higher portfolio - calderglen high school

13
Higher Higher Portfolio Logs and Exponentials EF1. Logarithms and Exponentials Section A - Revision Section This section will help you revise previous learning which is required in this topic. R1 Revision of Surds and Indices 1. Express each of the following in its simplest form. (a) 8 (b) 12 (c) 50 (d) 45 (e) 332 (f) 540 2. Express each of the following with a rational denominator. (a) 1 2 (b) 20 2 (c) 4 52 3. Simplify the following writing the answers with positive indices only. (a) 2 Γ— 5 (b) βˆ’3 Γ— 7 (c) 6 Γ· 4 (d) βˆ’3 Γ· βˆ’1 (e) (2 4 ) 3 (f) ( βˆ’4 ) βˆ’2 (g) 3 Γ— 5 2 Γ— 2 (h) βˆ’1 Γ— 3 βˆ’2 Γ— (i) 5 3 Γ— 2 βˆ’3 (j) 3 5 3 6 2 5 (k) 3 5 Γ— 2 1 2 (l) 4 8 Γ· 2 βˆ’2 (m) βˆ’ 1 2 Γ— 3 2 (n) βˆ’ 1 3 Γ— 1 3 (o) 2 ( 3 + 1) 4. Write in the form + +β‹― (a) βˆ’2 ( βˆ’ 3) (b) 1 2 ( 3 + 2) (c) 1 (3 2 + 2) (d) 1 √ ( 1 √ βˆ’ 1) (e) (2 5 βˆ’ 3)( + 4 βˆ’2 ) (f) ( 1 + 1) 2

Upload: others

Post on 24-Mar-2022

9 views

Category:

Documents


0 download

TRANSCRIPT

Higher Higher Portfolio Logs and Exponentials

EF1. Logarithms and Exponentials

Section A - Revision Section

This section will help you revise previous learning which is required in this topic.

R1 Revision of Surds and Indices

1. Express each of the following in its simplest form.

(a) 8 (b) 12 (c) 50

(d) 45 (e) 332 (f) 540

2. Express each of the following with a rational denominator.

(a) 1

2 (b)

20

2 (c)

4

5 2

3. Simplify the following writing the answers with positive indices only.

(a) π‘₯2 Γ— π‘₯5 (b) π‘¦βˆ’3 Γ— 𝑦7 (c) π‘₯6 Γ· π‘₯4

(d) π‘¦βˆ’3 Γ· π‘¦βˆ’1 (e) (2π‘Ž4)3 (f) (π‘βˆ’4)βˆ’2

(g) π‘₯3×𝑦5

π‘₯2×𝑦2 (h) π‘Žβˆ’1×𝑏3

π‘Žβˆ’2×𝑏 (i) 5π‘₯3 Γ— 2π‘₯βˆ’3

(j) 3π‘₯5𝑦3

6π‘₯2𝑦5 (k) 3𝑝5 Γ— 2𝑝1

2 (l) 4π‘Ÿ8 Γ· 2π‘Ÿβˆ’2

(m) π‘Žβˆ’1

2 Γ— π‘Ž3

2 (n) π‘Ÿβˆ’1

3 Γ— π‘Ÿ1

3 (o) π‘₯2(π‘₯3 + 1)

4. Write in the form π‘Žπ‘₯π‘š + 𝑏π‘₯𝑛 + β‹―

(a) π‘₯βˆ’2(π‘₯ βˆ’ 3) (b) 1

π‘₯2(π‘₯3 + 2π‘₯) (c)

1

π‘₯(3π‘₯2 + 2π‘₯)

(d) 1

√π‘₯(

1

√π‘₯βˆ’ 1) (e) (2π‘₯5 βˆ’ 3)(π‘₯ + 4π‘₯βˆ’2) (f) (

1

π‘₯+ 1)2

Exponentials and Logs

Calderglen High School - Mathematics Department

2

(g) 1

√π‘₯23 (h) 1

2 √π‘₯3 (i)

1

5 √π‘₯34

(j) 3

5 √π‘₯52 (k) 2

7 √π‘₯23 (l) 6

√π‘₯3

(m) π‘₯2+3π‘₯+5

π‘₯ (n)

2π‘₯3+π‘₯2+π‘₯

√π‘₯ (o)

π‘₯4βˆ’6π‘₯+π‘₯3

π‘₯2

(p) π‘₯+5

√π‘₯32 (q) 3 + π‘₯3

3π‘₯2 (r)

π‘₯+2

√π‘₯

(s) (π‘₯+1)(π‘₯+2)

π‘₯ (t)

(π‘₯βˆ’1)(π‘₯+3)

5 √π‘₯43 (u) 3π‘₯2+ 5π‘₯+1

2π‘₯2

R2. Revision of Straight Line

1. Find the gradient and equation each of the straight line between the

following points

(a) A(2 , βˆ’1) and B(4 , 7) (b) X(βˆ’1 , 1) and Y(5 , 13)

(c) R(βˆ’2 , βˆ’5) and S(2 , βˆ’7) (d) Q(βˆ’1 , 3) and T(βˆ’1 , 7)

2. Write down the gradient and y–intercept of the following lines

(a) 𝑦 = 3π‘₯ – 2 (b) 𝑦 = π‘₯ + 4 (c) 𝑦 = 4π‘₯

(d) 𝑦 = βˆ’2π‘₯ – 1 (e) 𝑦 – 2π‘₯ = 3 (f) 𝑦 – π‘₯ + 3 = 0

3. Find the equation of the straight line shown

Exponentials and Logs

Calderglen High School - Mathematics Department

3

4. Find the equation of straight line, in the form 𝑦 = π‘šπ‘₯ + 𝑐, passing through

each point with the given gradient.

(a) gradient = 5 passing through (4, 7)

(b) gradient = 2

3 passing through (2, βˆ’3)

(c) gradient = -2 passing through (βˆ’5, 1)

5. Find the equation of the line parallel to 𝑦 = 3π‘₯ + 5 which passes through

the point (3, 7).

6. Find the equation of the line parallel to 𝑦 =1

2π‘₯ βˆ’ 7 which passes through

the point (βˆ’2, 4).

7. Find the equation of the line parallel to 2π‘₯ + 𝑦 = βˆ’3 which passes through

the point (βˆ’1, βˆ’3).

8. Find the equation of the line parallel to 5π‘₯ βˆ’ 2𝑦 = 7 which passes through

the point (3, 7).

9. Find the equation of the line parallel to 2π‘₯ βˆ’ 𝑦 βˆ’ 7 = 0 which passes

through the point (βˆ’1, 7).

10. Find the equation of the line parallel to 3π‘₯ + 5𝑦 + 1 = 0 which passes

through the point (4, 0).

Exponentials and Logs

Calderglen High School - Mathematics Department

4

Section B - Assessment Standard Section

This section will help you practise for your Assessment Standard Test for

Exponentials and Logarithms (Expressions and Functions 1.1)

1. (a) Simplify π‘™π‘œπ‘”45π‘Ÿ + π‘™π‘œπ‘”47𝑠. (b) Simplify π‘™π‘œπ‘”53π‘₯ + π‘™π‘œπ‘”54𝑦.

(c) Simplify π‘™π‘œπ‘”32π‘Ž + π‘™π‘œπ‘”35𝑏.

2. (a) Express π‘™π‘œπ‘”π‘Žπ‘₯7 βˆ’ π‘™π‘œπ‘”π‘Žπ‘₯3 in the form π‘˜π‘™π‘œπ‘”π‘Žπ‘₯ .

(b) Express π‘™π‘œπ‘”π‘Žπ‘8 βˆ’ π‘™π‘œπ‘”π‘Žπ‘2 in the form π‘˜π‘™π‘œπ‘”π‘Žπ‘ .

(c) Express π‘™π‘œπ‘”π‘Žπ‘‡9 βˆ’ π‘™π‘œπ‘”π‘Žπ‘‡4 in the form π‘˜π‘™π‘œπ‘”π‘Žπ‘‡ .

3. Solve π‘™π‘œπ‘”4(π‘₯ βˆ’ 2) = 1 .

4. Solve π‘™π‘œπ‘”5(π‘₯ + 3) = 2 .

5. Solve π‘™π‘œπ‘”16(π‘₯ βˆ’ 5) =1

2 .

6. (a) Simplify π‘™π‘œπ‘”π‘Ž8 βˆ’ π‘™π‘œπ‘”π‘Ž2 (b) Simplify π‘™π‘œπ‘”52 + π‘™π‘œπ‘”550 βˆ’ π‘™π‘œπ‘”54

(c) Simplify 3π‘™π‘œπ‘”42 + π‘™π‘œπ‘”48

7. Solve π‘™π‘œπ‘”π‘Žπ‘₯ βˆ’ π‘™π‘œπ‘”π‘Ž7 = π‘™π‘œπ‘”π‘Ž3 for π‘₯ > 0.

8. Find π‘₯ if 4π‘™π‘œπ‘”π‘₯6 βˆ’ 2π‘™π‘œπ‘”π‘₯4 = 1.

9. (a) Simplify π‘™π‘œπ‘”π‘10 + π‘™π‘œπ‘”π‘4 (b) Simplify π‘™π‘œπ‘”4320 βˆ’ π‘™π‘œπ‘”45

(c) Simplify 2π‘™π‘œπ‘”36 βˆ’ π‘™π‘œπ‘”34

10. Given that π‘™π‘œπ‘”48 + π‘™π‘œπ‘”4π‘ž = 1, what is the value of π‘ž?

Exponentials and Logs

Calderglen High School - Mathematics Department

5

Section C – Operational Skills Section

This section provides problems with the operational skills associated with

Exponentials and Logs

O1 I can convert between exponential and logarithmic forms.

1. Given 𝑏 = 𝑒𝑑 which of the following is true:

(a) π‘™π‘œπ‘”π‘‘π‘ = 𝑒

(b) π‘™π‘œπ‘”π‘’π‘ = 𝑑

2. Given π‘™π‘œπ‘”π‘›π‘₯ = 𝑦 which of the following is true:

(a) 𝑛𝑦 = π‘₯

(b) π‘₯𝑦 = 𝑛

O2 I can use the three main laws of logarithms to simplify expressions,

including those involving natural logarithms.

1. Simplify

a. π‘™π‘œπ‘”π‘₯3 + π‘™π‘œπ‘”π‘₯5 βˆ’ π‘™π‘œπ‘”π‘₯7

b. π‘™π‘œπ‘”π‘Ž32 βˆ’ 2π‘™π‘œπ‘”π‘Ž4

2. Show that (a) π‘™π‘œπ‘”38

π‘™π‘œπ‘”32 = 3 . (b)

π‘™π‘œπ‘”π‘9π‘Ž2

π‘™π‘œπ‘”π‘3π‘Ž = 2 .

3. If π‘™π‘œπ‘”3π‘₯ = 2π‘™π‘œπ‘”3𝑦 βˆ’ 3π‘™π‘œπ‘”3𝑧 find an expression for π‘₯ in terms of 𝑦 and 𝑧.

4. Find a if π‘™π‘œπ‘”π‘Ž64 =3

2 .

5. Simplify 3π‘™π‘œπ‘”π‘’(2𝑒) βˆ’ 2π‘™π‘œπ‘”π‘’(3𝑒) expressing your answer in the form

𝐴 + π‘™π‘œπ‘”π‘’π΅ βˆ’ π‘™π‘œπ‘”π‘’πΆ where 𝐴, 𝐡 and 𝐢 are whole numbers.

Exponentials and Logs

Calderglen High School - Mathematics Department

6

O3 I can solve logarithmic and exponential equations using the laws of

logarithms.

1. Given the equation 𝑦 = 3 Γ— 4π‘₯ find the value of π‘₯ when 𝑦 = 10 giving your

answer to 3 significant figures.

2. Given the equation 𝐴 = 𝐴0π‘’βˆ’π‘˜π‘‘, find, to 3 significant figures:

(a) 𝐴 when 𝐴0 = 5, π‘˜ = 0 βˆ™ 23 and 𝑑 = 20.

(b) π‘˜ when 𝐴 = 70, 𝐴0 = 35 and 𝑑 = 20.

(c) 𝑑 when 𝐴 = 1000, 𝐴0 = 10 and π‘˜ = 0.01.

3. Solve π‘™π‘œπ‘”4π‘₯ + π‘™π‘œπ‘”4(π‘₯ + 6) = 2, π‘₯ > 0.

4. Solve the equation π‘™π‘œπ‘”5(3 βˆ’ 2π‘₯) + π‘™π‘œπ‘”5(2 + π‘₯) = 1, βˆ’2 < π‘₯ <3

2.

5. (a) Given that π‘™π‘œπ‘”4π‘₯ = 𝑃, show that π‘™π‘œπ‘”16π‘₯ =1

2𝑃.

(b) Solve π‘™π‘œπ‘”3π‘₯ + π‘™π‘œπ‘”9π‘₯ = 12 .

6. The curve with equation 𝑦 = π‘™π‘œπ‘”3(π‘₯ βˆ’ 1) βˆ’ 2 βˆ™ 2, where π‘₯ > 1, cuts the x-

axis at the point (π‘Ž, 0). Find the value of π‘Ž.

7. If π‘™π‘œπ‘”48 + π‘™π‘œπ‘”4π‘ž = 1, find the value of π‘ž.

8. Solve the equation π‘™π‘œπ‘”2(π‘₯ + 1) βˆ’ 2π‘™π‘œπ‘”23 = 3.

9. Find π‘₯ if 4π‘™π‘œπ‘”π‘₯6 βˆ’ 2π‘™π‘œπ‘”π‘₯4 = 1 .

Exponentials and Logs

Calderglen High School - Mathematics Department

7

O4 I can solve for 𝒂 and 𝒃 equations of the following forms, given two pairs

of corresponding values of 𝒙 and π’š: π‘™π‘œπ‘”π‘¦ = π‘π‘™π‘œπ‘”π‘₯ + π‘™π‘œπ‘”π‘Ž, 𝑦 = π‘Žπ‘₯𝑏 and,

π‘™π‘œπ‘”π‘¦ = π‘₯π‘™π‘œπ‘”π‘ + π‘™π‘œπ‘”π‘Ž, 𝑦 = π‘Žπ‘π‘₯

1. Each graph below is in the form 𝑦 = π‘Žπ‘π‘₯.

In each case state the values of π‘Ž and 𝑏.

(a) (b)

2. Each graph below is in the form 𝑦 = π‘Žπ‘₯𝑏.

In each case state the values of π‘Ž and 𝑏.

(a) (b)

y

x

𝑦 = π‘Žπ‘₯𝑏

(1, 3)

(2, 96)

(2, 56)

(3, 189)

y

x

𝑦 = π‘Žπ‘₯𝑏

y

x

𝑦 = π‘Žπ‘π‘₯

(1, 12)

(3, 108)

y

x

𝑦 = π‘Žπ‘π‘₯

(2, 20)

(4, 80)

Exponentials and Logs

Calderglen High School - Mathematics Department

8

3. Given that 𝑦 = 𝑝π‘₯π‘ž, and that π‘₯ = 3 when 𝑦 = 162 and that π‘₯ = 5 when 𝑦 =

1250, find 𝑝 and π‘ž.

4. An investment (£𝐴) grows according to the relationship 𝐴 = π‘Žπ‘π‘‘ where 𝑑 is

the time after the investment is made in years. If after 3 years the

investment is worth Β£1157βˆ™63 and after 10 years it is worth Β£1628βˆ™89, find

the values of π‘Ž and 𝑏.

O5 I can plot and extract information from straight line graphs with

logarithmic axes (axis).

1. Given that 𝑦 = π‘˜π‘₯𝑛, where π‘˜ and 𝑛 are constants, what would you plot in

order to get a straight line graph?

2. Given that 𝑦 = π΄π‘’π‘˜π‘₯ where π‘˜ and 𝐴 are constants, what would you plot in

order to get a straight line graph?

3. Variables π‘₯ and 𝑦 are related by

the equation 𝑦 = π‘˜π‘₯𝑛

The graph of π‘™π‘œπ‘”2𝑦 against π‘™π‘œπ‘”2π‘₯ is

a straight line through the points

(0, 5) and (4, 7), as shown in the

diagram.

Find the values of π‘˜ and 𝑛.

4. Two variables π‘₯ and 𝑦 satisfy the equation 𝑦 = 3 Γ— 4π‘₯.

(a) Find the values of π‘Ž if (π‘Ž, 6) lies on the graph with equation 𝑦 = 3 Γ— 4π‘₯.

(b) If (βˆ’1

2, 𝑏) also lies on the graph, find 𝑏.

(c) A graph is drawn of π‘™π‘œπ‘”10𝑦 against π‘₯. Show that its equations will be of

the form π‘™π‘œπ‘”10𝑦 = 𝑃π‘₯ + 𝑄 and state the gradient of this line.

Exponentials and Logs

Calderglen High School - Mathematics Department

9

5. Variables π‘₯ and 𝑦 are related by

the equation 𝑦 = π΄π‘’π‘˜π‘₯

The graph of π‘™π‘œπ‘”π‘’π‘¦ against π‘₯ is

a straight line through the

points (0, 3) and (6, 5), as shown

in the diagram.

Find the values of π‘˜ and 𝐴.

O6 I can solve logarithmic and exponential equations in real life contexts.

1. Radium decays exponentially and its half-life is 1600 years.

If 𝐴0 represents the amount of radium in a sample to start with and 𝐴(𝑑)

represents the amount remaining after 𝑑 years, then (𝑑) = 𝐴0π‘’βˆ’π‘˜π‘‘ .

(a) Determine the value of π‘˜, correct to 4 significant figures.

(b) Hence find what percentage, to the nearest whole number, of the

original amount of radium will be remaining after 4000 years.

2. The concentration of the pesticide, Xpesto, in soil can be modelled by the

equation

𝑃 = 𝑃0π‘’βˆ’π‘˜π‘‘

Where

𝑃0 is the initial concentration;

𝑃𝑑 is the concentration at time 𝑑;

𝑑 is the time, in days, after the application of the pesticide.

(a) Once in the soil, the half-life of pesticide is the time taken for its

concentration to be reduced to one half of its initial value.

If the half-life of Xpesto is 25 day, find the value of π‘˜ to 2 significant

figures.

(b) Eighty days after the initial application, what is the percentage

decrease in the concentration of Xpesto?

Exponentials and Logs

Calderglen High School - Mathematics Department

10

3. Before a forest fire was brought under control, the spread of the fire was

described by a law of the form 𝐴(𝑑) = 𝐴0π‘’βˆ’π‘˜π‘‘ where 𝐴0 is the area

covered by the fire when it was first detected and 𝐴 is the area covered

by the fire 𝑑 hours later.

If it takes one and a half hours for the area of the forest fire to double,

find the value of the constant π‘˜.

Exponentials and Logs

Calderglen High School - Mathematics Department

11

Answers

Section A

R1

1. (a) 2√2 (b) 2√3 (c) 5√2

(d) 3√5 (e) 12√2 (f) 10√10

2. (a) √2

2 (b) 10√2 (c)

2√2

5

3. (a) π‘₯7 (b) 𝑦4 (c) π‘₯2 (d) 1

𝑦2 (e) 8π‘Ž12

(f) 𝑝8 (g) π‘₯𝑦3 (h) π‘Žπ‘2 (i) 10 (j) π‘₯3

2𝑦2

(k) 6𝑝11

2 (l) 2π‘Ÿ10 (m) π‘Ž (n) 1 (o) π‘₯5 + π‘₯2

4. (a) π‘₯βˆ’1 + 3π‘₯βˆ’2 (b) π‘₯ + 2π‘₯βˆ’1 (c) 3π‘₯ + 2 (d) π‘₯βˆ’1 βˆ’ π‘₯βˆ’1

2

(e) 2π‘Ž6 + 8π‘₯3 βˆ’ 3π‘₯ βˆ’ 12π‘₯βˆ’2 (f) π‘₯βˆ’2 + 2π‘₯βˆ’1 + 1 (g) π‘₯βˆ’2

3 (h) 1

2π‘₯βˆ’

1

3

(i) 1

5π‘₯βˆ’

3

4 (j) 3

5π‘₯βˆ’

5

2 (k) 2

7π‘₯βˆ’

2

3 (l) 6π‘₯βˆ’1

3

(m) π‘₯ + 3 + 5π‘₯βˆ’1 (n) 2π‘₯5

2 + π‘₯3

2 + π‘₯1

2

(o) π‘₯2 βˆ’ 6π‘₯βˆ’1 + π‘₯ (p) π‘₯βˆ’1

2 + 5π‘₯βˆ’3

2

(q) π‘₯βˆ’2 +π‘₯

3 (r) π‘₯

1

2 + 2π‘₯βˆ’1

2 (s) π‘₯ + 3 + 2π‘₯βˆ’1

(t) 1

5π‘₯

2

3 +2

5π‘₯βˆ’

1

3 βˆ’3

5π‘₯βˆ’

4

3 (u) 3

2+

5

2π‘₯βˆ’1 +

1

2π‘₯βˆ’2

R2

1. (a) π‘š = 4, 𝑦 = 4π‘₯ βˆ’ 9 (b) π‘š = 2, 𝑦 = 2π‘₯ + 3

(c) π‘š = βˆ’1

2, 𝑦 = βˆ’

1

2π‘₯ βˆ’ 6 (d) undefined, π‘₯ = βˆ’1

2. (a) π‘š = 3, y-intercept (0, -2) (b) π‘š = 1, y-intercept (0, 4)

(c) π‘š = 4, y-intercept (0, 0) (d) π‘š = βˆ’2, y-intercept (0, -1)

(e) π‘š = 2, y-intercept (0, 3) (f) π‘š = 1, y-intercept (0, -3)

Exponentials and Logs

Calderglen High School - Mathematics Department

12

3. 𝑦 = 18 βˆ’ 2π‘₯

4. (a) 𝑦 = 5π‘₯ βˆ’ 13 (b) 𝑦 =2

3π‘₯ βˆ’

13

3 (c) 𝑦 = βˆ’2π‘₯ βˆ’ 9

5. 𝑦 = 3π‘₯ βˆ’ 2 6. 𝑦 =1

2π‘₯ + 5 7. 𝑦 = βˆ’2π‘₯ βˆ’ 5

8. 𝑦 =5

2π‘₯ βˆ’

1

2 9. 𝑦 = 2π‘₯ + 9 10. 𝑦 = βˆ’

3

5π‘₯ +

12

5

Section B Answers

1. (a) π‘™π‘œπ‘”435π‘Ÿπ‘  (b) π‘™π‘œπ‘”512π‘₯𝑦 (c) π‘™π‘œπ‘”310π‘Žπ‘

2. (a) 4π‘™π‘œπ‘”π‘Žπ‘₯ (b) 6π‘™π‘œπ‘”π‘Žπ‘ (c) 5π‘™π‘œπ‘”π‘Žπ‘‡

3. π‘₯ = 6 4. π‘₯ = 22 5. π‘₯ = 9

6. (a) π‘™π‘œπ‘”π‘Ž4 (b) 2 (c) 3

7. π‘₯ = 21 8. π‘₯ = 81

9. (a) π‘™π‘œπ‘”π‘40 (b) 3 (c) 2

10. π‘ž =1

2

Section C

O1

1. (b) 2. (a)

O2

1. (a) π‘™π‘œπ‘”π‘₯15

7 (b) π‘™π‘œπ‘”π‘Ž2 2. (π‘Ž), (𝑏)π‘ƒπ‘Ÿπ‘œπ‘œπ‘“ 3. π‘₯ =

𝑦2

𝑧3

4. π‘Ž = 16 5. 1 + π‘™π‘œπ‘”π‘’8 βˆ’ π‘™π‘œπ‘”π‘’9

O3

1. π‘₯ = 0 βˆ™ 868 2. (a) 𝐴 = 0 βˆ™ 0503 (b) π‘˜ = βˆ’0.0347 (c) 𝑑 = 461

3. π‘₯ = 2 (discard π‘₯ = βˆ’8) 4. π‘₯ = βˆ’1 and π‘₯ =1

2

5. (a) π‘ƒπ‘Ÿπ‘œπ‘œπ‘“ (b) π‘₯ = 38 6. π‘Ž = 32βˆ™2 + 1

7. π‘ž =1

2 8. π‘₯ = 71 9. π‘₯ = 81

Exponentials and Logs

Calderglen High School - Mathematics Department

13

O4

1. (a) π‘Ž = 4, 𝑏 = 3 (b) π‘Ž = 5, 𝑏 = 2

2. (a) π‘Ž = 3, 𝑏 = 5 (b) π‘Ž = 7, 𝑏 = 3 3. 𝑝 = 2, π‘ž = 4

4. π‘Ž = 1000, 𝑏 = 1 βˆ™ 05

O5

1. π‘™π‘œπ‘”π‘Žπ‘¦ against π‘™π‘œπ‘”π‘Žπ‘₯ 2. π‘™π‘œπ‘”π‘Žπ‘¦ against π‘₯

3. π‘˜ = 32, π‘š =1

2

4. (a) π‘Ž =1

2 (b) 𝑏 =

3

2 (c) π‘š = π‘™π‘œπ‘”104 and (0, π‘™π‘œπ‘”103)

5. 𝐴 = 𝑒3, π‘˜ =1

3

O6

1. (a) π‘˜ = 0 βˆ™ 0004332 (b) 18% 2. (a) π‘˜ = 0 βˆ™ 028 (b) 89 βˆ™ 4%

3. π‘˜ = βˆ’0 βˆ™ 462