπ‘›

π‘Žπ‘› =πΏπ‘›πœ‹π‘π‘› βˆ’

2π‘›πœ‹

sin οΏ½π‘›πœ‹πΏπ‘₯0οΏ½ �𝛼 βˆ’ 𝛽�

𝑓 (π‘₯) ∼ π‘Ž0 +βˆžοΏ½π‘›=1

1𝑛 οΏ½

πΏπœ‹π‘π‘› βˆ’

2πœ‹

sin οΏ½π‘›πœ‹πΏπ‘₯0οΏ½ �𝛼 βˆ’ 𝛽�� cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½

This shows more clearly that the Fourier series of 𝑓 (π‘₯) has order of convergence in π‘Žπ‘› as1𝑛 as expected.

1.7.2 Part (b)

Fourier cos series of 𝑓′ (π‘₯) is given by, assuming period is βˆ’πΏβ‹―πΏ

𝑓′ (π‘₯) βˆΌβˆžοΏ½π‘›=0

π‘Žπ‘› cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½

Where

π‘Ž0 =1𝐿 οΏ½

𝐿

0𝑓′ (π‘₯) 𝑑π‘₯

=1𝐿

βŽ›βŽœβŽœβŽœβŽοΏ½

π‘₯βˆ’0

0𝑓′ (π‘₯) 𝑑π‘₯ +οΏ½

𝐿

π‘₯+0𝑓′ (π‘₯) 𝑑π‘₯

⎞⎟⎟⎟⎠

=1𝐿 ��𝑓 (π‘₯)οΏ½

π‘₯βˆ’00+ �𝑓 (π‘₯)οΏ½

𝐿

π‘₯+0οΏ½

=1𝐿��𝛼 βˆ’ 𝑓 (0)οΏ½ + �𝑓 (𝐿) βˆ’ 𝛽��

=�𝛼 βˆ’ 𝛽�𝐿

+𝑓 (0) + 𝑓 (𝐿)

𝐿And for 𝑛 > 0

π‘Žπ‘› =2𝐿 οΏ½

𝐿

0𝑓′ (π‘₯) cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

Applying integration by parts. Let 𝑓′ (π‘₯) = 𝑑𝑣, 𝑒 = cos οΏ½π‘›πœ‹πΏ π‘₯οΏ½, then 𝑣 = 𝑓 (π‘₯) , 𝑑𝑒 =

βˆ’π‘›πœ‹πΏ sin οΏ½π‘›πœ‹πΏ π‘₯οΏ½. Since

𝑣 = 𝑓 (π‘₯) has has jump discontinuity at π‘₯0 as described, then

π‘Žπ‘› =2𝐿 οΏ½

𝐿

0𝑒𝑑𝑣

=2𝐿 οΏ½οΏ½[𝑒𝑣]π‘₯

βˆ’00 + [𝑒𝑣]𝐿π‘₯+0 οΏ½ βˆ’οΏ½

𝐿

0𝑣𝑑𝑒�

=2𝐿

βŽ›βŽœβŽœβŽœβŽœβŽοΏ½cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑓 (π‘₯)οΏ½

π‘₯βˆ’0

0+ οΏ½cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑓 (π‘₯)οΏ½

𝐿

π‘₯+0+π‘›πœ‹πΏ οΏ½

𝐿

0𝑓 (π‘₯) sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

⎞⎟⎟⎟⎟⎠

=2𝐿 �

cos οΏ½π‘›πœ‹πΏπ‘₯βˆ’0οΏ½ 𝑓 οΏ½π‘₯βˆ’0οΏ½ βˆ’ 𝑓 (0) + cos (π‘›πœ‹) 𝑓 (𝐿) βˆ’ cos οΏ½π‘›πœ‹

𝐿π‘₯+0 οΏ½ 𝑓 οΏ½π‘₯+0 οΏ½ +

π‘›πœ‹πΏ οΏ½

𝐿

0𝑓 (π‘₯) sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯οΏ½ (1)

But

𝑓 οΏ½π‘₯βˆ’0οΏ½ = 𝛼

𝑓 οΏ½π‘₯+0 οΏ½ = 𝛽

24

And since cos is continuous, then cos οΏ½π‘›πœ‹πΏ π‘₯

βˆ’0οΏ½ = cos οΏ½π‘›πœ‹

𝐿 π‘₯+0 οΏ½ = cos οΏ½π‘›πœ‹

𝐿 π‘₯0οΏ½, therefore (1) becomes

π‘Žπ‘› =2𝐿 οΏ½

cos (π‘›πœ‹) 𝑓 (𝐿) βˆ’ 𝑓 (0) + cos οΏ½π‘›πœ‹πΏπ‘₯0οΏ½ �𝛼 βˆ’ 𝛽� +

π‘›πœ‹πΏ οΏ½

𝐿

0𝑓 (π‘₯) sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯οΏ½ (2)

On the other hand, the Fourier 𝑠𝑖𝑛 series for 𝑓 (π‘₯) is given by

𝑓 (π‘₯) βˆΌβˆžοΏ½π‘›=0

𝑏𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½

Where

𝑏𝑛 =2𝐿 οΏ½

𝐿

0𝑓 (π‘₯) sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

Therefore ∫𝐿

0𝑓 (π‘₯) sin οΏ½π‘›πœ‹

𝐿 π‘₯οΏ½ 𝑑π‘₯ =𝐿2𝑏𝑛. Substituting this into (2) gives

π‘Žπ‘› =2𝐿 οΏ½

cos (π‘›πœ‹) 𝑓 (𝐿) βˆ’ 𝑓 (0) + cos οΏ½π‘›πœ‹πΏπ‘₯0οΏ½ �𝛼 βˆ’ 𝛽� +

π‘›πœ‹πΏπΏ2𝑏𝑛�

=2𝐿

cos (π‘›πœ‹) 𝑓 (𝐿) βˆ’ 2𝐿𝑓 (0) +

2𝐿

cos οΏ½π‘›πœ‹πΏπ‘₯0οΏ½ �𝛼 βˆ’ 𝛽� +

2πΏπ‘›πœ‹2𝑏𝑛

=2𝐿�(βˆ’1𝑛) 𝑓 (𝐿) βˆ’ 𝑓 (0)οΏ½ +

2𝐿

cos οΏ½π‘›πœ‹πΏπ‘₯0οΏ½ �𝛼 βˆ’ 𝛽� +

π‘›πœ‹πΏπ‘π‘›

Hence

π‘Žπ‘› =2𝐿�(βˆ’1𝑛) 𝑓 (𝐿) βˆ’ 𝑓 (0)οΏ½ + 2

𝐿 cos οΏ½π‘›πœ‹πΏ π‘₯0οΏ½ �𝛼 βˆ’ 𝛽� +

π‘›πœ‹πΏ 𝑏𝑛 (3)

Summary the Fourier cos series of 𝑓′ (π‘₯) is

𝑓′ (π‘₯) βˆΌβˆžοΏ½π‘›=0

π‘Žπ‘› cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½

π‘Ž0 =�𝛼 βˆ’ 𝛽�𝐿

+𝑓 (0) + 𝑓 (𝐿)

𝐿

π‘Žπ‘› =2𝐿�(βˆ’1𝑛) 𝑓 (𝐿) βˆ’ 𝑓 (0)οΏ½ +

2𝐿

cos οΏ½π‘›πœ‹πΏπ‘₯0οΏ½ �𝛼 βˆ’ 𝛽� +

π‘›πœ‹πΏπ‘π‘›

The above is in terms of 𝑏𝑛, which is the Fourier 𝑠𝑖𝑛 series of 𝑓 (π‘₯), which is what required to show.

25

1.8 Problem 3.4.9

126 Chapter 3. Fourier Series

3.4.8. Considerau _ a2uat kaxe

subject to

au/ax(0,t) = 0, au/ax(L,t) = 0, and u(x,0) = f(x).

Solve in the following way. Look for the solution as a Fourier cosine se-ries. Assume that u and au/ax are continuous and a2u/axe and au/at arepiecewise smooth. Justify all differentiations of infinite series.

*3.4.9 Consider the heat equation with a known source q(x, t):

2

= k jx2 + q(x, t) with u(0, t) = 0 and u(L, t) = 0.

Assume that q(x, t) (for each t > 0) is a piecewise smooth function of x.Also assume that u and au/ax are continuous functions of x (for t > 0) anda2u/axe and au/at are piecewise smooth. Thus,

u(x, t) _ N,(t) sin .Lx.n=1

What ordinary differential equation does satisfy? Do not solve thisdifferential equation.

3.4.10. Modify Exercise 3.4.9 if instead au/ax(0, t) = 0 and au/ax(L, t) = 0.

3.4.11. Consider the nonhomogeneous heat equation (with a steady heat source):

2

at kax2 +g(x).

Solve this equation with the initial condition

u(x,0) = f(x)

and the boundary conditions

u(O,t) = 0 and u(L, t) = 0.

Assume that a continuous solution exists (with continuous derivatives).[Hints: Expand the solution as a Fourier sine series (i.e., use the methodof eigenfunction expansion). Expand g(x) as a Fourier sine series. Solvefor the Fourier sine series of the solution. Justify all differentiations withrespect to x.]

*3.4.12. Solve the following nonhomogeneous problem:

2

= k5-2 + e-t + e- 2tcos 3Lx [assume that 2 # k(37r/L)2]

The PDE isπœ•π‘’πœ•π‘‘

= π‘˜πœ•2π‘’πœ•π‘₯2

+ π‘ž (π‘₯, 𝑑) (1)

Since the boundary conditions are homogenous Dirichlet conditions, then the solution can be writtendown as

𝑒 (π‘₯, 𝑑) =βˆžοΏ½π‘›=1

𝑏𝑛 (𝑑) sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½

Since the solution is assumed to be continuous with continuous derivative, then term by termdiοΏ½erentiation is allowed w.r.t. π‘₯

πœ•π‘’πœ•π‘₯

=βˆžοΏ½π‘›=1

π‘›πœ‹πΏπ‘π‘› (𝑑) cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½

πœ•2π‘’πœ•π‘₯2

= βˆ’βˆžοΏ½π‘›=1

οΏ½π‘›πœ‹πΏοΏ½2𝑏𝑛 (𝑑) sin �𝑛

πœ‹πΏπ‘₯οΏ½ (2)

Also using assumption that πœ•π‘’πœ•π‘‘ is smooth, then

πœ•π‘’πœ•π‘‘

=βˆžοΏ½π‘›=1

𝑑𝑏𝑛 (𝑑)𝑑𝑑

sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ (3)

Substituting (2,3) into (1) givesβˆžοΏ½π‘›=1

𝑑𝑏𝑛 (𝑑)𝑑𝑑

sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ = βˆ’π‘˜

βˆžοΏ½π‘›=1

οΏ½π‘›πœ‹πΏοΏ½2𝑏𝑛 (𝑑) sin �𝑛

πœ‹πΏπ‘₯οΏ½ + π‘ž (π‘₯, 𝑑) (4)

Expanding π‘ž (π‘₯, 𝑑) as Fourier sin series in π‘₯. Hence

π‘ž (π‘₯, 𝑑) =βˆžοΏ½π‘›=1

π‘žπ‘› (𝑑) sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½

Where now π‘žπ‘› (𝑑) are time dependent given by (by orthogonality)

π‘žπ‘› (𝑑) =2𝐿 οΏ½

𝐿

0π‘ž (π‘₯, 𝑑) sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½

26

Hence (4) becomesβˆžοΏ½π‘›=1

𝑑𝑏𝑛 (𝑑)𝑑𝑑

sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ = βˆ’

βˆžοΏ½π‘›=1

π‘˜ οΏ½π‘›πœ‹πΏοΏ½2𝑏𝑛 (𝑑) sin �𝑛

πœ‹πΏπ‘₯οΏ½ +

βˆžοΏ½π‘›=1

π‘ž (𝑑)𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½

Applying orthogonality the above reduces to one term only

𝑑𝑏𝑛 (𝑑)𝑑𝑑

sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ = βˆ’π‘˜ οΏ½

π‘›πœ‹πΏοΏ½2𝑏𝑛 (𝑑) sin �𝑛

πœ‹πΏπ‘₯οΏ½ + π‘ž (𝑑)𝑛 sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½

Dividing by sin οΏ½π‘›πœ‹πΏ π‘₯οΏ½ β‰  0

𝑑𝑏𝑛 (𝑑)𝑑𝑑

= βˆ’π‘˜ οΏ½π‘›πœ‹πΏοΏ½2𝑏𝑛 (𝑑) + π‘žπ‘› (𝑑)

𝑑𝑏𝑛 (𝑑)𝑑𝑑

+ π‘˜ οΏ½π‘›πœ‹πΏοΏ½2𝐡𝑛 (𝑑) = π‘žπ‘› (𝑑) (5)

The above is the ODE that needs to be solved for 𝑏𝑛 (𝑑). It is first order inhomogeneous ODE. Thequestion asks to stop here.

1.9 Problem 3.4.11

126 Chapter 3. Fourier Series

3.4.8. Considerau _ a2uat kaxe

subject to

au/ax(0,t) = 0, au/ax(L,t) = 0, and u(x,0) = f(x).

Solve in the following way. Look for the solution as a Fourier cosine se-ries. Assume that u and au/ax are continuous and a2u/axe and au/at arepiecewise smooth. Justify all differentiations of infinite series.

*3.4.9 Consider the heat equation with a known source q(x, t):

2

= k jx2 + q(x, t) with u(0, t) = 0 and u(L, t) = 0.

Assume that q(x, t) (for each t > 0) is a piecewise smooth function of x.Also assume that u and au/ax are continuous functions of x (for t > 0) anda2u/axe and au/at are piecewise smooth. Thus,

u(x, t) _ N,(t) sin .Lx.n=1

What ordinary differential equation does satisfy? Do not solve thisdifferential equation.

3.4.10. Modify Exercise 3.4.9 if instead au/ax(0, t) = 0 and au/ax(L, t) = 0.

3.4.11. Consider the nonhomogeneous heat equation (with a steady heat source):

2

at kax2 +g(x).

Solve this equation with the initial condition

u(x,0) = f(x)

and the boundary conditions

u(O,t) = 0 and u(L, t) = 0.

Assume that a continuous solution exists (with continuous derivatives).[Hints: Expand the solution as a Fourier sine series (i.e., use the methodof eigenfunction expansion). Expand g(x) as a Fourier sine series. Solvefor the Fourier sine series of the solution. Justify all differentiations withrespect to x.]

*3.4.12. Solve the following nonhomogeneous problem:

2

= k5-2 + e-t + e- 2tcos 3Lx [assume that 2 # k(37r/L)2]The PDE is

πœ•π‘’πœ•π‘‘

= π‘˜πœ•2π‘’πœ•π‘₯2

+ 𝑔 (π‘₯) (1)

Since the boundary conditions are homogenous Dirichlet conditions, then the solution can be writtendown as

𝑒 (π‘₯, 𝑑) =βˆžοΏ½π‘›=1

𝑏𝑛 (𝑑) sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½

Since the solution is assumed to be continuous with continuous derivative, then term by term

27

diοΏ½erentiation is allowed w.r.t. π‘₯πœ•π‘’πœ•π‘₯

=βˆžοΏ½π‘›=1

π‘›πœ‹πΏπ‘π‘› (𝑑) cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½

πœ•2π‘’πœ•π‘₯2

= βˆ’βˆžοΏ½π‘›=1

οΏ½π‘›πœ‹πΏοΏ½2𝑏𝑛 (𝑑) sin �𝑛

πœ‹πΏπ‘₯οΏ½ (2)

Also using assumption that πœ•π‘’πœ•π‘‘ is smooth, then

πœ•π‘’πœ•π‘‘

=βˆžοΏ½π‘›=1

𝑑𝑏𝑛 (𝑑)𝑑𝑑

sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ (3)

Substituting (2,3) into (1) givesβˆžοΏ½π‘›=1

𝑑𝑏𝑛 (𝑑)𝑑𝑑

sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ = βˆ’π‘˜

βˆžοΏ½π‘›=1

οΏ½π‘›πœ‹πΏοΏ½2𝑏𝑛 (𝑑) sin �𝑛

πœ‹πΏπ‘₯οΏ½ + 𝑔 (π‘₯) (4)

Using hint given in the problem, which is to expand 𝑔 (π‘₯) as Fourier sin series. Hence

𝑔 (π‘₯) =βˆžοΏ½π‘›=1

𝑔𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½

Where

𝑔𝑛 =2𝐿 οΏ½

𝐿

0𝑔 (π‘₯) sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½

Hence (4) becomesβˆžοΏ½π‘›=1

𝑑𝑏𝑛 (𝑑)𝑑𝑑

sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ = βˆ’

βˆžοΏ½π‘›=1

π‘˜ οΏ½π‘›πœ‹πΏοΏ½2𝑏𝑛 (𝑑) sin �𝑛

πœ‹πΏπ‘₯οΏ½ +

βˆžοΏ½π‘›=1

𝑔𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½

Applying orthogonality the above reduces to one term only

𝑑𝑏𝑛 (𝑑)𝑑𝑑

sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ = βˆ’π‘˜ οΏ½

π‘›πœ‹πΏοΏ½2𝑏𝑛 (𝑑) sin �𝑛

πœ‹πΏπ‘₯οΏ½ + 𝑔𝑛 sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½

Dividing by sin οΏ½π‘›πœ‹πΏ π‘₯οΏ½ β‰  0

𝑑𝑏𝑛 (𝑑)𝑑𝑑

= βˆ’π‘˜ οΏ½π‘›πœ‹πΏοΏ½2𝑏𝑛 (𝑑) + 𝑔𝑛

𝑑𝑏𝑛 (𝑑)𝑑𝑑

+ π‘˜ οΏ½π‘›πœ‹πΏοΏ½2𝑏𝑛 (𝑑) = 𝑔𝑛 (5)

This is of the form 𝑦′ + π‘Žπ‘¦ = 𝑔𝑛, where π‘Ž = π‘˜ οΏ½π‘›πœ‹πΏοΏ½2. This is solved using an integration factor πœ‡ = π‘’π‘Žπ‘‘,

where π‘‘π‘‘π‘‘οΏ½π‘’π‘Žπ‘‘π‘¦οΏ½ = π‘’π‘Žπ‘‘π‘”π‘›, giving the solution

𝑦 (𝑑) =1πœ‡ οΏ½

πœ‡π‘”π‘›π‘‘π‘‘ +π‘πœ‡

Hence the solution to (5) is

𝑏𝑛 (𝑑) π‘’π‘˜οΏ½ π‘›πœ‹πΏ οΏ½

2𝑑 = οΏ½π‘’π‘˜οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑𝑔𝑛𝑑𝑑 + 𝑐

𝑏𝑛 (𝑑) π‘’π‘˜οΏ½ π‘›πœ‹πΏ οΏ½

2𝑑 =

𝐿2π‘’π‘˜οΏ½π‘›πœ‹πΏ οΏ½

2𝑑

π‘˜π‘›2πœ‹2 𝑔𝑛 + 𝑐

𝑏𝑛 (𝑑) =𝐿2

π‘˜π‘›2πœ‹2 𝑔𝑛 + π‘π‘’βˆ’π‘˜οΏ½ π‘›πœ‹πΏ οΏ½

2𝑑

28

Where 𝑐 above is constant of integration. Hence the solution becomes

𝑒 (π‘₯, 𝑑) =βˆžοΏ½π‘›=1

𝑏𝑛 (𝑑) sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½

=βˆžοΏ½π‘›=1

�𝐿2

π‘˜π‘›2πœ‹2 𝑔𝑛 + π‘π‘’βˆ’π‘˜οΏ½ π‘›πœ‹πΏ οΏ½

2𝑑� sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½

At 𝑑 = 0, 𝑒 (π‘₯, 0) = 𝑓 (π‘₯), therefore

𝑓 (π‘₯) =βˆžοΏ½π‘›=1

�𝐿2

π‘˜π‘›2πœ‹2 𝑔𝑛 + 𝑐� sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½

Therefore𝐿2

π‘˜π‘›2πœ‹2 𝑔𝑛 + 𝑐 =2𝐿 οΏ½

𝐿

0𝑓 (π‘₯) sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

Solving for 𝑐 gives

𝑐 =2𝐿 οΏ½

𝐿

0𝑓 (π‘₯) sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ βˆ’

𝐿2

π‘˜π‘›2πœ‹2 𝑔𝑛

This completes the solution. Everything is now known. Summary

𝑒 (π‘₯, 𝑑) =βˆžοΏ½π‘›=1

𝑏𝑛 (𝑑) sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½

𝑏𝑛 (𝑑) = �𝐿2

π‘˜π‘›2πœ‹2 𝑔𝑛 + π‘π‘’βˆ’π‘˜οΏ½ π‘›πœ‹πΏ οΏ½

2𝑑�

𝑔𝑛 =2𝐿 οΏ½

𝐿

0𝑔 (π‘₯) sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½

𝑐 =2𝐿 οΏ½

𝐿

0𝑓 (π‘₯) sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ βˆ’

𝐿2

π‘˜π‘›2πœ‹2 𝑔𝑛